Image-Space lllumination for
Augmented Reality in Dynamic Environments

Figure 1: Augmented Reality lighting key features: (Left) Probeless light estimation and coherent Augemented Reality rendering in mid-sized
dynamic environments. (Middle) Consistent shadowing from real and virtual occluders with objects moving out of the field of view. The
character’s head stays in shadow, although the plant, which casts a shadow on it, moves out of the field of view. (Right) User interaction
supported by fast updating geometry (hand with paddle) and static geometry with indirect illumination. This work is the first than can deliver

all illumination effects shown in the three images simultaneously.

ABSTRACT

We present an efficient approach for probeless light estimation and
coherent rendering of Augmented Reality in dynamic scenes. This
approach can handle dynamically changing scene geometry and dy-
namically changing light sources in real time with a single mobile
RGB-D sensor and without relying on an invasive lightprobe. We
jointly filter both in-view dynamic geometry and outside-view static
geometry. The resulting reconstruction provides the input for effi-
cient global illumination computation in image-space. We demon-
strate that our approach can deliver state-of-the-art Augmented Re-
ality rendering effects for scenes that are more scalable and more
dynamic than previous work.
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1 INTRODUCTION

Estimating real-world lighting and applying it to virtual objects is
a key element of visually coherent rendering in Augmented Reality
(AR). In the real world, shadows change, as people and objects
move, and lighting changes, as lamps are switched on and off.

1.1 Common limitations of AR lighting

Previous work on AR lighting has made unrealistic assumptions
about how dynamic changes in scene geometry and illumination
are handled. These assumptions, which usually do not receive much
discussion in the AR literature, impose rather severe restrictions on
real-world AR applications such as games or home shopping.

Limitation to small rigid scenes A common approach is to
limit AR lighting experiments to a small, carefully prepared and
registered “desktop” scene with just a few tracked objects [17, 11].
This distracts from the fact that expensive rendering techniques
such as recursive raytracing do not scale to larger scenes. More-
over, arbitrary scene changes are not supported, and the geometry
outside the field of view is ignored.

Atrtificial lightprobes  Lightprobes placed in the scene can cap-
ture dynamic lighting effects, but they clutter the scene, require ad-
ditional equipment and capture only a small scene per lightprobe.
AR constrained to a small scene after lots of preparations is rather
impractical for end-users. With recent inexpensive RGB-D sensors,
it is now feasible to rapidly obtain models of large static scenes [15]
and also of smaller dynamic scenes [24], while simultaneouly track-
ing camera movements. The combination of reconstruction, track-
ing and imaging puts coherent rendering for AR in dynamic scenes
within reach. However, previous approaches [18] have neither con-
sidered geometry outside the sensor’s current field of view (FOV)
nor dynamically changing light sources.

1.2 Practical AR light estimation requirements

Practical light estimation for mobile AR imposes several strong re-
quirements, which must all be addressed simultaneously:

Probeless light estimation Mobile AR affords only a single
RGB-D sensor.



Moderate computational requirements Since mobile de-
vices are limited, the computation must scale well with scene
size and complexity. Computational effort should be concentrated
where a noticeable visual effect can be expected.

Incremental reconstruction of scene geometry The user
must be free to explore new viewpoints. Requiring extensive scan-
ning before starting the AR application is not practical.

Support for changing geometry and lighting While it is not
possible to handle arbitrary changes that the RGB-D sensor cannot
see, we can at least make optimal use of current and past observa-
tions, to address the widest possible variety of dynamic events.

1.3 Contribution

In this paper, we describe the first AR approach that handles all the
requirements described in Section 1.2. We build on the idea that the
real world inside the sensor’s FOV, i. e., in image-space, should be
treated differently to the world outside the FOV:

Joint object-space and image-space reconstruction We
retain both a static geometry representation in object-space and a
dynamic geometry representation in image-space, and jointly filter
both representations to minimize sensor artifacts. Noise and holes
in depth measurements are still a problem for inexpensive depth
sensors targeting consumer markets. Our pipeline is independent to
the data representation of the geometry reconstruction (e.g., volume
or triangle meshes) and is open for many different reconstruction
algorithm as long as a depth map is provided.

Light estimation from direct and indirect observations We
maximize the opportunity for global light interaction by combining
information from three sources in real-time: (1) The static geomet-
ric model outside the FOV, (2) the dynamic geometric model inside
the FOV, (3) dynamic estimation of environment lighting from re-
flections observed in the scene inside the FOV [8]. This omits dy-
namic objects outside the FOV, which cannot be observed directly.
However, small changes outside the FOV, which are relatively far
away from the observer, will not be very noticeable. Large changes
will likely have an influence on the observed reflections.

Scalable rendering High computational efficiency is
achieved by approximating global illumination in image-space.
We consider both the geometry inside and outside the FOV, so that
radiance can be transfered across the FOV boundary. However, the
efficiency is independent of the global scene complexity.

We show that this approach can handle complex and dynamic
scenes, as encountered in real life. We demonstrate real-time per-
formance on a desktop GPU and near real-time performance on a
mobile GPU. Thus, we believe our work shows the first time fully
dynamic illumination in AR.

2 RELATED WORK

An AR pipeline such as the one considered here consists of three
main stages: geometry reconstruction, light estimation (including
radiance transfer computation) and rendering. We discuss these
topics in the following sections.

2.1 Geometry reconstruction

Real-time reconstruction using depth sensors has become a pop-
ular topic of research. One approach is object-space filtering,
which continuously improves the reconstructed scene model by
integrating depth images over time and space into a volumetric
model [21], a 3D point cloud [15] or a 3D map composed of depth
keyframes [16]. The main advantage of object-space filtering is the
global scene model, which can represent geometry outside the cur-
rent camera FOV. The main disadvantage is the inability to pick up
fast scene changes, because robust integration requires time. Fast
scene changes are classified as outliers and disregarded.

Image-space filtering processes only the current depth image and
uses the result directly as a scene model for light estimation [18]
and rendering [24]. The advantage of image-space filtering is that
it instantaneously captures the current state of the scene. However,
image-space filtering is more susceptible to sensor artifacts, cannot
capture the scene outside the current FOV and requires additional
effort for 3D camera tracking.

In this work, we combine object-space and image-space filter-
ing to produce a scene model which is both smooth and dynamic.
This idea is related to scene change detection from depth sensors,
which has, for example, been proposed for model-based object
tracking [9] and telepresence [19]. However, these works aim at
object-space results, while we use the object-space only as an inter-
mediate step and compute global illumination in image-space.

2.2 AR light estimation

AR lighting focuses on real-time applications requiring only min-
imal additional user input. This places them apart from post-
production approaches, which require manual scene annotation [13]
or extensive offline processing [14].

Real-time AR lighting often uses passive lightprobes, such as
reflective spheres [3, 1], or active lightprobes, such as fisheye cam-
eras [17, 6, 11]. While these methods provide excellent results,
inserting lightprobes is a major hindrance.

Therefore, recent research has investigated probeless light esti-
mation. For outdoor applications, knowledge of the user’s geospa-
tial position and trajectory of the sun allows to infer dominant light-
ing. Indoors, probeless approaches may assume static geometry
and illumination of the real scene, and use a handheld RGB or
RGB-D sensor to capture this information offline as a surface light-
field. This approach can support environment light maps [4], non-
diffuse materials [10] and even high-dynamic range [20]. While
offline capturing can deal with noisy sensors through integration
and smoothing, dynamic changes to geometry and light conditions
cannot not be supported. Furthermore, the capturing is delicate and
not end-user friendly.

Most related to our work are approaches which continuously es-
timate the environment light without lightprobes. This is more diffi-
cult than offline estimation, because light estimation is an ill-posed
inverse rendering problem [22] and thus rather susceptible to sen-
sor noise. Light estimation from the actual scene geometry at in-
teractive rates has been shown by Gruber et al. [8]. Although their
system supports a priori unknown geometry, the amount of dynamic
scene changes is limited by the slowly updating reconstruction. Yao
et al. [26] investigated a similar approach for estimating the envi-
ronment light from a depth map, but do not deal with global illumi-
nation at all. Lensing et al [18] estimate indirect illumination from
live depth images, but only for virtual light sources and only for
geometry inside the current FOV.

2.3 AR rendering

A key concept for realistic illumination effects in AR is differential
rendering, made popular by Debevec [2]. This technique computes
global illumination for real and real+virtual separately, and applies
the difference as a light map. Differential rendering can be com-
bined with any popular global illumination technique, such as ray-
tracing [11], reflective shadow maps [17, 18], irradiance caching on
surfaces [12] or light propagation volumes [5].

However, all these techniques assume a small scene and artifact-
free geometry. Exceptions are limited: Lensing et al. [18] filter
geometry in image-space, but do not estimate real lighting, while
Gruber et al. [8, 7] filter geometry in object-space, but do not com-
pute indirect illumination.

To robustly support dynamic scenes with significant geomet-
ric artifacts, we adopt a deferred rendering approach. It has been
shown that with deferred rendering, global illumination can be



Figure 2: Working environment and data flow diagram. (a) Environment with geometry inside (light brown) and outside (dark brown) the
camera FOV. Static real geometry (brown), dynamic real geometry (green) and virtual geometry (purple) are all projected into geometry
buffers for occlusion computation. Additional shadow geometry buffers around the camera frustum provide further occlusion information.
(b) Data flow of the overall AR pipeline. (c) Detailed data flow of the geometry reconstruction stage. The environment is captured in volume
V, from which a geometry buffer (depth + normals) G, is extracted and fused with the raw depth map D, to capture fast geometry changes.

The output of the final stage is the fused and filterd geometry buffer G,.

computed by using a depth buffer instead of the scene geome-
try [25]. While this computation can only approximate true global
illumination, it can be performed at high frame rates even for strong
scene changes, as may occur when the depth buffer is obtained from
an RGB-D sensor in an AR application.

3 ALGORITHM OVERVIEW

An overview of our pipeline is shown in Figure 2. The geometry
processing stage (Section 4) represents the real-world as a volume
V., which captures static or slowly updated global geometry. Fil-
tering in object-space allows building a global scene model with
high quality, and also conveniently provides camera tracking and
re-localization abilities. However, fast object motion is suppressed
in the filtering.

To react to moving objects, we extend the volumetric integration
with a more agile filter. Rather than directly extracting surfaces
from the volume, we use it only as a prior for image-space filtering
of the raw depth image D.. Dynamic information is taken from D,,
while static information is taken from V.

This approach can be seen as a variant of spatio-temporal depth
filtering, where the temporal prior is taken from the volume rather
than from the previous depth image [24]. The volumetric prior has
multiple advantages over storing only a single depth image. First,
the camera motion is already determined during the volumetric in-
tegration, so costly optical flow computation for motion compen-
sation is not necessary. Second, in those regions where the image-
space filtering relies on information from the volume, higher quality
normals can be extracted. Third, the weights in the volume provide
an additional trust measure for the subsequent image-space filter-
ing. The result of the filtering is stored as a geometry buffer G,.

The illumination stage (Section 5) performs image-space occlu-
sion detection and first bounce estimation on G, to compute direct
and indirect radiance transfer. In addition to the main geometry
buffer, auxiliary geometry buffers are strategically placed around
the camera frustum to incorporate occlusion information from the
entire environment. The result is stored in spherical harmonics (SH)
form.

Image-space occlusion detection is fast and independent of

global scene complexity, since it can use the filtered depth image
directly without sampling any object-space geometry. The approx-
imation error introduced by computing occlusion in image-space
rather than in object-space is negligible compared to geometric re-
construction errors.

Radiance transfer computation is the most expensive step of the
pipeline, but has two uses: First, distant environment illumination
is estimated from observed reflections in the scene. Second, SH
shading is used in the final differential rendering stage.

4 GEOMETRY RECONSTRUCTION

In the geometry reconstruction step, the raw data from the RGB-D
sensor is processed into a global volume V and a filtered geome-
try buffer G, which represents the real scene in the current camera
FOV. The geometry buffer contains vertex positions, surface nor-
mals and color. G; and V are used as input to the following light
estimation and rendering steps.

The raw depth image D, contains artifacts, such as holes from
missing depth measurements, noise, and poor alignment between
color and depth channels. We address these problems by a filter
chain designed to separate static and dynamic geometry, while sup-
pressing undesired artifacts. The static part of the geometry, V,
is obtained by conventional volumetric filtering [9]. This type of
filtering is very robust, but discards observations of fast moving ob-
jects as outliers.

While updating V' with D, we can extract a geometry buffer
G, = (Dy,N,) corresponding to the projection of V into the current
view. The differences between D, and D, will be used to identify
where the scene has changed with respect to V. In these regions,
the depth information has to be taken from the raw image, even if it
has imperfections.

To this aim, three filter passes in image-space are applied. A
merging pass fuses D, and D,, a smoothing pass aligns depth and
color edges, and a denoising pass cleans up erroneous measure-
ments.

The merging pass D’ selects among D, and D, according to a
depth difference threshold Ap. Non-missing pixels in D, are di-
rectly compared to D,; if the difference is within the threshold, then
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Figure 3: Depth map filtering examples. Black pixels indicate missing depth measurements. Images (a), (b), (c) are inputs. Images (d) and
(e) are outputs of the merging and smoothing filtering passes, respectively. The top row shows results of the specific case where the volume
reconstruction lags behind the actual depth image from the sensor. This can be noticed by comparing the position of the hand in (b) and (c).
The middle and bottom rows show close-up views of the top row. Note the significant improvements in depth edges along the borders of

objects, such as the chair legs.

the more trustworthy depth D,, replaces D.. To fill in missing depth
pixels, we look at the valid pixels Qi (p) in a k x k region around a
pixel p. We first determine a subset Q;(p) C Qi (p) of pixels, for
which the intensity difference to p lies within a threshold A;.

Q(p) = {a1 € () le(p) — L(q1)| < Mt} M

This ensures that our support region does not cross an object bound-
ary. We then find the subset Qp(p) C Q;(p) of pixels for which the
depth difference to the volume lies within a threshold Ap.

Qp(p) = {ap € Qi(p),|Dc(qp) — Dv(gp)| < Ap} @)

If the majority of inspected pixels in the support region are close in
depth to the volume, then the depth value from the volume replaces
the depth map input. Otherwise, the median depth of the support
region is used.

Dc(p), if 3D.(p) and |D.(p) — Dy(p)| > Ap
/ - D,(p), if 3D.(p) and ‘DC(P) _Dv(p)| <Ap
D)= by(p). it 3De(p) and |20 ()] = [ (p) 2 O

= —~

p
median({D.(q) : g € Q;(p)}), otherwise

The denoising pass D" is a joint bilaterial median filter with a
smaller window, which operates on all pixels. This pass corrects
registration errors between the depth image and intensity image.

D" (p) = median({D'(q) : ¢ € Q;(p)}) )

Because computing a median over a large window is generally
costly, we subsample from k x k to 5 x 5 before computing the me-
dian. This subsampling introduces some noise-related errors, which

are cleaned up in the final pass D" using a small filter window with-
out subsampling. The intensity difference threshold is not needed
in this last pass, because we assume that the depth edges are now
correct and match the color edges.

D" (p) = median({D" (¢) : ¢ € Q(p)}) 5)

These filter passes are illustrated in Figure 3. A person is waving
a hand in front of the camera. Because volumetric integration takes
time, the hand is in the wrong place in the volume. In this case, the
merging pass chooses samples from D, for the hand. Joint color
and depth filtering significantly improves depth edges from both
the volume and the depth map, as can be observed on the thin chair
legs, which are neither well represented in D, nor in D,,.

Figure 4 demonstrates our algorithm for occlusion handling. The
two top rows explain the possible errors created by a slower updat-
ing geometry reconstruction. In Figure 4 (c), the result of applying
our merge and filtering algorithm is shown. Figure 4 (d) demon-
strates the case where only the volumetric reconstruction is used.

5 ILLUMINATION

Global illumination for large scenes is a challenging task, be-
cause every surface point could interact with every other surface
point. Apart from the computational cost, incremental reconstruc-
tion may present situations where important surfaces have not even
been scanned yet. Real-time global illumination techniques which
rely on pre-computation cannot be used, since we allow both light
changes and non-rigid geometry changes. Overall, we need to com-
pute the possible radiance transfer across the scene’s surfaces at
real-time rates.

Computing radiance transfer in image-space improves perfor-
mance, which is necessary to keep up with the dynamically chang-
ing environment. We need the radiance transfer for two purposes:
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Figure 4: Top row figures show erroneous occlusion handling,
where the volumetric reconstruction lagged behind. (a) The in-
serted arm is not reconstructed in time. (b) After the arm has been
removed, the lagging reconstruction still creates wrong occlusions.
(c) Our depth merging and filtering algorithm creates correct occlu-
sions. (d) The result of a converged volumetric reconstruction is
shown for comparison.

First, we combine observed reflections in the RGB image with per-
pixel radiance transfer to estimate the real-world environment light
via inverse rendering. Second, when combining first order and sec-
ond order radiance transfer, a fast deferred shading pass is sufficient
to produce the most significant global illumination effects.

As will be shown in the results section, this approach can pro-
duce appealing soft shadows and color bleeding. Nevertheless, the
approximate light estimation and SH compression support only dif-
fuse light transport (no mirrors), only directional light sources (no
desktop lamps) and only white light sources (no dancefloors). We
found these limitations acceptable for practical AR applications.

5.1 Radiance transfer computation

Diffuse reflection R; on a surface point x with normal n(x) and
albedo A(x) is an integral over the incoming radiance L from all
possible directions ®;, weighted by incident angle and the visibility
K (x, ;). With discrete sampling in N directions, we write:
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Instead of computing the visibility term K by expensive raytrac-
ing, we approximate it with a variant of screen-space directional
occlusion (SSDO) [25], where visibility is computed by spheri-
cally sampling the space near x. A sample point y; in object space
is computed by adding a pseudo-random displacement to x along
the specific direction ®;. The point y; is then projected into the
image-space aligned geometry buffer to look up the actual position
s; on the surface. If s; is closer to the camera than x, we assume
that light is blocked towards x along direction @;. Unlike standard
SSDO [25], we do not instantly compute the lighting for each ray

direction based on a known incident light source, but rather project
the visibility result into per-pixel SH for deferred light estimation
and rendering. Such an approach is faithful to the SSDO idea of
coupled ambient occlusion and directional lighting, and results in
more realistic rendering results.

For projecting radiance transfer into spherical harmonics func-
tions efficiently, we pre-compute the SH weights for all N visibility
directions. A naive visibility test delivers a binary result, which is 0
only if a sample does not pass the depth test. Wrong visibility quan-
tization can lead to over-estimation of occlusion, making shadows
too dark. We account for visibility quantization errors by modeling
K as a continuous value, which rises from O to 1 with the angle be-
tween @; and the normalized vector ¢; from x to s;. Figure 5(c) and
(d) show how false self-occlusion can be successfully reduced.

tj=(sj—x)/|sj—x| @)
K(x,0;) = min(x,1 - (t; - 0;))/ x ®)

The threshold y in Equation 8 is related to the angle between
adjacent sampling directions. We account for the jittered random
sampling by using the median of all angles o;; between neighbor-
ing samples @; and ®;, as determined from a spherical Delauney
triangulation ¥ of the sampling. To account for the Nyquist limit,
we determine Y from half of this angle:

x = cos(median(o;; € ¥)/2) )

Radiance transfer is computed from both visible and invisible ge-
ometry, but only to visible geometry. This optimization is enabled
by creating additional geometry buffers extracted from V with or-
thographic projection. We approximate a partial cubic map with
the main buffer and three additional buffers for the left, right and
top parts of the scene. Additionally we add a buffer from the dom-
inant light direction directly extracted from the real-world light es-
timation represented in SH coefficients. All camera positions are
assumed in world coordinates, so the sample points y; for can be
tested for visibility in each buffer directly.

This variant of visibility approximation may miss thin occlud-
ing objects in the scene and is only truly correct for the rays which
are facing towards the camera. However, our evaluation shows that
this approximation suffices for our purpose. Compressing the re-
sulting radiance transfer into SH reduces storage and computation
requirements for the remaining pipeline, and also conveniently en-
forces low-pass filtering on the light estimation, which is necessary
for robust extraction from unreliable scene reflections. Visibility
sampling is improved by precomputing random offsets for an area
of 2 x 2 pixels rather than a single one.

To meet mobile hardware requirements we implemented a vari-
ation of our approach (OursFast) accelerating the radiance transfer
computation by sub-sampling in image space. In the differential
rendering step we use bicubic interpolation and standard Gauss fil-
tering with a kernel radius of eight for up-sampling. In Figure 9 we
compare the visual results of Gruber et al. [7] based on volume ray-
tracing against our approach with full radiance transfer sampling
and our fast approach with 4 x 4 sub-sampling.

5.2 Light estimation

With the pixel intensities of the RGB image I.(x) and the radi-
ance transfer R;(x,z) in SH form (where z denotes the index of
the SH coefficient), we can now recover the incoming light L in
SH form [8], denoted /(z). We set up a radiance transfer matrix
T = [R;(x,z)] and evaluate an overdetermined linear equation sys-
tem T - [ = I, for [ in the least squares sense. In Figure 6, we visu-
alize different stages of our light estimation pipeline.



(a) Visibility (b) Indirect illumination

(c) No correction (d) Corrected visibility

Figure 5: (a) Visibility testing for point x. A sample point y; is tested by comparing its depth to the projection onto the surface, s;. s is
closer to the camera image plane than x, so x is occluded along this direction. A second sample y, passes the depth test in the main camera
buffer, but is occluded in the auxiliary geometry buffer covering the top view. The red arrows visualize the actual direction ¢; from x to s; and
the angular distance to the visibility direction @;, which has to lie inside the threshold . (b) Indirect lighting is computed, if an occlusion is
detected. For example, s4 reflects light towards x, but s faces away from x and hence does not reflect light. (c) Without corrected visibility
testing, occluded areas are too dark. (d) Correcting for visibility testing results in more realistic shadows and allows light to reach small

corners.

Compared to volume ray-tracing [8], the light estimation quality
remains essentially the same, but our overall approach enables more
convincing shadowing effects. This is mainly due to the ray length
limitation of volume ray-tracing imposed by the high computational
cost. Our approach is less accurate, but can cover the entire scene
and therefore capture all relevant shadowing effects.

5.3 Indirect illumination

Indirect illumination R; from one light bounce can easily be incor-
porated into SSDO. When a sample y; near x is found invisible,
the light transport from the corresponding surface point s; to x is
approximated. R; is computed as a diffuse reflection from a single
dominant light direction Lp without further visibility testing.

Ri(x) =} (1= K(x,0;))(n(sj)-Lp)F (x, j)G(x,j) ~ (10)

J

The indirect illumination is weighted by a “form factor” term
F(x,j), which computes Lambertian weights for the angles be-
tween the normalized transmittance direction —¢; and the normals
n(x) and n(s;), respectively, and corrects for the distance from x
to s;. The term G(x, j) suppresses light transfer from points facing
away from x:

(n(x)-2;)(n(s;) - (—t;))

(x—s;)?m

Flx,j) = (1)

G(x,j) = max(0,sgn(n(x) - (1)) (12)

5.4 Differential rendering

Differential rendering requires computing radiance transfer two
times, once for the real world and once for the combination of the
real world and the virtual world. In our approach, we compute dif-
ferential rendering for directional lighting with occlusions and first
bounce indirect lighting separately. For directional lighting with
occlusions, we exploit the assumption that our estimated real-world
light is white, computing two monochromatic differential rendering
buffers Ry for real and R); for real+virtual. Geometry data for oc-
clusion processing of real+virtual is obtained by rasterizing virtual
objects with a standard depth test into the filtered geometry buffers.
Using radiance transfer in SH form lets us evaluate the shading R,

(a) Workspace (b) Occlusion

(c) Light estimate (d) Shading

Figure 6: Different stages of the light estimation. (a) Overview of
the setup. (b) Occlusions in image-space. (c) Top and front view
of the light estimation projected onto a sphere. (d) Direct diffuse
lighting from light estimation and surface radiance transfer

and R, as a simple dot product of / and 7. The directional differen-
tial rendering result /; is computed as follows:

I =1.(1+T(R)) - T(Ry)) (13)

In Equation 13, we add the difference between the two differen-
tial rendering buffers (conf. 7(a) and (b)) to the color camera input
image I.. To support all frequencies, we have to multiply the inten-
sity buffers R; and R; with the color information of /. first. Note
that we apply a tone mapper [23] T to R4 and R/, based on the av-
erage intensity of each buffer. This is necessary because our differ-
ential rendering buffers are computed in high dynamic range, while
the input data /. originates from a low dynamic range camera.



For adding indirect illumination to differential rendering, we
compute analogue to the previous pass (see Section 5.3) the in-
direct illumination buffers R; and R}. Extracting the dominant light
direction Lp, as discussed in Section 5, is solved by using the sec-
ond, third and fourth SH coefficient of /. While / is monochromatic,
indirect illumination considers colored light transport based on the
albedo A(s;) of the sample point. However, for differential render-
ing, we only want to add those pixels to the final result which come
from the light interaction between real and virtual, R;, and exclude
pixels which are affected from the real-world only. Therefore, in
Equation 14, we select the right pixels from R!.

R, ifR. #R;
=47 i 14
! {0, otherwise (14

The final AR image Iy, is computed by adding the differen-
tial rendering result from the combination of direct lighting /; and
indirect lighting J; (see Figure 7(c, d, e)).

Ifing = 1g +1i (15)

(a) Differential buffer (b) Final rendering

(c) No ind. illumination  (d) Ind. illum. only (e) Applied ind. illum.
Figure 7: Top row: (a) Differential occlusion buffer, (b) differential
rendering applied to camera image. Bottom row: (c) Scene with-
out indirect illumination, (d) Indirect illumination added to the dif-
fusely shaded buffer. (e) Result with indirect illumination. Note the
subtle effects of indirect illumination on natural diffuse surfaces.

6 EVALUATION
6.1 Implementation parameters

The majority of the pipeline is executed on the GPU using CUDA.
The Kinect delivers color and depth frames at 640x480, which is
also the final rendering resolution. Our standard workspace size
measures 2x2x2m and is reconstructed into a 2567 voxel volume.
For the light estimation, we employed SH with four bands (16 co-
efficients). Filter parameters for geometry fusion were chosen as
follows: D': k=20,4 =7,Ap = 5cm, D": k=81 =7, D":
k=2.

6.2 Light estimation

In this work we evaluate the light estimation quality comparing the
dominant light directions of each method. The dominant light di-
rection is extracted from the environment light estimation given in
SH and has a great impact on the final rendering. We compared two
configurations our image-space approach (Ours: full sampling and
OursFast: quarter sub-sampling in image space) against a standard
AR light estimation method (reference method) based on a diffuse
spherical light probe. Additionally we evaluated the approach of
Gruber et al. [8] (GR12). Since the reference method based on
passive light probes naturally can suffer from light probe tracking,
we additionally captured the entire testing setup with an omnidirec-
tional HDR camera (PointGrey Ladybug3). We placed the omni-
directional camera at the same position of the passive light probe
and manually registered it to the common world coordinate system.
We obtained environment images of our testing setup directly sens-
ing the light sources (see top row of Figure 10). Our test data set
consists of six real-world scenes with increasing complexity of ge-
ometry and textural elements (Figure 10 bottom row). We installed
four area light sources arranged in a half circle around the center
of the test setup. We recorded RGB-D sequences with a Kinect V1
for each scene and light source with repeating camera movements,
where each sequence has 1000 frames. In total, we recorded and
evaluated 24000 frames.

In Figure 10, we show two types of results. The first results are
the median value of all measured dominant light directions of all
three evaluated methods and the reference method (yellow). We vi-
sualized the median points on the panoramic images from the omni-
directional cameras. As can be seen, the standard reference method
is more accurate, but overall, all methods estimate the dominant
light direction quite successfully. Note that the results of Ours and
OursFast are very similar and therefor overlap. For the case of Light
4, the reference method clearly provided better results. This is due
to the fact that the reference method has perfect surface normals as
input, compared to the methods based on geometry reconstruction.
If the camera does not sense enough information from the scene ge-
ometry, it is possible that certain surface normals are not sampled,
which leads to biased light estimations.

The box plots in Figure 8 show the angular distance of our meth-
ods and [8] to the reference method. We visualized the mean (red
bar) for each scene over all light sources In scene 1 we have a sphere
as input geometry (same geometry as a light probe) and directly
compare results between perfect input data (reference model) and
input data from the geometry reconstruction. In scenes where the
geometry is rather limited and contains different colors, such as
Scene 3 in Figure 8, the light estimation algorithms deviate more.
The best results are obtained in Scenes 5 and 6, where the surface
geometry provides sufficient input for the light estimation. Overall,
our image based methods have the same quality of light estimation
results as the volume raytracing method.

6.3 Performance

We measured the performance of time-critical passes from the en-
tire system. The major passes are labeled and described as fol-
lows: Input: The input data processing consists of capturing RGB
and depth data and applying a noise filter to the RGB image. Re-
construct: With Kinect Fusion [21], we compute the geometry re-
construction and estimate the 6DOF camera pose. Surface: The
implicit surface from the volume modeled as a truncated signed
distance function (TSDF) is extracted by ray-casting the volume,
which also includes the surface extraction for the occlusion buffers.
DynGeo: Our dynamic geometry processing algorithm. RadTrans-
fer: Radiance transfer computation (RT) differs on the principal
method. These are based on ray-tracing or image space directional
occlusion. LightEst: Light estimation depends on the number of
samples consisting of the per pixel radiance transfer in SH and the



Figure 8: The top row images show environment maps of the testing setup with each light source. The environment maps are created with
the omnidirectional Ladybug3 camera shown in the inset at the right. Each colored dot visualizes the median of the angular distance of the
dominant light direction of each method to the reference method (yellow), drawn on top of the environment maps. For the reference method
we used a diffuse gray painted sphere, which meets best our diffuse gray world assumption. The registration of the light probe was solved by
using an ARToolkit marker, which also defines the origin of our test setup. The middle row shows the median of the angular distance of the
dominant light directions of each method to the reference method. Each column in the plots correspond to the scenes in the bottom row.

intensity image from the camera. Rendering: The rendering pass
includes rasterization of the virtual objects, differential rendering
and AR compositing.

In a first test (Table 1), we compared GR12, which is based on
volume ray-tracing, against our method, which is based on image-
based occlusion techniques, on a desktop computer (PC) with an
NVIDIA GeForce 780. Both methods regularly sample the entire
image space. Besides GR14, we compared GR14 [7], which is
based on a 4 x 4 regular sub-sampling in image space and adap-

tive edge refinement, against our variant of our method, which also
uses a 4 x 4 regular sub—samplin% in image sgace (OursFast). The
size of the working volume is 2m” with a 256 voxels.

In a second test (Table 2), we compared the performance of the
PC to a notebook (NB) with an NVIDIA Quadro K2100M and a
tablet (M) with an NVIDIA GT640M LE. To meet the hardware
limitations of NB and M, we reduced the reconstruction to 64° vox-
els and omitted D”’. The methods based on volume ray-tracing
(GR12 and GR14) did not achieve frame rates above 1Hz and have



been left out in this evaluation. All timings, except from frames per
seconds (FPS) are in milliseconds.

GR12 Ours | GR14 | OursFast

FPS 5.8 13.98 | 12.29 22.46
Update 17245 | 71.5 81.36 44.53
Input 7.3 7.06 7.44 7.02
Reconstruct 11.1 10.9 10.24 10.64
Surface 6.69 12.57 6.69 12.6
DynGeo 0 1.19 0 1.02
RadTransfer | 130.48 | 36.22 | 50.54 10.5
LightEst 3.86 2.67 5.27 1.8

Rendering 0.92 0.86 0.98 0.87

Table 1: Performance evaluation of our light estimation and ren-
dering system against previous work based on volume ray-tracing.
The results show strong performance improvements for the radi-
ance transfer computation.

Ours OursFast
PC NB M PC NB M
FPS 18.24 3.23 2.19 33.60 7.34 5.0
Update 54.8 309.86  456.78 | 29.76 136.24 200.48
Input 0.8 0.86 1.29 0.79 0.81 0.9
Reconstruct 9.42 37.68 66.0 9.42 36.86 66.16
Surface 5.28 30.73 45.68 5.28 30.02 44.99
DynGeo 1.27 18.25 25.77 1.12 17.89 25.75
RadTransfer | 34.57 21427 314.68 9.96 38.69 59.17
Light Est. 2.56 4.56 1.98 1.93 8.52 2.24
Rendering 0.89 3.52 1.36 1.24 343 1.26

Table 2: In this table, we show the performance measurements on a
mobile device (M) compared to the values measured from a Note-
book (NB) and a PC. We achieve interactive frame rates with the
performance optimized variant (OursFast) of our algorithm. A ma-
jor bottleneck for the mobile device is volume processing including
reconstruction and surface evaluation. However, this could be, for
example, substituted by a state of the art mobile visual SLAM sys-
tem. The lower resolution of the volume does not affect camera
tracking or light estimation, but can create visual artifacts at shad-
ows.

6.4 Limitations

Obvious limitations of the geometry reconstruction are depth range
and quality of the sensor and system memory. Visual artifacts can
arise because, the entire scene has not been sensed and important
occlusions cannot be computed. For example, when only the front
of a table is reconstructed, this would create missing shadows under
the table. However, this is a fundamental limitation of any single-
camera approach. Moreover, the geometry from the depth image
captures only the visible surface and not the entire volume of an
object, which can also cause shadowing errors.

We do not account explicitly for the material color in the scene
and assume that the real-world lighting is white. A real-world scene
configuration with difficult material color distributions — for exam-
ple, consider a couch with black-and-white stripes — could cause
poor light estimation results. However, in our experience, these
configurations are rather rare. We do not estimate the exact BRDF
of the real-world geometry and are thus restricted to rather diffuse
materials.

7 RESULTS

Figure 9 compares the two variants of our approach against related
work. In Figure 10 and

8 CONCLUSION AND FUTURE WORK

Our work enables light estimation and photorealistic AR rendering
from dynamic scenes. It also supports user interactions with the
scene, such as moving hands and movable objects.

By combining object-space and image-space filtering, we pro-
duce a consistent reconstruction of dynamic geometry for AR light
estimation and rendering. We show that we can successfully esti-
mate environment light using a fast global illumination approxima-
tion in image-space. Our approach supports fast visibility determi-
nation covering the entire scene, and, therefore, produces consistent
shadowing effects, even with geometry outside the FOV. The light
estimation is stable, despite dynamic scenes and real-time opera-
tion. Furthermore, we use the real-world light estimation to add
indirect illumination between real and virtual objects.

In future work, we would like to adapt our approach to use
other scene reconstruction methods, such as point cloud fusion [15],
which promises more lightweight and scalable reconstruction. Be-
yond recovering the geometry and lighting, we are also interested
in real-time estimation of surface material parameters.
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