
Frame Cache Management for
Multi-frame Rate Systems

Stefan Hauswiesner, Philipp Grasmug, Denis Kalkofen, and Dieter Schmalstieg

Institute for Computer Graphics and Vision, Graz University of Technology

Abstract. Multi-frame rate systems decouple viewing from rendering in
an asynchronous pipeline. Multiple GPUs can be used as frame sources,
while a primary GPU is responsible for viewing and display update. Con-
ventionally, the last rendering result is used for display. However, modern
GPUs are equipped with a fairly large amount of memory which allows
frames to be cached in video memory. As long as the data is static,
caching allows for a more sophisticated reference frame selection that
increases the output quality. With a growing frame database, images for
most viewpoints can be queried from the cache and the system converges
into a conventional image-based rendering system. However, multi-frame
rate systems use purely virtual image sources. As a consequence, the
rendering process can be actively steered by the viewing process, which
allows for advanced strategies. Moreover, by picking multiple reference
frames from the cache, we can avoid display artifacts arising from occlu-
sions.

1 Introduction

Multi-frame rate rendering helps interactive systems to achieve little latency
and high frame rates [1]. It decouples display updates from image generation in
a pipeline with asynchronous communication across multiple GPUs. The display
update stage can guarantee high frame rates and nearly latency-free response to
user interaction, such as moving the viewpoint. At the same time, frame sources
in the backend can produce new high quality images at their own, usually slower
pace. Such systems employ image-based rendering (IBR) to hide the latency of its
rendering nodes. Conventionally, the last rendering result is used as a reference
frame to display the current viewpoint. This is a natural choice, because it
requires little memory and provides acceptable quality. However, modern GPUs
are equipped with a large amount of on-board memory, which can be used to
improve the quality.

Therefore, we introduce frame caching strategies, which allow to reuse al-
ready rendered content. These strategies maximize the utility of available GPU
memory by storing frames which are likely to improve future visual quality. Ev-
ery frame which is received from a frame source is evaluated for its usefulness
(section 4). By using more than a single reference frame for warping, the output
quality can be increased especially at depth discontinuities. We suggest a heuris-
tic for selecting multiple frames from the cache (section 5). Finally, we evaluate
the visual quality (section 6).



2 S. Hauswiesner, P. Grasmug, D. Kalkofen, D. Schmalstieg

Fig. 1. The effect of caching reference frames when rotating a dataset around the Y
axis. The first turn contains visible artifacts, while the second turn offers considerably
better visual quality.

2 Related work

For coping with situations where the computation load exceeds the interactive
rendering power of a parallel system, but some computations have to be per-
formed with minimum latency, the concept of multi-frame rate rendering was
introduced [1]. Multi-frame rate systems use a number of rendering nodes to
independently render parts of the scene. The results are combined without wait-
ing for updates. Thus, the display node (in our case: the primary GPU ) is not
slowed down by the rendering nodes, which enables the display node to perform
computations with bounded latency to user input or other events. This approach
is especially useful for applications, in which high interactivity has to be guar-
anteed, e. g., augmented reality, stereoscopic display or interaction with magic
lenses etc.

Image warping [2] is a form of image based rendering that allows to extrap-
olate new views from existing images with per-pixel depth information. Our
system uses forward image warping for latency compensation.

The work in [3–5] describes a multi-frame rate architecture, which is able to
use the GPU to accelerate image warping by using vertex shader programs for the
required scatter operation. However, this work is not suitable for transparency
and volumetric datasets and does not employ an image cache. [6] support multi-
frame rate volume rendering with transparency, but assume a fixed view point.

Recent implementations of the render cache [7] utilize GPUs for improved
performance. In contrast to the render cache notion, our system does not operate
on single points. Modern GPUs are efficient at data parallel execution. Our
system therefore manages the creation, storage and transfer of frames, or images.
The Tapestry system [8] also elaborates on exploiting frame-to-frame coherence
by utilizing view-dependent meshes. However, these meshes are not suitable for
transparent objects, like volumetric data visualizations.



Frame Cache Management for Multi-frame Rate Systems 3

3 Multi-frame rate rendering with caching

This work is based on a multi-frame rate architecture [9] that is capable of
rendering scenes consisting of meshes as well as volumetric objects. Volumetric
objects are layered to account for motion parallax withing the object. Rendering
can be performed on the GPUs of a single PC, or even on remote machines. The
display stage employs image-warping, because the reference frame that is used
for display was generally not rendered exactly from the desired viewpoint. It is
therefore able to compensate for the latency of the image-generating GPUs.

From the users point of view, our system looks like a simple model viewer. The
camera is able to orbit the scene objects and move towards the model or away
from it, thus enabling zoom operations. Currently, our system does not support
viewpoints inside the scene. This is not a general limitation, but simplifies the
frame cache operations.

4 Cache Organization

In our previous work [9], we use the last known rendering result of a frame
source GPU for image warping and display. However, the visual quality directly
scales with the number and density of available frames along the navigation
path [10]. Therefore, our new system stores as many valuable reference frames
as possible, but also extends the image cache automatically during idle phases.
Note, that reusing rendered images introduces a limitation: the scene’s objects
are not allowed to deform arbitrarily. Animations can only be performed when
they can be described by a single transformation matrix per object.

4.1 Retaining frames

The maximum number of frames that a reference frame cache can store is limited
by the size of GPU memory. A simple round-robin strategy will not create a
database with good memory utilization. For example, a reference frame, which
shows approximately the same features as another, does not contribute to the
display result and therefore wastes memory.

When receiving a new reference frame, its viewpoint distance to the closest
neighbor is compared to a threshold. New frames below this threshold do not
add enough information to the cache database and are discarded. Above the
threshold, the frame is stored if a free slot in the cache is available. If no free slot
is available, a trade-off has to be found: from the closest pair of frames, one is
replaced. Figure 2(a) illustrates how the frame cache improves over time. Figure
1 shows the result of this strategy.

Finding an appropriate sampling density by setting the mentioned threshold
requires knowledge of the dataset and available GPU memory. We use the angle
between two viewing directions to determine the distance of two frames. For the
datasets shown in this paper, we used a threshold of 4.5◦.



4 S. Hauswiesner, P. Grasmug, D. Kalkofen, D. Schmalstieg

(a) (b) (c)

Fig. 2. (a) spherical coordinates θ,ψ of reference frame viewpoints during user navi-
gation. Image (1) shows 65 reference frames and is captured after a complete rotation
around the object. (2) shows 109 reference frames after another rotation. (3) shows
the situation when the cache is full (200 frames). After a long and diverse navigation
session the camera positions are evenly distributed around the object according to our
update strategy (4). (b) and (c) show different prerendering strategies with camera
positions augmented as spheres.

4.2 Estimating subsequent camera locations

When the system is not in continuous motion, and no user interaction is per-
formed for a period of time, no redraw is necessary. During these idle periods,
the rendering nodes can be scheduled to render new viewpoints, without inter-
fering with the display output. The primary GPU stores the new information
as described above, which helps to improve future image quality. We call this
process prerendering.

Generating valuable reference frames for future user interaction requires to
predict future navigation. In typical exploration scenarios, the user is only inter-
ested in a relatively small range of viewing angles, whereas in navigation tasks
all angles may be visible at some point. If the application follows an easily pre-
dictable animation, it is also possible to extrapolate the last known movements.

Our system supports these three types of scenarios: for examination, we as-
sume that future viewing angles are close to the current one, and therefore start
with a fine sampling around it. The more different the viewing angles, the sparser
we sample. See Figure 2 (b) for a visualization of such a prerendering strategy.
For navigation applications, camera positions for prerendering are spaced evenly
on the bounding sphere of the scene. This can be achieved by placing the refer-
ence camera positions at the vertices of a regular polyhedron, which guarantees
an equal distance between neighboring positions (see Figure 2 (c)). If the view-
point follows a certain path, this information can greatly improve image quality.
However, it is domain specific, so we provide just a simple motion prediction
in addition to the strategies above. This prediction places reference frame view-
points along the extrapolated path of the last user-induced camera motion with
a step size that accounts for the speed of the motion. When a steady rotation
around the object is started, this method is capable of producing reference frames
just in time for the display process.



Frame Cache Management for Multi-frame Rate Systems 5

4.3 Handling transfer function changes

Multi-frame rate rendering is often employed to improve the performance of
viewing volumetric datasets, which are especially common in medical applica-
tions. In such applications, the transfer function that maps density values to
color values can be changed. This invalidates all frames in the cache, reduc-
ing the usefulness of the suggested approach. However, we employ an algorithm
that transforms all images in the frame cache to approximate the change of the
transfer function.

As described above, every frame in the cache consists of a set of layers. Each
layer consists of color, depth and normal values at each pixel. Using this infor-
mation alone, it is not possible to transform the images to reflect a change of the
transfer function. In addition to our previous work [9], we therefore also store
representative density values and the layer thickness per pixel, which help to
reclassify every pixel using the new transfer function. The representative den-
sity value for each ray segment is selected from the sample that has maximum
impact on the output color: the sample with the highest opacity weight after
classification.

The process of reclassifying a pixel starts by classifying the pixel using its
representative density value and the new transfer function. The queried color
value is accumulated according to the thickness (or length) of the ray segment.
The resulting color represents a homogeneously filled ray segment, which is not
necessarily a good approximation. However, there is more information available
to improve the quality: the representative density value can be classified by
the old transfer function. The resulting color value is then compared to the
actual color value of the ray segment. The opacity ratio between these two colors
describes how strong the opacity of a ray increased during accumulation. This
ratio is multiplied with the color resulting from the new classification to obtain
the final approximation.

Results of this reclassification can be seen in figure 3. We evaluated the
usefulness of the algorithm by examining the reclassification results between
several transfer functions. We observed that the layering criterion that is used
to separate the volume dataset into view-dependent layers has strong impact
on the visual quality of the result. It controls how well features are distributed
between the layers. If more features are mixed in a single layer, the chosen
density value is not a good representative. To accommodate for this fact, we
modified the layering criterion of [9] to create layer boundaries whenever the
density variance of a ray segment becomes higher than a threshold. A threshold
of zero variance maximizes the visual quality, because only one density value per
layer remains. This requires many layers. Therefore the resulting quality mainly
scales with the number of layers. Increasing the number of layers improves the
reclassification quality, but decreases overall performance. The reclassification
itself takes less than 2 milliseconds per layer on the evaluation system (see below)
and is therefore not a limiting factor.



6 S. Hauswiesner, P. Grasmug, D. Kalkofen, D. Schmalstieg

Fig. 3. Reclassification results: the left column shows the initial transfer functions
(TF). The right column shows renderings of the new TF. The middle column results
are approximated from the left TFs. Ten layers are used for all of the renderings.

5 Reference frame selection

When previously unseen parts of the scene become visible, no information is
available for these parts. This is called a disocclusion (see the top right of Figure
4(a) for an example). To better deal with disocclusions, we use multiple reference
views that are selected from the cache. Warping from multiple reference frames
increases the chance that suitable information is found for every pixel.

As a quality criterion for selecting reference frames, the similarity of the
reference frame’s view to the current view seems obvious. Similarity can be
computed as a function of the Euclidean distance of the camera positions, or the
viewing angle between them. However, reference frames which are closest to the
desired camera position are not necessarily the best. This is especially true for
an unstructured viewpoint database, which is created by our system. Figure 4(a)
illustrates how warping from the two closest cameras may not contain enough
information for a properly generated image. Unfortunately, problems such as the
one depicted in figure 4(a) occur frequently.

Diverse viewpoints are less likely to suffer from the same occlusions. There-
fore, a suitable way to avoid occlusions is to introduce a penalty factor depending
on the distance between two views of the selected set. This factor enforces a cer-
tain distance between the selected reference frame viewpoints, while the set stays
close to the current view. The quality of a reference frame fi for the current frame
c can therefore be expressed as:

q(fi) = −α ∗ dist(fi, c) + β ∗ dist(fi, closest(fi))

with closest(x) searching for the closest reference frame to x in the set of
selected frames, and α and β representing weighting coefficients. The ratio α/β



Frame Cache Management for Multi-frame Rate Systems 7

(a) (b)

Fig. 4. (a) in this example, the two closest frames (green 1 and 2) to the current camera
position (red) do not include information behind the handle of the teapot. Selecting
more distant, but more diverse views can lead to a better result in such a case. (b)
screenshots of a latency compensated rendering after a large viewpoint motion. Two
warped frames selected by distance only (left) and by our q(fi) metric (middle). Right:
reference rendering of the VIX feet dataset.

defines how the distance to the current view and the distance to the nearest
neighbor relate. A high α/β favors nearby frames, whereas a low α/β favors
diverse views. To find the set of selected frames, we start with an empty set and
evaluate fi for all frames. We pick the frame with the highest fi and add it to
the selection set. Then, fi is evaluated again for all remaining frames and again
the highest is added to the set. This is performed until the desired amount of
reference frames are in the set for warping.

When using angles as the distance measurement and α/β = 3, the example
of figure 4(a) ranks the reference frames from best to worst 1 > 3 > 2, thus
resolving the problem. During our evaluations a ratio α/β in the range [2, 3]
worked out best. Figure 4(b) illustrates the benefit of our metric.

When warping from more than one reference frame, several fragments are
transformed to the same pixel location in most cases. Using a depth test to
dissolve fragment collisions was suggested in [11], but the depth test does not
necessarily sort out fragments of low quality (inaccurately positioned). Also,
the depth test possibly may not produce homogeneously generated surfaces,
especially when the source frames contain fragments with similar depth, which
is a situation prone to numerical issues. We found that blending all or several
fragments of a pixel is not a good option either, because wrongly positioned
fragments from lower similarity views interfere with the object’s final appearance.

As a remedy, reference frames are sorted by their q(fi), and then rendered
from low to high quality without using any depth buffer test. Layers are not
mixed, so the overall depth order stays intact. This way fragments from a po-
tentially better (closer) reference frame overwrite bad fragments. The surfaces
appear more homogeneous (smoother), while still being able to fill holes.

5.1 Resolution of the reference frames

The above explanations assume that all reference frames have sufficient resolu-
tion for warping. This implies that the user’s viewpoint lies on a sphere around



8 S. Hauswiesner, P. Grasmug, D. Kalkofen, D. Schmalstieg

Fig. 5. Pixel error comparison of multi-frame rate rendering from the previous frame
or from a reference frame cache (blue and green graphs). After initialization by pre-
rendering, also the first seconds have improved quality (red graph).

the object, effectively prohibiting any zooming operations. To remove this lim-
itation, all viewpoints that are used for rendering lie on a sphere with an as-
small-as-possible radius. Therefore, the user can only freely select the viewpoint
of the display node. The viewpoints of the frame source nodes always lie on the
smallest sphere, but copy the selected viewing angle of the user. This ensures
that all images have a sufficiently high resolution for future reuse, as long as the
viewpoint stays outside this sphere. The radius can be trivially computed from
the scene bounding box’s extents.

6 Performance and quality evaluation

We recorded the viewpoint motion during a user session that contains a rota-
tion around the Y-axis. Viewpoint location, orientation and time-stamps are
stored for each frame during recording. When a session is replayed, the current
viewpoint is interpolated from the recorded data and passed to our system as
input. To obtain ground truth images, we rendered the recorded session using
an offline raycaster. We used volumetric objects for evaluation, because they are
highly complex even for modern GPUs.

For evaluation we used a single desktop PC equipped with 2 GPUs: a GeForce
GTX 480 (Fermi generation) for latency compensation and display, and a GeForce
GTX 275 as the frame source. The rendering resolution of all GPUs was set to
580x610. The frame rate of the output GPU was stable between 27 and 30 frames
per second, while the frame source GPU performed raycasting at a stable frame
rate between 0.3 and 0.5 frames per second.

For evaluation, we replay the recorded user session in real-time. The output
images are stored with time stamps for an offline quality comparison. For every
image in the evaluation track, the closest image from the reference track is found
by comparing timestamps. From these two images, the average absolute pixel
difference (AAPD) is computed as a quality metric.



Frame Cache Management for Multi-frame Rate Systems 9

(a) (b)

Fig. 6. AAPD comparison of our system using either one or two reference frames (a),
and a comparison between our q(fi) metric and the angular distance.

Our first evaluation uses the MANIX head dataset (see figure 1) from the
OsiriX database [12]. Figure 5 shows a pixel error comparison of warping from
the previous frame or from a reference frame cache, which is dynamically updated
during the evaluation. The camera orbits around the dataset for 4 full rounds.
Around frame number 2800 the first round is completed, and the frame cache
succeeds in improving the output quality. This proves that the reference frame
cache is effective when coherence is present.

Figure 5 additionally shows the effect of prerendering. The frame cache has
been filled automatically prior to the evaluation run. We used the prerendering
strategy that places viewpoints regularly on the bounding sphere. During the first
camera orbit, the predictively filled frame cache provides superior visual quality.
During further revolutions, the dynamic frame cache without prior rendering
catches up and the implementations behave similarly.

The second evaluation uses the VIX feet dataset. We performed a pixel error
comparison of multi-frame rate rendering from a frame cache using either one
or two reference frames. Two frames help to cover disocclusion artifacts. When
rendering from two reference frames, our q(fi) metric improves the quality when
compared to a simple two-nearest-viewpoints selection strategy. Figure 6 shows
the measured AAPDs. Rendering from more reference frames does not generally
improve the visual quality. When the selected frames were rendered from too
distant viewpoints, the quality even declines.

7 Conclusions and future work

We have described a system that is suitable for displaying arbitrarily rendered
static scenes at high frame rates using a multi-frame rate approach in combi-
nation with image warping. Because scenes are static, our system can improve
over time by creating and maintaining an image cache, which is updated either
by user interaction or prerendering during idle phases. The suggested update



10 S. Hauswiesner, P. Grasmug, D. Kalkofen, D. Schmalstieg

strategy attempts to maximize the memory utilization. The cache can be pre-
served even when the transfer function of the volume dataset changes. The visual
quality of the system is further improved by warping layers from several refer-
ence frames that are selected according to our quality metric. This metric favors
diverse views of the scene over too similar, nearby views. While the described
method assumes that the viewpoint orbits around the scene, it is not limited
to such a scenario: future work may utilize both the viewpoint and the viewing
angle to cache and select images.

Acknowledgements

This work was funded by the Austrian Science Fund (FWF) under contract
P-24021-N23.

References

1. Springer, J.P., Beck, S., Weiszig, F., Reiners, D., Froehlich, B.: Multi-frame rate
rendering and display. In Sherman, W.R., Lin, M., Steed, A., eds.: VR, IEEE
Computer Society (2007) 195–202

2. Mark, W.R., Mcmillan, L., Bishop, G.: Post-rendering 3d warping. In: In 1997
Symposium on Interactive 3D Graphics. (1997) 7–16

3. Smit, F.A., van Liere, R., Fröhlich, B.: An image-warping vr-architecture: design,
implementation and applications. In: VRST ’08: Proceedings of the 2008 ACM
symposium on Virtual reality software and technology, New York, NY, USA, ACM
(2008) 115–122

4. Smit, F.A., van Liere, R., Fröhlich, B.: The design and implementation of a vr-
architecture for smooth motion. In: VRST ’07: Proceedings of the 2007 ACM
symposium on Virtual reality software and technology, New York, NY, USA, ACM
(2007) 153–156

5. Smit, F.A., van Liere, R., Beck, S., Fröhlich, B.: An image-warping architecture
for vr: Low latency versus image quality. In: VR, IEEE (2009) 27–34

6. Springer, J.P., Lux, C., Reiners, D., Froehlich, B.: Advanced multi-frame rate
rendering techniques. In: VR, IEEE (2008) 177–184

7. Velázquez-Armendáriz, E., Lee, E., Bala, K., Walter, B.: Implementing the ren-
der cache and the edge-and-point image on graphics hardware. In: Proceedings of
Graphics Interface 2006. GI ’06, Toronto, Ont., Canada, Canada, Canadian Infor-
mation Processing Society (2006) 211–217

8. Simmons, M.: Tapestry: An Efficient Mesh-based Display Representation for In-
teractive Rendering. PhD thesis, EECS Department, University of California,
Berkeley (2001)

9. Hauswiesner, S., Kalkofen, D., Schmalstieg, D.: Multi-frame rate volume rendering.
In: EGPGV, Norrköping, Sweden, Eurographics Association (2010)

10. Mark, W.: Post-rendering 3d image warping: Visibility, reconstruction, and perfor-
mance for depth-image warping. Technical report, Chapel Hill, NC, USA (1999)

11. Chen, S.E., Williams, L.: View interpolation for image synthesis. In: SIGGRAPH
’93: Proceedings of the 20th annual conference on Computer graphics and interac-
tive techniques, New York, NY, USA, ACM (1993) 279–288

12. OsiriX: Dicom sample image sets. OsiriX Imaging Software,
http://pubimage.hcuge.ch:8080/ (2009)


