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ABSTRACT

Handling degenerate rotation-only camera motion is a challenge
for keyframe-based simultaneous localization and mapping with six
degrees of freedom. Existing systems usually filter corresponding
keyframe candidates, resulting in mapping starvation and tracking
failure. We propose to employ these otherwise discarded keyframes
to build up local panorama maps registered in the 3D map. Thus,
the system is able to maintain tracking during rotational camera
motions. Additionally, we seek to actively associate panoramic and
3D map data for improved 3D mapping through the triangulation
of more new 3D map features. We demonstrate the efficacy of our
approach in several evaluations that show how the combined sys-
tem handles rotation only camera motion while creating larger and
denser maps compared to a standard SLAM system.
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panoramic mapping and tracking, general and rotation-only cam-
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1 INTRODUCTION AND RELATED WORK

Two essential approaches to the monocular visual simultaneous lo-
calization and mapping (SLAM) problem have been demonstrated
in augmented reality applications. Filter-based approaches adopt
probabilistic filtering algorithms such as the extended Kalman filter
(EKF) [5]. Localization of the camera and mapping of landmarks is
tightly coupled with estimating all visible landmarks in each frame.
Due to real-time constraints, only a small number of landmarks can
be mapped. In contrast, optimization-based approaches [11] decou-
ple tracking from mapping and execute these tasks asynchronously
in separate threads. This allows for increasingly robust frame-rate
camera tracking from a map which is optimized in the background
with bundle adjustment.

Based on either approaches, SLAM systems have been presented
which specialize in mapping and tracking either general or rotation-
only camera motion. SLAM systems with six degrees of freedom
(6DOF) [6, 7, 11, 15] assume general camera motion and apply
structure-from-motion techniques to create 3D feature maps. Ro-
bust triangulation of 3D map features from observations of multiple
camera viewpoints requires sufficient parallax induced by transla-
tional or general camera motion. In contrast, panoramic SLAM sys-
tems [4, 14, 17] assume rotation-only camera motion and track the
camera in 3DOF. Because no parallax is observed, feature points
are not triangulated and consequently can only be thought of as
rays. In the following, we call such rays infinite features, while 3D
points from 6DOF SLAM are called finite features.

Panoramic and 6DOF SLAM have complementary strengths and
weaknesses: 6DOF SLAM cannot handle pure rotational camera
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Figure 1: Rotation-only camera movements are handled by tracking
and mapping local panorama maps registered within a global 3D
map. The information contained in the panorama maps is also used
for 3D reconstruction.

movements well. Tracking may be lost, and in unfortunate situ-
ations, erroneously measured finite features may corrupt the map.
In contrast, panoramic SLAM can only handle rotational motion.
Any translational motion component may be encoded as additional
rotation, also leading to a degradation of map quality.

The problem of handling both general and rotation-only camera
motion has been little addressed in the literature except in some re-
cent papers. Civera et al. [3] integrated a Bayesian motion model
framework and inverse feature depth parameterization [2] into their
EKF-based system. The detection of the current camera motion
(stationary, rotation-only, general) allows for adopting feature depth
and confidence parameters in the filter such that smooth transitions
are possible. Features are restricted to infinite depth until parallax-
inducing camera motion is detected. With features becoming finite,
cameras become estimated in 6DOF rather than in 3DOF. How-
ever, filtering is computationally expensive and allows for mapping
a small number of features only which goes at the expense of ro-
bustness. Additionally, the system has not been shown to run in
real-time.

Recently, Gauglitz et al. [9] presented a keyframe-based real-
time mapping system that applies a generalized GRIC model selec-
tion algorithm [16] to explicitly distinguish homography/rotation
and essential motion models between keyframe pairs during frame-
to-frame tracking. Depending on the selected model, panoramic
or 3D mapping is performed. With each model selection context
switch, a new panorama/3D submap is created. The system at-
tempts to merge submaps in the background. However, due to the
lack of a global map, the system does neither perform global cam-
era tracking nor relocalization. It also does not use the 3D map
information to inform and stabilize the tracking. Therefore, while
their system in principle handles more motion sequences compared
to our proposal, it does so in a way that is not robust enough for
practical applications. Section 7.2 contains a detailed discussion of



differences between Gauglitz et al. and our approach.
The inherent problem of dealing with rotation-only camera mo-

tion is partly created by the real-time processing constraint of
SLAM systems. As incoming video frames can only be triangu-
lated with respect to the map known up to the current moment, it is
rather straightforward to discard frames that cannot be triangulated
yet. However, keeping more potential keyframes around would in-
crease the likelihood of matching observations in later frames. This
is in contrast to full structure-from-motion systems that have com-
plete information available and therefore can match with both past
and future frames.

We propose to combine the advantages of 6DOF and panoramic
SLAM into a hybrid keyframe-based system that accepts both
fully triangulated keyframes for normal 6DOF operation as well as
keyframes with only rotational constraints. This combination con-
tributes in several ways to an optimization-based SLAM system:

• Tracking can cope with pure rotation and provide a more
seamless experience to the user.

• Mapping has more keyframes available to estimate new parts
of the 3D SLAM map.

• As we extend state-of-the-art approaches, we obtain a system
that performs as least as well as a normal 6DOF SLAM.

The tracking component can dynamically and seamlessly switch
between full 6D and panoramic tracking modes, depending on cur-
rent motion performed by the user. It is designed to handle tem-
porary rotations away from the mapped part of the scene that users
often make in practice. We detect these rotations and select special
“panorama” keyframes that are used to build up local panorama
maps. The local panorama maps are registered in a single consis-
tent 3D map. The observed finite and infinite map features allow
for robust tracking of alternating phases of general and rotation-
only motion with a unified pose estimator. Additionally, we support
re-localization.

The transition from a panorama map to another 3D sub-map
is not intended, since global map scale consistency would be
lost. However, we explicitly exploit observations of infinite fea-
tures measured in panorama keyframes in the construction of the
global 3D map, if they can be combined with observations in later
keyframes allowing for full triangulation of the feature.

2 SYSTEM OVERVIEW AND MAP REPRESENTATION

The system architecture of our hybrid approach follows the stan-
dard two-component design of optimization-based SLAM. Track-
ing and mapping components are executed in separate threads
and synchronize via dedicated keyframe and map interfaces. The
keyframe interface allows the tracker to submit keyframes which
are asynchronously processed by the mapper. The map interface
allows the tracker to retrieve a snapshot of the current map.

The tracking component performs robust frame-rate map track-
ing of 6DOF or rotation-only camera motion and selects new
keyframe candidates. In our system, keyframes can either be fully
localized with a 6DOF pose, or panorama keyframes that are de-
scribed with a rotation relative to a reference pose. The mapping
component adds keyframes to a single global map comprising both
types of keyframes and finite and infinite features. Additionally, it
also refines the map through establishing new data associations and
bundle adjustment optimization.

Our system builds and maintains a single global map that has a
consistent scale. The map is composed of finite and infinite point
features which have 2D image observations in regular 6DOF and
panorama keyframes. Figure 2 shows the relationships within our
hybrid map representation.

The map is represented as a collection of keyframes that store the
camera pose Ci of the keyframe and an image pyramid for tracking

(a) (b)

Figure 2: Relationships in our hybrid map representation between
keyframes and features depicted in two stages. In stage (a) 6DOF
keyframes observe finite map features. Local panorama maps
are registered in the 3D map via reference panorama keyframes
(green) that have finite and infinite feature observations, while
the remaining dependent panorama keyframes (dark blue) observe
infinite features only. In stage (b) infinite features are triangu-
lated from corresponding observations matched between additional
6DOF keyframes and/or localized panorama keyframes from differ-
ent local panorama maps. Note that the additional features enable
the localization of further dependent panorama keyframes.

points and finding new correspondences. We use the pose Ci to
denote the keyframe itself. Keyframes generally fall into two cat-
egories, either regular full 6DOF frames or panorama keyframes.
Full 6DOF keyframes are denoted by the set K = {Ck}. Panorama
keyframes are organized in local panorama maps Pj = {Ci, j} that
are registered in the 3D map with its center of rotation. The cen-
ter of rotation is determined by a dedicated reference panorama
keyframe Cr

j which is both a 6DOF frame and part of the panorama
map, thus {Cr

j}= K∩Pj . The remaining panorama keyframes Ci, j
are dependent and effectively have only a 3DOF rotation pose rela-
tive to the reference keyframe Cr

j .
Point features are represented as homogeneous 4-vectors Xi =

(x,y,z,w)T , where w = 1 for finite points with known 3D location
and w = 0 for infinite points that were only observed in panorama
keyframes. Infinite points are observed in one or more panorama
keyframes of a single local panorama map.

3 TRACKING

The tracking component processes the video stream of a single cal-
ibrated camera at frame-rate and tracks both general and rotation-
only camera motion with respect to a global map that consists of
finite and infinite features. The pose estimation combines mea-
surements of both finite (known 3D location) and infinite features,
and automatically computes either a 6DOF or 3DOF pose update.
In case of incremental pose estimation failure, we provide a re-
localization method (see Section 3.2) based on small blurry images
[12].

3.1 Incremental pose tracking
Starting with a known pose from the previous input frame, the
current camera pose is predicted by a simple decaying constant-
velocity motion model.

We select a feature set for matching from all map features by
filtering features for (1) visibility from the predicted camera pose,
(2) only infinite features of the currently enabled panorama map,
(3) overlapping feature re-projections where we prefer finite over
infinite features. At any point in time, either none or exactly one
panorama map is enabled for tracking. Thus, we are only consid-
ering infinite features if the center of rotation of the corresponding



panorama map is located close to the camera. Note that panorama
maps and keyframes are always used for mapping.

Then, the following steps are executed for each image pyramid
level of the current frame, starting at the lowest level. We actively
search for each selected feature in the current frame using NCC
as score function. Matches with a sufficiently high NCC score are
added to the correspondence set that is processed by our unified
relative pose refiner. This yields a set of 2D observations Oi for
map features Xi.

Given a pose prior and the set of observations, we iteratively
estimate incremental pose updates. We optimize the re-projection
error

E(C) = ∑
i

Wi‖Proj(C ·Xi)−Oi‖2 (1)

using standard Gauss-Newton iteration both for finite and infinite
map points, where Proj(·) is the camera projection including radial
distortion.

For a given camera pose C =
(
R T

)
, the transformation of a

map point X = (x,y,z,w) is

C ·X = R

x
y
z

+T ·w. (2)

Thus, finite points add a constraint on the camera translation (w =
1), while infinite points do not (w = 0). To ensure that the system is
stable even if no finite points are observed (as in a pure panoramic
tracking mode), we add a small regularization term to the linear
system.

Additionally, we also apply a weight Wi to each measurement
to balance the influence of infinite and finite features. Typically,
we want to rather follow finite features (weighted with Wi = 1),
therefore we weight infinite features with a factor Wi = 0.01 that
was empirically determined.

3.2 Relocalization
We perform relocalization based on small blurry images (SBIs) that
work with both 6DOF and panorama frames. A small blurry image
is a small downscaled version of a video frame (40x30) with Gaus-
sian blur applied. A history of SBIs is recorded with frames added
at regular time intervals together with their 6DOF tracking poses.
We query the history with an SBI computed from the current frame,
resulting in a sorted set of similar SBI candidates. Each candidate
is verified: First, the stored candidate pose is updated by estimating
a relative 3DOF rotation between candidate and current frame with
ESM [1]. Next, we execute the active search map tracker using the
updated 6DOF pose as prior. If tracking succeeds for any of the
candidates, the resulting pose is used to re-initialize relative pose
tracking.

4 KEYFRAME SELECTION AND INSERTION

Selecting and inserting new keyframes into the map is an essen-
tial step in an efficient optimization-based SLAM system. To keep
processing requirements low, only important keyframes should be
chosen from the video stream. Important keyframes have two prop-
erties: (1) they image new parts of the scene, or known parts from
different directions; (2) they have enough observations of known
structure to ensure good connectivity in the map. Enabling the sys-
tem to take more keyframes is essential to have a more detailed or
expansive map. Our system is able to record more keyframes by
relaxing the second requirement. Keyframes that are not well con-
strained in 6DOF through known 3D map features, but only through
2D-2D observations are recorded as well, if they image substan-
tially new parts of the scene.

The top priority of keyframe insertion is to avoid map corrup-
tion by carefully selecting 6DOF keyframes and robustly localizing

Initialization 6DOF 
Mapping 

3DOF 
Mapping 

Relocalization 

pure rotation 

6DOF measurements 

Figure 3: State diagram for the different states of keyframe selec-
tion during mapping. After initialization, the system starts to op-
erate in full 6DOF mapping mode (1). If pure rotation motion is
detected, the system switches to 3DOF mapping mode and creates
a new panorama map (2). 6DOF measurements move the system
back to full 6DOF operation (3b). In case of tracking failure, relo-
calization always recovers a full 6DOF pose (3a).

panorama keyframes. For 6DOF keyframe selection, we require a
large number of correspondences for pose estimation and a conser-
vative threshold for parallax. For panorama keyframe selection, we
relax the rules: the pure rotation tracking may drift due to small
camera translations. However, the relaxation does not harm the 3D
map, as panorama keyframes are used for mapping only after they
have been robustly localized later on. For localization, we again
enforce strict thresholds on the pose estimation.

Similar to PTAM [11], our method uses heuristics for keyframe
selection. We have adopted parallax and tracking quality criteria,
and combined it with coverage and camera view angle criteria.
In practice, distinguishing between true rotation-only motion and
small translations is impossible due to measurement noise. There-
fore, we use the parallax criterion to detect camera motion that al-
lows for robust triangulation and 3D reconstruction. In the follow-
ing, we describe the selection of keyframes in more detail. Figure 3
shows an overview of the different keyframe selection modes dur-
ing operation.

4.1 6DOF mapping
6DOF keyframes can be selected whenever we have a camera pose
that is fully constrained in 6DOF. This is the case if enough finite
feature points are part of the pose estimation as described in Sec-
tion 3.1. Furthermore, we select regular 6DOF keyframes when
they generate enough parallax to existing keyframes while imag-
ing a new part of the scene. Parallax is required for robust feature
triangulation. New parts of the scene are characterized by areas
in the image where few or no known features project into. Thus,
we say that there are areas that are not well covered by the current
map which indicates that the camera is observing unmapped scene
regions.

Parallax is the angle α between the viewing directions of two
camera frames (e.g. between the current frame and an existing
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Figure 4: Handling pure-rotation camera motion at the map bound-
ary. The same three non-consecutive frames as processed by (a)
6DOF SLAM and (b) hybrid SLAM (our approach). 6DOF SLAM
discards low-parallax candidate keyframes, resulting in tracking
failure due a lack of new finite map features (rendered in red). Hy-
brid SLAM detects the pure-rotation camera motion, creates a local
panorama map, and continues camera tracking from infinite map
features (rendered in cyan).

keyframe) onto the commonly viewed scene geometry. It can be
approximated as α = 2arctan(d/(2 f )) where f is the mean depth
of the finite map features observed in both frames and d is the rela-
tive distance between the 3D locations of the frame pair. Note that
in contrast to distances, the parallax angle is scale-independent. We
empirically determined a parallax angle of α > 5deg as sufficient
for 6DOF keyframe selection.

To estimate low coverage, we compute the frame area ratio that
is covered with finite feature projections. We divide frames into
a regular grid with 4x3 cells and project finite map features. Grid
cells with a minimum number of contained features are considered
covered. The coverage is the ratio c of the number of covered vs.
all grid cells. We empirically determined that a frame is not well
covered if the coverage ratio c < 0.75.

When inserting the 6DOF keyframe into the map, we add new
finite map feature observations and new finite map features. New
observations are added to features which have been successfully
tracked in the keyframe. New finite 3D map features arise from
frame-to-frame 2D feature tracking between the previous and the
current 6DOF keyframe. With the insertion of the current keyframe,
the new correspondences are added as new finite features having
triangulated 3D positions (x,y,z,1) and two observations.

4.2 Localized panorama keyframe insertion

When the system detects low coverage (e.g. c < 0.75) but not
enough parallax (e.g. α < 5deg) between the current frame and
existing keyframes, then tracking may fail if all known features
become invisible. Low coverage indicates that the camera points
towards unmapped scene regions. However, a regular 6DOF
keyframe cannot be taken due to low parallax of pure-rotation cam-
era motion. Thus, we select a panorama keyframe that is localized
with respect to the 3D map. Figure 4 illustrates the different be-
haviour of standard 6DOF SLAM and our approach.

We detect pure rotation camera motion based on the history of
tracked 6DOF poses. Tracked 6DOF poses are stored chronologi-
cally in a history. We compute the parallax angle between the cur-
rent pose and the history and discard all poses with a sufficiently
high parallax (e.g. α > 5deg). The remaining history poses have
similar 3D locations as the current frame. Finally, we compute the
angles between viewing directions and detect pure rotation, if we

find a pose in the history that has low parallax and a sufficient angle
with respect to the current frame. The view difference angles β are
normalized with the field-of-view angle γ of the calibrated camera,
resulting in a angle ratio r = β/γ . We empirically determined a
ratio r > 0.2 as sufficient for pure-rotation detection.

The selection of a localized panorama keyframe marks the be-
ginning of a local panorama map. The system creates a new local
panorama map Pj and assigns its reference keyframe Cr

j that defines
the center of rotation.

When inserting the localized panorama keyframe into the map,
we add new observations and new infinite features. New obser-
vations are added to finite features which have been successfully
tracked in the keyframe. New infinite features are initialized from
2D image features. We apply a corner detector on the keyframe
resulting in a 2D image feature set and subtract the projections of
existing map features. The remaining 2D image features (u,v) are
converted into rays (x,y,z,0) in world space and added as new infi-
nite map features with a single observation.

4.3 Transition to 3DOF mapping

As soon as we do not observe sufficient finite features in the current
frame, the hybrid pose estimation only updates the 3D orientation
from infinite map features around a fixed 3D position using the local
panorama map Pj . Slight camera translation may be estimated as
additional rotation into the 3DOF poses.

4.4 Panorama keyframe insertion

The system continues to select panorama keyframes based on low
coverage (e.g. c < 0.8) and sufficient rotation. Low coverage in-
dicates the camera continues to explore unmapped scene regions.
Rotation is computed as the difference angle between the viewing
directions of the current frame and keyframe poses of the current
panorama map. Again, we normalize the view difference angle with
the camera field-of-view angle, and determined sufficient rotation if
the ratio r > 0.2.

When inserting the panorama keyframe into the map, we add
new infinite feature observations and new infinite features. New
observations are added to infinite features which have been success-
fully tracked in the keyframe. New infinite features are computed
the same way as with localized panorama keyframes (see above).

4.5 Transition back to 6DOF mapping

The system implicitly moves back to the full 6DOF operation, if it
observes part of the 3D map again. Then the same criteria as before
apply and a new 6DOF keyframe can be created.

With the transition, the panoramic tracking session ends and
the current panorama map is disabled. Observations of map fea-
tures within panorama keyframes of this session are disabled so
that they are ignored by tracking future frames. We disable all fea-
ture observations of non-localized panorama keyframes. Localized
keyframes keep their finite feature observations.

5 MAPPING

The mapping component refines the map through establishing new
data associations and bundle adjustment optimization. In particu-
lar, it also estimates full 6DOF poses for panorama keyframes and
triangulates infinite features to extend the 3D map. As part of data
association refinement, we seek new keyframe-feature observations
to further constrain existing feature locations and keyframe poses.
We apply active search and descriptor matching techniques to es-
tablish 2D-2D correspondences.

We robustly localize panorama keyframes with respect to finite
map features. Panorama keyframes are initialized with poses from
panoramic tracking that are considered unreliable since we cannot



estimate the poses in full 6DOF from infinite features and thus can-
not measure camera translation. However, by establishing corre-
spondences to existing finite map features, we can estimate full
6DOF poses. Thus, we effectively convert panorama keyframes
into regular 6DOF keyframes.

We exploit the information stored in local panorama maps for
3D mapping by triangulating infinite feature observations. We em-
ploy descriptor matching to find 2D-2D correspondences between
robustly localized keyframes, e.g. in separate local panorama maps
that view the same scene regions. Correspondences which pass the
verification tests constitute additional finite map features. Thus, we
effectively convert infinite to finite features.

Finally, we also optimize the map with bundle adjustment [8].
Bundle adjustment updates the 6DOF poses of localized keyframes,
and the 3D positions of finite map features by minimizing again
the reprojection error between feature locations and observations
in keyframes. Non-localized panorama keyframes and infinite fea-
tures are not optimized. However, we maintain map consistency by
adjusting the registration of panorama maps within the optimized
3D map.

5.1 Panorama keyframe localization
Robust localization of panorama keyframes is an iterative pro-
cess that finds new correspondences between infinite features in
the panorama keyframes and finite features observed in normal
keyframes. Once enough such correspondences are established,
a dependent panorama frame contained in a local panorama map
can be localized with a full 6DOF pose and converted to a nor-
mal keyframe. This in turn can lead to further triangulation of in-
finite feature points, which again may allow for localizing other
panorama keyframes.

To find correspondences to finite features, we employ both active
search and wide-baseline matching using visual descriptors. The
active search technique is borrowed from relative pose tracking. We
iterate all finite map features. If a particular feature does not have an
observation in the panorama keyframe, we project the feature and
perform NCC matching in the neighborhood of the projected 2D
image location. If we get a sufficiently high NCC score, we have
found a 3D-2D correspondence and add a new feature observation.

Since the active search method relies on a reasonably accurate
panorama keyframe pose, we additionally perform wide-baseline
descriptor matching. We maintain a database (see Section 5.4) that
contains descriptors of all finite feature observation patches in its
leaves. The database is queried with a set of input descriptors from
a panorama keyframe. These input descriptors are created from 2D
image features. The query delivers a set of correspondences be-
tween 3D finite map features and 2D image features. We iterate
the correspondences and check whether the panorama keyframe al-
ready has an inlier observation of the map feature. If not, we add a
new observation.

Finally, we attempt to localize the panorama keyframe with its
current 3D-2D correspondences. We retrieve all of the keyframes’
finite features observations, resulting in a set of 3D-2D correspon-
dences. The correspondences are passed to a RANSAC algorithm
which employs a three-point-pose estimator [10]. The output pose
is additionally refined with our robust relative pose estimator us-
ing the RANSAC inlier correspondences only. If the pose result
is valid, we consider the panorama keyframe as robustly localized.
Localized panorama keyframes are removed from their native lo-
cal panorama map and are declared as reference of a new local
panorama map.

5.2 Infinite feature triangulation
We triangulate infinite features which have observations in local-
ized keyframe pairs with sufficient baseline. Since infinite features
cannot be projected into keyframes outside of their native local

panorama map, we apply descriptor matching to find relevant 2D-
2D correspondences.

We maintain a second database (see Section 5.4) that keeps
descriptors of infinite feature observations contained in localized
panorama keyframes. After major modifications, e.g. after descrip-
tors from a new keyframe have been added, the tree is queried with
all localized keyframes. For each keyframe, we create a input de-
scriptor set that contains 2D image features that do not coincide
with existing finite feature observations. We receive a set of 2D-2D
correspondences between two localized keyframes. Using the dif-
ference pose, we run an epipolar point-line check and discard out-
liers. We triangulate the 3D points and check if they are in front of
both cameras. Finally, we enforce a minimum triangulation angle
to avoid spurious depth estimates.

The remaining correspondences are converted into finite map
features. We add the matched observation from the second key-
frame and assign the triangulated 3D position.

5.3 3D and panorama map consistency
We do not include non-localized panorama keyframes and infinite
map features in bundle adjustment. Since the poses of localized
keyframes may be updated, the registration of local panorama maps
within the 3D map becomes incorrect. We correct the registration
of local panorama maps and its infinite features.

The pose of local panorama maps is defined by their reference
keyframes, which are localized within the 3D map and updated in
bundle adjustment. For each local panorama map we compute the
difference pose of its reference keyframe before and after bundle
adjustment. We apply this difference pose to the dependent non-
localized keyframes. The infinite feature rays are re-evaluated by
transforming the observations into world space with the updated
poses and computing the centroid.

5.4 Feature descriptor database
We use offline-trained hierarchical k-means trees for nearest neigh-
borhood matching that contain PhonySIFT descriptors [18] in its
leaves. The PhonySIFT descriptor has 36 elements computed from
3x3 subregions with four bins each. For each map feature observa-
tion, we compute descriptors on multiple image pyramid levels to
increase scale invariance. The trees have a fixed structure (branch-
ing factor of 8, 4 levels, resulting in 4096 leaves) and are trained
offline from a large set of images. The trees allow adding and re-
moving descriptors efficiently and are synchronized with the map
as part of the mapping process.

5.5 Map initialization
At system start-up, we employ a model-based detector and tracker
[18] to create the initial map. Upon detection of a known planar
image target, a first keyframe is created. The system continues
to track the camera in 6DOF from the image target and addition-
ally performs frame-to-frame tracking of 2D features. The second
keyframe is selected as soon as sufficient 2D-2D correspondences
can be robustly triangulated. Thus, two regular keyframes and the
resulting finite map features constitute the initial map.

6 RESULTS

The implementation of our method builds upon a state-of-the-art
optimization-based 6DOF SLAM system that runs in real-time on
modern mobile phones.

We compared our hybrid SLAM method with standard 6DOF
SLAM on several image sequences. The two methods perform
equal on image sequences that show general camera motion such
that the scene can be mapped with 6DOF keyframes only. This
is no surprise, since tracking and mapping procedures are identi-
cal when operating with 6DOF keyframes and finite features only.
Thus, to demonstrate the additional capabilities of our method, we
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Figure 5: Tracking status timelines of (a) 6DOF and (b) hybrid
SLAM. Each timeline depicts the tracking state for each frame.
Filled bars indicate successful tracking or relocalization, empty
bars indicate tracking failure. For hybrid SLAM, we distinguish be-
tween camera tracking from only finite 3D map features (rendered
in blue) and camera tracking from infinite panorama map features
(rendered in red), including the hybrid case of camera tracking from
both finite and infinite map features. For standard SLAM, the cam-
era is tracked from finite features only.

recorded a 2000-frame image sequence that shows several rotation-
only camera pans that, in order to maintain tracking, require the
selection of panorama keyframes.

The image sequence used for the comparison was recorded with
a handheld camera and captures a well-textured room-sized indoor
scene. The scene comprises a table-sized AR workspace in the fore-
ground and the walls of the room in the background. We processed
the image sequence with both hybrid and standard 6DOF SLAM
methods and logged tracking and mapping statistics. We provide
the visual output of both methods as full-length videos as part of the
supplementary material. The evaluation was performed on a laptop
PC equipped with a quad-core 2.5GHz CPU and 8GB of RAM. We
used a PointGrey Firefly MV handheld camera and recorded the
images with a resolution of 640x480 pixels.

We present several timelines that depict tracking and mapping
statistics for each frame of the image sequence. The timeline graphs
do not consider the common map initialization phase and start with
the first frame tracked from the initial 3D feature map having two
6DOF keyframes.

Tracking timeline. In Figure 5 we observe that the hybrid
SLAM method tracked 98% of the frames, while the standard
SLAM method only tracked 53% of the frames. Hybrid SLAM
detected nine pure-rotation camera pans, resulting in an equal num-
ber of local panorama maps. While our method continues tracking

(a) (b)

Figure 6: Panoramas generated from keyframes of two local
panorama maps. The local panorama map (a) was created in the pe-
riod during frame 800 and 1200. The local panorama map (b) was
created in the period during frame 1500 and 1800. Both panora-
mas depict the scene from two different view points with sufficient
parallax for triangulation (e.g. the wall on the right-hand side).
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Figure 7: Keyframe timelines of (a) 6DOF and (b) hybrid SLAM.
Each timeline shows the number of mapped keyframes over the se-
quence. For hybrid SLAM, we distinguish between 6DOF (blue),
panorama (red) and localized panorama keyframes (green). Stan-
dard SLAM selects only full 6DOF keyframes in blue.

from infinite features, standard SLAM tracking fails. For exam-
ple, consider the period between frames 100 and 300: earlier, be-
tween frames 50 and 100, a pure-rotation camera movement started
that was detected by hybrid SLAM around frame 80, resulting in
the creation of a local panorama map. In contrast, standard SLAM
discards keyframe candidates and runs out of map features around
frame 110. The camera returns to the 3D mapped region around
frame 270. Hybrid SLAM smoothly transitions from the local
panorama map back onto the 3D map, while standard SLAM re-
sumes finite map feature tracking after successful relocalization.

We conclude, that the detection of temporary pure-rotation cam-
era movements and their mapping as local panorama maps im-
proves the tracking performance of the hybrid SLAM method com-
pared to the standard 6DOF SLAM method.

Keyframe timeline. In Figure 7 we observe that hybrid SLAM
selects about three times as many keyframes as standard SLAM
over the sequence. Even if we consider that standard SLAM only
tracked half of the sequence and thus could have potentially se-
lected twice as many keyframes, that is an increase of about one
third (0.03 vs. 0.02 keyframes per successfully tracked frame). The
increase mostly comes from additional panorama keyframes, while
the number of 6DOF keyframes is even slightly lower.

We also see that hybrid SLAM quickly localizes panorama
keyframes within the 3D map. The number of non-localized
keyframes stays very low over the entire sequence. Furthermore,
the localization of panorama keyframes enables the triangulation of
infinite map features.

Map feature timeline. As we can see in Figure 8, hybrid SLAM
maps contain about three to four times as much features as stan-
dard SLAM maps. Considering the finite map features only, hybrid
SLAM maps are still two times larger than standard SLAM maps.

The ratio between finite and infinite features in hybrid SLAM
maps is about 1:1. From Figures 8(b) and 8(c) we observe that
about every third infinite feature was triangulated and thus con-
tributed to 3D mapping. We assume some redundant infinite map
features since in our current implementation we are not merging
finite and infinite feature correspondences.

Figures 9 and 10 depict the reconstructed 3D maps of hybrid and
standard SLAM, respectively. We see that the hybrid SLAM map
reconstruction is considerably larger. More importantly, the hybrid
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Figure 8: Map feature timelines of (a) 6DOF and (b,c) hybrid
SLAM. Each in shows the number of map features over the se-
quence. Standard SLAM maps consist of finite features only (blue).
For hybrid SLAM, we distinguish between finite (blue) and infinite
(red) map features. Additionally, in (c) finite map features are split
into finite features triangulated from 6DOF keyframes (blue) and
converted infinite features triangulated from panorama keyframes
(green).

mapping approach was able to reconstruct far more background de-
tail, e.g. the wall on the right is almost entirely reconstructed from
infinite features, but not reconstructed at all by standard SLAM.
Many of these infinite features have been triangulated with corre-
spondences between keyframes two local panorama maps that have
sufficient parallax, as can be seen in Figure 6.

Mapping time requirements. The increased map data vol-
ume and the additional operations for panorama keyframe local-
ization and infinite feature triangulation require additional compu-
tational resources for mapping. Figure 11 shows the time require-
ments of (a) bundle adjustment, (b) panorama keyframe localiza-
tion and (c) infinite feature triangulation mapping tasks along the
image sequence. Each timing slot refers to either a (1) 6DOF or (2)
panorama or (3) localized panorama keyframe event that triggers
the execution of the mapping thread. Depending on the keyframe
event type, the mapping tasks behave differently. Currently running
tasks may be interrupted by an upcoming high-priority keyframe
event.

The effort for bundle adjustment increases quadratically with
the number of localized keyframes. Non-localized panorama
keyframes are not included in the optimization. Note that bundle
adjustment is executed with a varying number of iterations. The
effort for panorama keyframe localization depends on the number
of non-localized panorama keyframes. The effort for infinite fea-
ture matching and triangulation increases linearly with the num-
ber of localized keyframes which are used to query the descriptor
database. The number of query keyframes depends on the type
of keyframe event. For a new 6DOF keyframe, the database is
queried with this single keyframe only, while for a new localized
panorama keyframe, the database is updated with this keyframe and
queried with all available localized keyframes. For new panorama

(a) (b)

Figure 9: Final reconstructed 3D point feature maps of (a) 6DOF
and (b) hybrid SLAM projected onto the XY-plane. Finite fea-
tures triangulated from 6DOF keyframes are rendered in black, con-
verted infinite features triangulated from panorama keyframes are
rendered in purple. The keyframes are located south of the table
that hosts the AR workspace.

(a) (b)

Figure 10: Reconstructed camera trajectories and keyframe loca-
tions of (a) 6DOF and (b) hybrid SLAM projected onto the XZ-
plane. Local panorama maps of hybrid SLAM are rendered as
spheres.

keyframes, the database is not queried at all.
In our current implementation, the effort for infinite feature

matching and triangulation sometimes exceeds the effort for bun-
dle adjustment optimization. However, this can be improved with
better mapping task scheduling and selection of input features for
descriptor matching. We also consider a dedicated mapping task
that removes redundant 6DOF and localized panorama keyframes
with a similar method as described in [13].

We conclude that the information contained in local panorama
maps can be fruitfully used for 3D reconstruction resulting in
SLAM maps with an increased number of 3D features. Further-
more, we see that the map is build quicker and covers a larger ex-
tend, both due to the possibility for delayed matching of infinite
features. In return, larger and denser finite feature maps allow for
continued and more robust camera tracking.

6.1 Mobile phone application

Our hybrid SLAM system also runs in real-time on modern mobile
phones. We used a Samsung Galaxy S2 equipped with a dual-core
1.2GHz ARM CPU and 2GB RAM running Android OS 4 for our
tests. As expected, we found the overall robustness and perfor-
mance restricted in comparison to the PC version. However, we
applied the system in indoor and outdoor environments and created
maps with e.g. about 100 keyframes and 4000 map features, in-
cluding finite map features of 25 local panorama maps. Irrespective
of the map size, tracking is mostly running with 20 to 30Hz. How-
ever, with increasing map sizes, we noticed congestion symptoms
in the mapping thread, resulting in delayed map updates and conse-
quent incremental pose tracking problems. Our implementation is
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Figure 11: Major mapping tasks and its time requirements in
seconds along the sequence. The tasks are triggered by diverse
keyframe events. See text for further explanations.

not fully optimized yet, and we did not adjust all system parameters
to the mobile phone platform. Figure 12 shows the mobile appli-
cation handling a pure-rotation camera motion. Please also refer to
the accompanying video.

7 DISCUSSION

We provide comparisons with the original PTAM system and our
closest related work. Furthermore, the effects of camera translation
on the accuracy and robustness of panoramic SLAM are discussed.

7.1 Comparison with Klein et al.
We processed the 2000-frame image sequence from Section 6 with
the publicly available PTAM software1 described in the seminal pa-
per of Klein et al. [11]. We modified the software to automatically
select first and second keyframes and to log mapping and tracking
statistics. The results are depicted in Figure 13.

From the tracking timeline in Figure 13(a), we see that PTAM
tracks 63% of the frames successfully. The image sequence con-
tains five major rotation movements as apparent in the tracking
timeline of hybrid SLAM in Figure 5(b). PTAM fails to track
two of the rotation movements completely, but manages to track
three movements at least partially. Note that the comparison be-
tween PTAM and our SLAM system may not be entirely fair, since
the tracking success criteria of PTAM is less strict than ours (e.g.
PTAM expects to track less map features to report tracking success).

The PTAM system selects 19 keyframes to reconstruct a map
containing about 9000 point features. The initial map created from
two keyframes already consists of about 5000 features. The PTAM
method is well-known to gain its tracking robustness in large parts
from assembling large amounts of map features. In particular,
PTAM does not verify if landmarks have been mapped already, re-
sulting in many redundant map features. The 3D map view in Fig-
ure 13(b) shows that PTAM triangulates many features despite little

1http://www.robots.ox.ac.uk/ gk/PTAM/

Figure 12: Hybrid SLAM system handling a pure-rotation camera
movement in real-time on the mobile phone.
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Figure 13: Evaluating PTAM on the 2000-frame image sequence
of Section 6: (a) tracking status timeline indicating tracking suc-
cess/failure comparable to Figure 5, (b) final reconstructed 3D point
feature map. See text for discussion.

parallax, resulting in spurious depth estimates. For example, con-
sider the scattered features along the camera view rays from bottom
right to top left. Instead of unreliably triangulating features from
keyframes with insufficient parallax, our hybrid SLAM system in-
serts these features as rays with infinite depth to local panorama
maps.

In [13], Klein et al. presented a heavily modified PTAM method
that managed maps with dramatically less features and was thus
running in real-time on the iPhone 3G. We argue that even years
later, the original PTAM method cannot be applied to modern mo-
bile phones, regardless of their increased computational power. The
goal must be to create high-quality maps with an optimized data
volume that achieve similar robustness as PTAM. In this respect, we
consider our system to be better suited for mobile phones. We pro-
vide two arguments: Firstly, comparing the reconstructed 3D maps
of hybrid SLAM (Figure 9(b)) and PTAM (Figure 13(b)), we see
that our system reconstructed a considerably larger portion of the
scene with far less finite map features (1500 vs. 9000). Secondly,
we evaluated the total time used for mapping tasks over the entire
image sequence: PTAM uses about 36 seconds and thus about two
times more than hybrid SLAM, which uses 18 seconds for mapping.

7.2 Comparison with Gauglitz et al.
In the following, we compare our method with Gauglitz et al. [9] -
our closest related work. Both methods share the idea of supporting
general and pure-rotation camera motion by combining 6DOF and
panoramic SLAM methods. However, when looking at the details,
the methods differ in many respects and appear as rather comple-
mentary approaches.

Mapping. The system of Gauglitz et al. handles arbitrary
switches between general and pure-rotation camera motion, result-
ing in the creation of a new 3D/panorama submap with each con-
text switch. Separate 3D submaps have distinct scales. Within
a feature track, successive 3D and panorama maps are linked
via a common keyframe. Upon tracking failure, a new feature
track is started. Our system handles general camera motion alter-
nated by temporary pure-rotation camera motions, resulting in lo-
cal panorama maps that are registered within a single consistent 3D
map. Given keyframe pairs with sufficient overlap exist, their sys-
tem merges pairs of 3D-3D or panorama-panorama submaps. How-
ever, their system does not merge pairs of 3D-panorama submaps,
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Figure 14: Effects of camera translation on panoramic SLAM ac-
curacy and robustness: (a,b) virtual model used to generate syn-
thesized image sequences. For each camera trajectory radius: (a)
Y-axis rotation error in degrees, (b) number of successfully tracked
map features, and (c) number of mapped keyframes.

while our system exploits the information contained in registered
local panorama maps for 3D reconstruction.

Tracking. The system of Gauglitz et al. performs frame-to-
frame tracking between the current frame and the latest keyframe
of the current 3D or panorama map. From the resulting 2D-2D
correspondences, multiple motion models are estimated. To get a
global 6DOF camera pose, the existing keyframe poses are com-
bined with a relative 6DOF pose converted from the motion mod-
els. The conversion of the motion models into a relative 6DOF pose
is potentially ambiguous. In contrast, our system performs global
6DOF pose tracking by establishing 3D-2D correspondences be-
tween the current frame and the projected features of the optimized
map, and robustly estimating a 6DOF pose. Thus, we additionally
gain notion on whether the camera observes already mapped scene
geometry, that allows for more fine-grained keyframe selection.

Keyframe selection. The system of Gauglitz et al. employs the
generalized GRIC algorithm to distinguish homography/rotation
and essential motion models, which may result in ambiguities, if
(1) the scene is planar (2) the camera motion is not a true rotation.
Our system employs the robustly tracked camera pose trajectory
and scale-independent thresholds for parallax and camera view an-
gles for the detection of pure-rotation camera motion.

Relocalization. The system of Gauglitz et al. performs de-
layed loop-closing=recovery relocalization, which actually refers
to the merging of 3D-3D or panorama-panorama submap pairs that
is done in the mapping backend. Our system performs immediate
relocalization in the tracking frontend with respect to the optimized
map.

Summary. The system of Gauglitz et al. aims at rapidly re-
constructing the scene with potentially multiple submaps by con-
tinuously collecting image data in a visual-odometry-style tracking
frontend. Our “classic” SLAM system aims at supporting interac-
tive augmented reality applications by providing a persistent map
coordinate system and 6DOF camera poses that allow to register
and render virtual content on top of the reconstructed scene geom-
etry.

7.3 Panoramic SLAM accuracy and robustness
With the following experiment we want to access the effects of
camera translation onto the accuracy and robustness of 3DOF
panoramic SLAM.

We created a virtual model that is used to render synthesized im-
age sequences. The virtual model is depicted in Figure 14(a,b) and
consists of a textured cylinder that is observed with a 64deg FOV
camera that moves along a circular trajectory with varying radius.
With this model, we simulate the real world situation where users
perform imperfect camera rotation movements. Starting with the
ideal case of a camera rotating around its nodal point, we intro-
duce more and more camera translation to challenge the panoramic
SLAM method. The cylinder has a fixed diameter of 100cm and
has its center in the coordinate system origin. The circular camera
trajectories are located in the XZ-plane and have a varying radius
r ∈ {0,5,10,20,30cm} resulting in the ground truth camera poses
Pi = [Ri|(0,0,−r)t ] with R1 = I. We animated the camera to ro-
tate 90deg around the Y-axis. For each camera trajectory radius, we
rendered a 100-frame image sequence.

We processed the synthesized image sequences with our hybrid
SLAM system. The system selects the first frame as panorama
keyframe, assigns the initial pose P1 = [I|0], and initializes a map
consisting of infinite features. The remaining images are processed
in panoramic SLAM mode: further keyframes are mapped while
the camera is tracked from infinite features, resulting in poses
Pi = [Ri|0] with 3DOF rotation matrices Ri while the camera lo-
cation stays fixed at the origin.

We recorded tracking and mapping statistics depicted in Figure
14(c,d,e). The hybrid SLAM system tracked and mapped all im-
age sequences successfully. In Figure 14(c) we depict the Y-axis
rotation error of the estimated camera pose of the final sequence
image for all radii, e.g. the pose estimated for the final 100th image
frame with radius r = 5 has a relative error of about 5deg. The cam-
era translation encoded as additional rotation by the pose estimator
results in a quadratically increasing error.

We observe in Figure 14(d) that the number of successfully
tracked map features drops with increasing radius. That means that
local active search fails for an increasing number of map features
since their projected location in the current frame is too far away
from their actual location.

Figure 14(e) shows the number of mapped keyframes which in-
creases with the radius. This behaviour is a consequence of (c) in
combination with the “view angle difference” keyframe selection
criterion: with increasing translation, more virtual rotation is esti-
mated, the threshold is reached quicker, and keyframes are selected
earlier in the sequence.

We conclude that panoramic SLAM can handle a consider-
able amount of translation. In our system, we select panorama
keyframes in a greedy manner as our main priority is to maintain
tracking. We accept erroneous poses resulting from camera trans-
lation, since panorama keyframes are localized in 6DOF anyway
before being used for mapping.

8 LIMITATIONS AND FUTURE WORK

Generally, our system is subject to the same restrictions as any
feature-based visual SLAM systems. Tracking and mapping suf-
fers from the lack of measurable point features in the input images
which result from conditions such as untextured scene surfaces,
motion blur, bad lighting, limited dynamic range of cameras, etc.

Our system combines 6DOF and panoramic SLAM methods and
dynamically switches between these operation modes depending on
the camera motion. While in panorama mode, we do not support
transitions from pure rotation to general camera motion. This is due
to the fact that panoramic SLAM only allows for tracking the cam-
era pose as 3DOF rotation. Any camera translation is encoded as
additional rotation, resulting in inaccurate poses. While panoramic



SLAM shows quite some robustness against translation (see Section
7.3), there are cases where these inaccuracies result in tracking fail-
ure, e.g. due to undetected camera loops. In rare cases, panorama
maps may even become corrupted beyond recovery. While this does
not harm the global 3D map, tracking requires to be reinitialized by
relocalization with respect to the 3D map.

As described above, camera translation cannot be measured dur-
ing 3DOF panoramic tracking. When returning from the panorama
map onto the 3D map, the unrecognised camera translation results
in 6DOF pose offsets. If these offsets are sufficiently large, local
active search fails to match projected finite map features, resulting
in tracking failure due to a lack of correspondences. In these cases,
relocalization is required. Otherwise, we iteratively track mixed
sets of finite and infinite map features and transition seamlessly.

Infinite feature matching and triangulation generates a moderate
number of outliers. We have not found these outliers severely dis-
turbing our system. Nevertheless, we consider a mapping task that
removes outlier observations and features, e.g. by verifying repro-
jection errors.

The runtime behaviour of our mapping method can be im-
proved by revisiting descriptor matching and introducing redundant
keyframe removal. The performance of feature matching can be im-
proved with better selection of input features. Removing redundant
keyframes and its map feature observations should reduce the com-
putational complexity of bundle adjustment optimization as well as
tracking.

The panorama maps estimated by the system are not yet full
first class citizens of the SLAM map. During rotation motion
a panorama is extended, but once it is closed, the panorama
keyframes are not used for tracking or localization any more. In
future work, we plan to address this limitation and allow normal
tracking as well as relocalization to access the frames and infinite
features of closed panorama maps. These maps may then also be
extended again, if the camera motion requires this.

A more complex direction is to incorporate translation motion
from a panorama map that cannot be referenced back into the single
3D map. This would extend our system to the mapping capabilities
of the system described by Gauglitz et al. [9]. In this case the long-
term linking of different 3D maps is the main use case to allow
creation of a single global 3D map after enough information has
been recorded.

9 CONCLUSIONS

The presented system demonstrates that the extension of a stan-
dard 6DOF optimization-based SLAM system with a dedicated
panorama mode yields several improvements. The system is able
to track through motions characterized as pure rotations that are
difficult in typical monocular SLAM systems. More importantly,
the local panorama maps created during such motion phases can
contribute substantially to a richer map. They allow estimating
more points in less time in the near field of the camera as well
as mapping background structure through wide baseline matching
between these local panorama maps. All of this is enabled by mak-
ing these additional panorama map frames available for matching
against later incoming frames.

By restricting ourselves to continuous online tracking operations
we obtain a robust and well-performing system, because it always
has a known map to track from. Therefore, it can use active search
combined with motion models which has been demonstrated to
work well under fast motions and difficult lighting situations. Over-
all, we believe that the present hybrid approach is a valuable com-
bination that naturally extends the current design of optimization-
based monocular SLAM systems.
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