
Volumetric Real-Time Particle-Based

Representation of Large Unstructured
Tetrahedral Polygon Meshes

Philip Voglreiter, Markus Steinberger, Dieter Schmalstieg, and Bernhard Kainz

Institute for Computer Graphics and Vision,
Graz University of Technology, Inffeldgasse 16,

A-8010 Graz, Austria
{voglreiter,steinberger,schmalstieg,kainz}@icg.tugraz.at

http://www.icg.tugraz.at

Abstract. In this paper we propose a particle-based volume render-
ing approach for unstructured, three-dimensional, tetrahedral polygon
meshes. We stochastically generate millions of particles per second and
project them on the screen in real-time. In contrast to previous render-
ing techniques of tetrahedral volume meshes, our method does not need
a prior depth sorting of geometry. Instead, the rendered image is gen-
erated by choosing particles closest to the camera. Furthermore, we use
spatial superimposing. Each pixel is constructed from multiple subpixels.
This approach not only increases projection accuracy, but allows also a
combination of subpixels into one superpixel that creates the well-known
translucency effect of volume rendering. We show that our method is fast
enough for the visualization of unstructured three-dimensional grids with
hard real-time constraints and that it scales well for a high number of
particles.

Keywords: mesh representations, volume rendering, GPU accelerated,
particle-based.

1 Introduction

Volume rendering is used in many disciplines and is strongly tied to visual rep-
resentation of medical datasets. Irregular datasets – or unstructured grids –, are
mainly used for simulations, for example for finite element analysis [2]. Rendering
methods for such grids are an ongoing field of research.

Modern medical applications demand fast visualization techniques. Genera-
tion of images with interactive frame rates is essential for applications requiring
visualization techniques which cater to hard real-time constraints. Furthermore,
medical applications often need to provide a wide field of different techniques to
visualize different modalities concurrently. One could think of image segmenta-
tion or simulations performed in parallel with rendering.

The recent developments in general computations on Graphics Processing
Units (GPUs) offer the ability to solve a wide variety of parallelizable tasks

J.A. Levine, R.R. Paulsen, Y. Zhang (Eds.): MeshMed 2012, LNCS 7599, pp. 159–168, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.icg.tugraz.at


160 P. Voglreiter et al.

efficiently. In this paper, we introduce a novel way of stochastic Particle-based
volume rendering (PBVR) exploiting these capabilities. In contrast to many
other object space volume rendering approaches, basic PBVR does not require
depth sorting of any kind. Instead, we treat projected particles in a way that is
similar to z-buffering. Contrary to the highly sophisticated particle generation
methods (Metropolis [6]) used by former approaches, we introduce a method
of particle generation with little computational effort and online control of the
number of generated particles. This ability is crucial for applications with hard
real-time constraints and allows to alter visual effects such as density during
runtime. Because the number of particles strongly influences the computational
complexity, our proposed online control can also be used to steer the use of
resources and thereby allocate resources for concurrent tasks. The complexity
of the proposed method depends strongly on the number of particles needed.
The amount of particles we need to render a given volume is strongly tied to
the portion of the screen it covers while mesh complexity only shows a very
minor impact. Also, the distance from the viewing camera influences the required
number of particles. The screen resolution itself only plays a minor role when
considering the computational complexity.

Contribution: We describe a fast method for parallel particle generation on
the fly and simultaneous rendering for the visualization of large unstructured
tetrahedral polygon meshes. A minimal preprocessing effort allows also to switch
between volumes in real-time. We also introduce an improved method for particle
superimposing by addressing perceptual issues.

2 Previous Work

2.1 Unstructured Mesh Representation

In [1], Avila et al. propose an approach for direct volume rendering and define
an irregular dataset rendering pipeline based on the widely used plane-sweep
technique. Shirley et al. [12] describe a method for projecting tetrahedrons onto
the image plane. The tetrahedrons need to be sorted before projection. Sorting is
known to be in O(n log n), inducing a super-linear increase in computational ef-
fort. Approaches like projected tetrahedrons have already been implemented on
the GPU [5]. The authors exploit the capabilities of shaders and CUDA to per-
form depth sorting of the tetrahedrons. As an alternative approach, Challinger
[4] describes a method for ray casting of unstructured grids. Ray casting gen-
erates images of a higher quality but shows an O(n3) complexity. However, ray
casting offers ways to benefit from modern GPU capabilities as was shown in
[15]. Still, the complexity constrains the efficiency of the algorithm. Point splat-
ting [13] is very similar to particle-based approaches. The efficient point splatting
approach described by the authors has a low memory consumption, but point
splatting inherently produces artifacts in the rendering process.



Particle-Based Rendering of Large Unstructured Meshes 161

2.2 Particle-Based Volume Rendering (PBVR)

In [10], Sakamoto et al. describe a general approach of PBVR based on the
Metropolis Method [6], a well-knownMonte-Carlo algorithm [8] for random num-
ber generation. In [11], the authors go deeper into detail and consider rendering
tetrahedral grids by voxelizing them. Voxelizing a tetrahedral grid can be a rather
time-consuming task. The required double interpolation can result in a loss of
information compared to methods using the unstructured grid data directly.
For a more detailed outline of the algorithm, please refer also to a preliminary
non-peer-reviewed version of this work found at [14].

3 PBVR Adaptions

The main idea of PBVR is to construct a dense field of light-emitting, opaque
particles inside a volumetric dataset. These particles are used to perform object-
based rendering by simulating the light emission of particles. Mutual occlusion
induced by completely opaque particles plays a major role during rendering.
Sakamoto et. al. [10] describe the basic model in more detail.

The following sections will explain the proposed method step by step. Each of
the subsections is to be seen as a prerequisite to the following steps. Generally,
PBVR can be subdivided into two major activities. First, a proper particle dis-
tribution inside the volume needs to be established. We describe this procedure
in Section 3.1. Second, in Section 3.2, we outline how to project the particles
onto the image plane. We consecutively show how to generate the well-known
translucent effect of volume rendering in Section 3.3.

3.1 Particle Generation

In this paper we introduce a randomized process to generate particles. It is de-
sirable to achieve a uniform distribution over the whole volume to avoid visually
perceivable artifacts. We split the volume into tetrahedral cells and perform
particle generation per cell, which enables parallelization. We will show how
to retain a global distribution of mean values by concatenating local uniform
distributions.

Particle Distribution over Cells: We consider a maximum number of par-
ticles pmax for the whole volume. To accomplish uniformity in distribution, we
need to determine the number of particles pcell each cell may emit. We calculate
this number by using the proportion of the cell volume Vcell to the total volume
of the grid Vgrid. Therefore, the number of particles per cell is

pcell = Vcell/Vgrid · pmax. (1)

A proof for Equation 1 is provided in Appendix A. By using this formula we
generate particles in a cell equaling the average number of particles considering



162 P. Voglreiter et al.

(a) Particles concentrat-
ing at cell center

(b) Particles concentrat-
ing at cell border

(c) Uniformly distributed
particles

Fig. 1. Figures showing the results of different barycentric parameter generation ap-
proaches. The figures 1(a) and 1(b) both depict approaches resulting in disturbing
patterns. This visual error accumulates over all cells and introduces streaks and clus-
ters in the final image. Figure 1(c) shows the distribution we achieve when using the
algorithm describe in Section 3.1.

a global distribution. Assuming that the distribution in a cell is uniform, the
concatenation of several cells again comprises a new random distribution. The
number of particles per cell in this new distribution simulates the average, or
expected, number of particles of a real uniform random distribution throughout
the whole volume.

Particle Position: We use barycentric coordinates to generate particle po-
sitions. Barycentric coordinates describe a point relative to the vertices of a
polygon. In case of tetrahedrons, the barycentric notation of a point is

P = α · V 1 + β · V 2 + γ · V 3 + (1− (α+ β + γ)) · V 4 (2)

where V1 through V4 denote the corner points of the tetrahedron and α, β, γ
resemble the barycentric parameters. Constraining the parameters to be in the
interval (0, 1) and sum up to 1 restrains positions to the interior.

Uniform Patternless Generation: There are several ways to randomly gen-
erate barycentric coordinates showing statistically correct behavior, but still
introducing disturbing visual patterns. Figure 1 depicts the results of incorrect
approaches as well as the distribution we want to achieve. A method for correct
random generation of points in tetrahedra was described by Rocchini [9]. The
authors describe a method which folds a cube into a tetrahedron. First, we ran-
domly generate α, β, γ. Next we perform a check on violation of the barycentric
constraints. If a set of generated random variables is outside the given bounds,
we map the particle back inside the tetrahedron as described in the article. Ad-
ditionally, we use the barycentric parameters to linearly interpolate the corner
points and gain the scalar values corresponding to the particles.



Particle-Based Rendering of Large Unstructured Meshes 163

Particle Emission Probability: Simply projecting all generated particles
would lead to an equal density throughout the whole volume. We need to thin
out the particle field to accommodate for cell translucency. As we still want to
avoid patterns within the rendered images, we do this stochastically per particle
by applying the rejection method [8]. First, we determine the opacity a particle
would anticipate. We do this in a fashion similar to conservatie volume rendering
approaches, but please be aware that this is not the final opacity value of a pixel,
but rather a computational variable. Next, we generate a stochastic variable x
within the interval (0, 1) on the real line. Only if x is smaller than the opacity
of the particle, it is accepted and emitted. This adapts the number of particles
per cell according to the respective cell opacities. The method allows for smooth
transitions between vertices with distinct opacities.

Empty Space Skipping: Often, different approaches of volume rendering need
to process regions which, according to the chosen transfer function, do not need
to be displayed at all. In our approach, we can easily filter the dataset on the
fly. Depending on the selected transfer function, many cells anticipate a very
low average opacity. This would lead to generation of particles with a rather low
emission chance. To increase computational performance, we simply skip cells
with a low average opacity. This prevents particle generation in those portions
of the volume which would appear almost or totally translucent. This method
shows an increase in performance directly proportional to the amount of cells
we may neglect. This strategy is especially relevant for grids containing large
connected empty regions, such as tetrahedralized CT scans. Furthermore, this
approach is extremely adaptive to changes of the transfer functions.

3.2 Particle projection and Image Generation

Particle projection involves two steps. First, the screen space location of the
particle needs to be determined, which requires the virtual camera parameters
and the volume’s transformation. Second, a color value needs to be assigned to
each particle.

Projection from Object Space to Image Space: By using the modelview-
projection matrix of the viewing camera we determine the image-space position
of each emitted particle. Furthermore, we calculate its distance to the camera.
If two particles hit the same fragment on the image plane, we choose to display
the particle closer to the camera. Thereby, we effectively avoid depth sorting of
particles hitting the screen as we only compare the depth values of subpixels.
This approach is similar to common z-buffering.

3.3 Spatial Superimposing

2D Superimposing: For projection we subdivide each pixel into several sub-
pixels. The subpixel level l describes a subdivision into l × l distinct subpixels.



164 P. Voglreiter et al.

(a) Wire-frame sur-
face, 1

2
mesh-

resolution (> 30fps)

(b) Projected tetra-
hedrons, volumetric
(< 0.1fps)

(c) PBVR, volumetric
(16.4fps)

Fig. 2. Comparison between a wire-frame surface representation, projected tetrahe-
drons and PBVR for a tetrahedralized MAGIX [7] dataset. The scalars show the con-
trast agent enrichment of one time step of the 4D MAGIX CT scan (left ventricle, blue
= low, red = high). Projected tetrahedrons takes several seconds for a full visualization.
Our method remains interactive while appearing visually comparable to (b).

Thereby we increase the information available for each pixel on the screen as we
increase the number of contributing particles originating from different depth
levels. We compose the final pixel values by calculating the average of all con-
tributing subpixels.

3D Superimposing: To increase the visual quality of the proposed algorithm
we currently use superimposing over three dimensions. We store the projected
particles in multiple 2D-superimposing layers to capture more contributing par-
ticles. Using this setup, we maintain several particles per subpixel rather than
only storing the closest one. Unfortunately, we need to sort the particles in this
refinement step for proper insertion. The number of particles per subpixel, i.e.
the number of depth layers, may be adapted to the computational needs. This
strategy results in a noticeable increase in visual quality, but has a severe im-
pact on frame rates and memory consumption. Thus, we use this method for
progressive refinement during periods with no direct interaction only.

Particle Depth Enhancement: Simple averaging of subpixels may create un-
desired visual effects, similar to front face culling in triangle mesh rendering.
This effect may hamper depth perception while rotating the volumes. Equalized
treatment of particles, regardless of their depth, alleviates the impact of particles
close to the camera. Consecutively, particles further away show a strong impact
on the final pixel which makes them appear too close to the camera. To support
a better depth perception, we use the already present depth information of dis-
played particles. In detail, we analyze the depth of each pixel’s subpixels zcurr
and record their minimum zmin and maximum depth zmax. Then, we calculate



Particle-Based Rendering of Large Unstructured Meshes 165

the depth range and a depth ratio ζ = (zmax − zcurr)/(zmax − zmin), consid-
ering the gap to the maximum value. Using ζ as factor for the color values of
subpixels, we achieve a linear depth evaluation of particles. We linearly blend
the particles into the background considering the calculated parameter ζ. Those
particles which are close to the camera sustain their influence on the color value
while particles farther away partially lose their influence.

Translucency: Translucency is influenced by two parameters. Firstly, the num-
ber of generated particles influences how opaque the volume appears by altering
the number of occupied subpixels. Secondly, the subpixel level increases or de-
creases the level of transparency in a similar way. By allowing online control of
those parameters we also enable interactive adaption of frame rates while only
slightly altering the translucency of the generated image.

4 Results

We evaluated our technique for several volumes including the MAGIX dataset
[7] with 5 million cells, and a simulated radio frequency ablation (RFA) [3] data
set with 55 thousand cells. The depicted results and frame rates were recorded
on an NVIDIA GeForce GTX470 using CUDA 4.1, rendered at a resolution of
1200x800 pixels. Figure 2 shows a comparison of projected tetrahedrons [5] and
our algorithm. The scalar values depict the flow inside the tissue. While the
implementation of projected tetrahedrons we used is unable to cope with the
sheer complexity of the dataset, our method stays responsive and even interactive
during rendering. Please note that we rendered all of the shown pictures with
2D-superimposing to provide insight into the graphical capabilities of the basic
method.

Figure 3 shows an RFA simulation rendered at 29 fps. The canals inside the
volume show the impact of vessels on the heat distribution (heat sinks) during
the simulation. The transfer function communicates the cell death probability
where red denotes almost sure death and blue a low probability of destruction.
The raw performance of our algorithm at rendering the complex MAGIX dataset
is depicted in Figure 4. For reference, the image shown in Figure 2 was rendered
on subpixel level l = 3 with 60 million particles. Even when configuring the
particle number and subpixel level to be far higher than necessary, our algorithm
runs with interactive frame rates.

(a) axial (b) left (c) right

Fig. 3. Simulated RFA (55k cells) with pmax = 12million, l = 5 @ 29fps



166 P. Voglreiter et al.

Fig. 4. Performance of the MAGIX dataset with different subpixel levels (l =
[1, 2, 3, 4, 5]).

5 Conclusion

We have shown that our method is able to render millions of particles per second
in real-time, mainly due to our fast and flexible particle generation process.
We minimize GPU global memory access and increase computation occupancy.
Furthermore, our approach offers a fast alternative for the real-time visualization
of large unstructured tetrahedral polygon meshes. Future tasks are improved 3D-
superimposing strategies to increase the image quality without a noticeable loss
of render speed. Our approach will scale well for use on GPU clusters. Our
method is open-source and a first version is freely available for download from
our website1. A public link will be available by the time of the workshop.

Acknowledgments. This work was funded by the Austrian Science Fund
(FWF): P23329.

References

1. Avila, R., Taosong, H., Lichan, H., Kaufman, A., Pfister, H., Silva, C., Sobierajski,
L., Wang, S.: VolVis: A diversified Volume Visualization System. In: Proceedings
of IEEE Conference on Visualization, Visualization 1994, CP3, pp. 31–38 (October
1994)

2. Babuska, I.: Generalized Finite Element Methods: Main Ideas, Results, and Per-
spective. Security 1(1), 67–103 (2004)

3. Bien, T., Rose, G., Skalej, M.: FEM Modeling of Radio Frequency Ablation in the
Spinal Column. In: 2010 3rd International Conference on Biomedical Engineering
and Informatics (BMEI), vol. 5, pp. 1867–1871 (October 2010)

1 http://www.icg.tugraz.at/project/mvp/downloads-1/GPUPBVR.zip

http://www.icg.tugraz.at/project/mvp/downloads-1/GPUPBVR.zip


Particle-Based Rendering of Large Unstructured Meshes 167

4. Challinger, J.: Scalable parallel Volume Raycasting for nonrectilinear computa-
tional Grids. In: Proceedings of the 1993 Symposium on Parallel Rendering, PRS
1993, pp. 81–88. ACM, New York (1993)

5. Maximo, A., Marroquim, R., Farias, R.: Hardware-Assisted Projected Tetrahedra.
Computer Graphics Forum 29(3), 903–912 (2010)

6. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of State Calculations by Fast Computing Machines. The Journal of Chemical
Physics 21(6), 1087–1092 (1953)

7. OsiriX DICOM Viewer public sample image sets. Dicom Image Sets (May 2012),
http://www.osirix-viewer.com/datasets/

8. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer Texts in
Statistics. Springer-Verlag New York, Inc., Secaucus (2005)

9. Rocchini, C., Cignoni, P.: Generating random points in a tetrahedron. J. Graph.
Tools 5(4), 9–12 (2000)

10. Sakamoto, N., Nonaka, J., Koyamada, K., Tanaka, S.: Volume Rendering using tiny
Particles. In: Eighth IEEE International Symposium on Multimedia, ISM 2006, pp.
734–737 (December 2006)

11. Sakamoto, N., Nonaka, J., Koyamada, K., Tanaka, S.: Particle-based Volume Ren-
dering. In: 2007 6th International Asia-Pacific Symposium on Visualization, APVIS
2007, pp. 129–132 (February 2007)

12. Shirley, P., Tuchman, A.: A polygonal Approximation to direct Scalar Volume
Rendering. In: Proceedings of the 1990 Workshop on Volume Visualization, VVS
1990, pp. 63–70. ACM, New York (1990)

13. Vega-Higuera, F., Hastreiter, P., Fahlbusch, R., Greiner, G.: High performance
Volume Splatting for Visualization of neurovascular Data. IEEE Visualization,
271–278 (October 2005)

14. Voglreiter, P., Kainz, B.: Stochastic Particle Based Volume Rendering (February
2012), http://www.cescg.org/CESCG-2012/papers/
Voglreiter-Stochastic Particle-Based Volume Rendering.pdf

15. Zhang, C., Xi, P., Zhang, C.: CUDA-Based Volume Ray-Casting using cubic
B-spline. In: 2011 International Conference on Virtual Reality and Visualization
(ICVRV), pp. 84–88 (November 2011)

http://www.osirix-viewer.com/datasets/
http://www.cescg.org/CESCG-2012/papers/Voglreiter-Stochastic_Particle-Based_Volume_Rendering.pdf
http://www.cescg.org/CESCG-2012/papers/Voglreiter-Stochastic_Particle-Based_Volume_Rendering.pdf


168 P. Voglreiter et al.

A Proof of Equation 1

We show the proof for a one-dimensional distribution. The three-dimensional
proof can be easily obtained by using vectors and multidimensional probability
distributions.

Theorem 1. Let n be the number of uniformly random distributed points in the
interval (a, b) with a, b ∈ R to be generated. The mean value of points generated
within a sub-interval (a′, b′) ⊆ (a, b) is equal to the fraction of the size of the
sub-interval to the whole interval.

Definition 1. The cumulative distribution function of a uniform random dis-
tribution over the interval (a, b) with a, b ∈ R is given as

F (x) =

⎧
⎪⎨

⎪⎩

0 if x ≤ a
x−a
b−a if a ≤ x ≤ b

1 if x ≥ b

Definition 2. A sub-interval (a′, b′) ⊆ (a, b) is defined as

a ≤ a′ < b′ ≤ b

Lemma 1. The probability of a randomly distributed variable X to be within an
interval (a′, b′) as a subset of the original distribution over (a, b) can be calculated
as

P (a′ ≤ X ≤ b′) = F (b′)− F (a′) (3)

Thus, we can obtain the probability of a particle to be within the sub-interval
(a′, b′):

P (a′ ≤ X ≤ b′) = F (b′)− F (a′) =
b′ − a

b− a
− a′ − a

b− a
=

b′ − a′

b− a
(4)

The average number of particles within the sub-interval thus is given as

n′ = n ∗ P (a′ ≤ X ≤ b′) = n ∗ b′ − a′

b− a
= n ∗ V ′

V
(5)

where V denotes the whole interval (volume), and V ′ denotes the sub-interval
(tetrahedral cell volume). ��


	Volumetric Real-Time Particle-Based Representation of Large Unstructured Tetrahedral Polygon Meshes
	Introduction
	Previous Work
	Unstructured Mesh Representation
	Particle-Based Volume Rendering (PBVR)

	PBVR Adaptions
	Particle Generation
	Particle projection and Image Generation
	Spatial Superimposing

	Results
	Conclusion
	References




