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Abstract. This paper presents a hardware-accelerated approach for
shadow computation in scenes containing both complex volumetric ob-
jects and polyhedral models. Our system is the first hardware acceler-
ated complete implementation of deep shadow maps, which unifies the
computation of volumetric and geometric shadows. Up to now such uni-
fied computation was limited to software-only rendering . Previous hard-
ware accelerated techniques can handle only geometric or only volumetric
scenes - both resulting in the loss of important properties of the origi-
nal concept. Our approach supports interactive rendering of polyhedrally
bounded volumetric objects on the GPU based on ray casting. The ray
casting can be conveniently used for both the shadow map computation
and the rendering. We show how anti-aliased high-quality shadows are
feasible in scenes composed of multiple overlapping translucent objects,
and how sparse scenes can be handled efficiently using clustered deep
shadow maps.

1 Introduction

To address the need for shadows cast by semi-transparent objects, the deep
shadow map (DSM) [1] extends the concept of a conventional shadow map by
storing a visibility function for each pixel in the shadow image plane. Hadwiger
et al. [2] present a GPU implementation of DSM that is suitable for direct volume
rendering, but cannot accommodate polygonal or polyhedral geometry, and does
not scale well to large, sparse scenes.

Our goal is the integration of dynamic high-quality shadows in a hardware-
accelerated rendering framework supporting both polygonal representations and
volumetric objects. This has important applications in creating realistic scenes
for games and virtual environments, but also in medical applications. We show
that a hardware-accelerated DSM implementation on the GPU is feasible based
on the Compute Unified Device Architecture (CUDA) [3]. Deep shadow map
computation and rendering are both based on ray casting. The ray casting
considers segments along each ray, which are homogeneous in terms of object
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Fig. 1. Examples of deep shadow map rendering in hybrid volumetric/geometric scenes:
The left image shows shadow interaction in a complex scene consisting of opaque and
translucent geometry with transparent interior material as well as volumetric smoke
and a CT dataset. The image on the right shows benefits of deeps shadow maps for
depth perception in surgical simulation, showing a polygonal surgery tool (blue rod).

occupancy. Volume rendering acceleration techniques such as early ray termina-
tion and empty space skipping allow for interactive frame rates.

This approach yields high-quality anti-aliased shadows and has the following
distinguishing properties:

– Arbitrary combinations of soft shadow casting between polygonal and volu-
metric objects are possible. Polygonal objects can be transparent and over-
lapping with volumetric objects.

– Perspective aliasing of shadows in large, sparse scenes due to insufficient
DSM resolution is effectively suppressed through a novel concept, clustered
deep shadow maps. This approach analyzes the scene structure and adap-
tively allocates the nodes of the deep shadow map structure where they con-
tribute most. We also present a hardware-friendly chunked memory layout
for clustered deep shadow maps.

2 Related Work

The most common methods for computing shadows in geometric scenes are either
based on shadow volumes [4] or on shadow mapping [5], both of which are
originally limited to opaque geometry and hard shadows.

In contrast to shadow volumes, shadow mapping employs an image-space dis-
cretization, which makes the extension toward volume sampling easier. A major
problem of shadow mapping methods are several types of aliasing, most of all
perspective aliasing. Common approaches reduce perspective aliasing via specific
perspective transforms, e.g., in post-projective view space [6] or light space [7],
or by using logarithmic transforms [8]. Aliasing artifacts can also be reduced
by using adaptive shadow map resolutions like in [9]. Aliasing due to sample
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positions in the shadow map can be removed entirely using irregular rasteri-
zation [10]. Perspective aliasing can also be reduced significantly via cascaded
shadow maps [11] or parallel-split shadow maps [12]. However, these approaches
are inefficient in sparse scenes. The filtering of shadow maps has been improved
by using tailored approaches such as variance shadow maps [13], which can also
be layered [14], or convolution shadow maps [15].

Most shadow mapping approaches focus on hard shadows, although soft shad-
ows caused by area light sources can be approximated by superimposing the
contribution of multiple point lights. A recent approach for colored stochastic
shadow maps of translucent objects is given in [16]. However, approaches working
from a surface representation obviously cannot take into account soft shadows
caused by continuous absorption of light by participating media or volume data.

In volume rendering, shadow computation is an important topic [17]. The
two most common approaches either perform half-angle slicing [18] on-the-fly,
or compute an additional volume that stores the amount of light reaching each
voxel from the light source [19], which is then used during the actual volume
rendering. The latter approach can be combined with ray casting for the volume
rendering pass [20], but requires significant additional volume storage. Half-angle
slicing does not store any additional volume data, but is restricted to slice-based
volume rendering . More recent work has taken on the basic idea for volume ray
casting [21], but is still closely linked the regular dataset grid, which prohibits its
application to multi-volume-grid scenes and integration with polyhedral objects.
An alternative are approaches based on Monte-Carlo sampling [22].

The work in this paper builds on the Deep Shadow Map approach [1], which
conceptually unifies the computation of volumetric and geometric shadows. In-
stead of storing a single depth value per shadow map pixel, a visibility function
is computed and stored per pixel.

For volume rendering, DSMs can be implemented efficiently on GPUs [2],
which yields real-time frame rates on current hardware even when combined
with scattering effects [17]. However, this approach focuses on volume data and
does not incorporate geometry.

Several approaches focus on achieving similar functionality for hair geometry
with less computational requirements than DSMs [23][24][25][26][27]. Adaptive
volumetric shadow maps [28] are an approximate solution to volumetric shadows,
which offers fast on the fly lossy compression, efficient lookup, and global shadow
support given a fixed map size. However, these algorithmic advantages only apply
to a traditional rendering pipeline with unsorted fragments, while we use sorted
fragments lists.

3 Basic Algorithm

The implementation of DSM rendering presented in this paper is derived from
the ray casting system described in [29]. The whole rendering pipeline including
DSM is implemented in CUDA and executes purely on the GPU. It operates on a
data structure similar to a volume scene graph, which consists of a tree with volu-
metric Boolean operations in interior nodes and polyhedral objects (topologically
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closed triangular meshes) in the leaves. First, boundary polygons are rasterized,
and all produced fragments that fall onto a given pixel location are depth-sorted.
Then a ray is traversed from the frontmost fragement, and visits other boundary
fragments for a given location in depth order, while accumulating opacity.

3.1 Deep Shadow Map Generation

The structure of the DSM calculation algorithm is very similar to polyhedral
bounded volume rendering. In fact, it reuses a large portion of the kernel code
from the ray casting and only differs in the determination of each fragment’s
‘payload’. Instead of sampling a color and opacity value along a ray, a piecewise
linear visibility function V (z) storing the remaining light intensity is calculated
from the light’s viewpoint as described in [1]. We also perform pre-compression
in analogy to [2].

All DSM computation is performed in the per pixel kernel, right after fragment
depth sorting. For each homogeneous ray segment, we compute a compressed
piecewise linear representation V ′(z) of the discrete visibility function V (z),
which describes the light attenuation along a ray from the light source through
the scene. Its computation is based on opacity samples and represented as a
list of nodes storing depth and opacity. The compressed version V ′(z) is an
approximation of V (z) where

|V ′(z)− V (z)| ≤ ε (1)

holds for a maximum error of ε [1]. V ′(z) is computed on the fly, depending on
the types of objects present in a particular ray segment. If the ray is inside of a
volumetric object, standard opacity accumulation is used.

Surfaces of polyhedral objects are unconditionally added as nodes to V ′(z).
In order to accurately represent the step in V (z), two entries with the same z
are added, storing the αacc before and after fragment opacity comprehension. In
case of more than one light source, omnidirectional light sources or clustering,
multiple DSMs are computed concurrently.

3.2 Rendering Using Deep Shadow Maps

During rendering, the precomputed DSM are used to compute the amount of
light penetrating to the observed point. The sample location is transformed into
light space as for standard shadow mapping. The sample’s depth value in light
space is used to find the two closest visibility function entries in V ′(z), which
are linearly interpolated.

Shading is done using the Phong Illumination Model. Rendering quality is
further improved by bilinear filtering of the four surrounding texel values at
lookup time. The contribution of multiple light sources is the sum of all individual
contributions, which are computed using the corresponding DSM.
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4 Clustering

Using a single shadow map often leads to perspective aliasing artifacts because
the map resolution drops with increasing distance of scene objects from the
camera. This effect is particularly strong if the current camera location is far
from the camera setup used for map calculation. Furthermore, sparse scenes can
easily lead to bad shadow map utilization. The above-mentioned problems are
also prominent with DSMs.

We attack the aliasing problem with multiple equally-sized DSMs per light
source. Each DSM represents a different part of the scene. However, unlike
parallel-split shadow maps [12], our DSM arrangement is adaptive to the scene
content: Instead of splitting the scene along the camera’s view vector, scene ob-
jects are clustered. Each cluster obtains its own shadow map. Figure 2 gives an
overview of the situation.

Fig. 2. Illustration of the basic idea of clustering. (a) Overview of the scene and the
corresponding single shadow map. (b) Nearby objects are clustered. (c, d) Focusing of
the shadow map on the first cluster and on the second cluster. (e) Single shadow map
compared to the two focused shadow maps.

Clustered DSM computation is a two stage process. First, clustering groups
objects with little shadow contribution into larger clusters, while objects with
major shadow contribution are placed in smaller clusters. Every cluster is as-
signed to one DSM. The rationale is that in order to best represent the shadow
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with limited resources, the number of DSM entries per object should be propor-
tional to the object’s contribution to the shadow.

After cluster assignment, shadow map viewing volumes are fit to the clusters
to optimize shadow map usage by adjusting the light camera’s orientation, field
of view, and near/far planes.

Cluster building is performed in light-space (see [7]). We consider every scene
object’s bounding box and derive extreme points ppmin and ppmax as the min-
imum and maximum projected extents in x and y. The distance between two
bounding boxes A and B is defined as follows:

d(A,B) = max |ppmin(A) − ppmin(B)|, |ppmax(A)− ppmax(B)| (2)

For omnidirectional lights, d(A,B) is the maximum of the values computed for
six different projection directions. The resulting distances are the basis for clus-
ter generation. We use the following heuristic based on a user defined distance
threshold d0, since we want to compute up to m cluster DSMs, where m is the
maximum number of DSMs, which fits into pre-allocated shadow map storage
(for details on storage management, see Section 5):

1. Sort pairs of objects Oi, Oj with (i �= j) by d(Oi, Oj)
2. Insert objects Oi into existing cluster Ck where ∀Oj ∈ Ck : d(Oi, Oj) ≤

d0. OR insert objects Oi into new cluster Cl if for all clusters Ck: ∃Oj ∈
Ck with d(Oi, Oj) > d0 and l ≤ m.

3. Insert remaining objects Oi into the cluster Ck with {max(d(Oi, Oj) | Oj ∈
Ck} → min.

From the rendering point of view, clustered DSMs are used similarly to DSMs for
multiple light sources. Their contributions are appropriately combined along the
light ray. Spotlights require an inside/outside illuminated area test per cluster.

Clustering leads to local maps and good resource utilization as well as higher
resolution maps for objects farther from the viewer. Re-computation is only
required, if the light, the scene or the clustering changes. Note that frame-to-
frame coherence means that clustering can often be re-used over multiple frames
for a moving camera, and that clustering is computationally cheap compared to
DSM computation. An additional advantage of Clustered Deep Shadow Maps is
the fact that omnidirectional light sources may require fewer than six shadow
maps, depending on the scene configuration.

5 Memory Management

The DSM storage scheme used in our implementation is chunked memory. A
memory chunk can store a predefined number of LC depth and opacity values
(64 in our case), each pair representing a depth layer for one texel in a DSM.
Furthermore each chunk entry stores a link to the global chunk index of the next
chunk and the entry number in that chunk. A separate initialization buffer stores
the starting chunk number and entry for each DSM texel. Values are stored in
a large float4 texture.
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For chunked memory DSM computation, the viewport is split into tiles of 8×8
pixels, corresponding to blocks of 64 parallel threads in CUDA. Each block may
reserve a maximum number CB out of a total number Cmax of available chunks.
The corresponding chunk indices are stored in bg[b][i], where b is the block index
and i the block chunk index. All indices are initialized to N A (not allocated).
Furthermore there is an array bl[b] used for counting the overall number of sam-
ples stored in each block. It is incremented using CUDA atomic operations.

As samples to be added to the DSM arrive, we can calculate bc = bl[b]
LC

, the
current block’s chunk number. The current chunk’s global index cd is obtained
using an allocation that relies on CUDA atomic operations in order to synchro-
nize access to shared state across threads. Waiting for another thread to exit
the transient pending state is accomplished by busy waiting since the expected
time to wait (if any) is very short (and CUDA does not offer idle wait primitives
anyway).

Chunk data is written to separate lists for depth, opacity and indices at index
cd∗(bl mod LC) to take advantage of coalesced writes during computation, while
the list elements are copied to the corresponding float4 texture. The per texel
start chunk is initialized with first value obtained when incrementing bl for a
texel and the index of the the corresponding chunk.

Chunk based memory avoids memory wastage, and the number of depth layers
per DSM sample is only limited by the amount of GPU memory dedicated to
DSM chunks, chunk size LC , and management entries in bg[b]. However, lack
of spatial coherence requires a linear DSM list traversal to find the appropriate
depth layer, which results in computational overhead. This overhead is reduced
by exploiting fast access to textures for lookup structures and chunk data during
rendering.

6 Results

The following results were all obtained on a 2.6GHz Intel i7 system equipped
with an NVIDIA GTX 480 GPU running on Windows Vista 64Bit.

6.1 Clustering

The example in Figure 3 depicts the advantages of scene clustering. The region
outlined red is far away from the light source. Therefore the shadow map reso-
lution is low in that area, even for a high overall map resolution of 1024×1024,
which is visible in the left image. Scene clustering based on the actual viewpoint
for n = 4 clusters results in a separate DSM for the smoking cup of coffee, which
provides much higher local shadow resolution. Note, that the overall memory
consumption is the same, since each of the four cluster DSMs is only 512×512.

Figure 4 shows a different view of the same scene and the corresponding
clustering, which again guarantees high resolution shadows maps for objects
nearby the camera.
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Fig. 3. (a) Scene rendered using a single deep shadow map. (b) Same scene rendered
using multiple deep shadow maps computed based on scene object clustering. The
difference is clearly visible in the magnified highlighted region.

6.2 Performance Analysis

We analyzed the performance of our implementation by varying a number of
parameters including DSM resolution, volumetric dataset resolution, number of
objects and error tolerance threshold.

In order to study the influence of DSM resolution, we rendered the scene shown
in Figure 3 with different DSM resolutions and recorded map computation as
well as rendering times with and without filtering. The viewport size was set to
720× 480 pixels. The test scene consisted of one spotlight, two volumetric and
eight polyhedral objects. Rendering without any shadow mapping took 43ms on
the test system. The results with shadows are summarized in Table 1.

Table 1. Computation times in [ms] for varying DSM resolutions and 3D texture based
memory management. Numbers in brackets are timings with clustering turned on.

2562 5122 10242

[ms] (4 × 1282) (4 × 2562) (4 × 5122)

DSM generation 11 (21) 31 (40) 65 (80)
Rendering 46 (54) 46 (55) 46 (57)
Rendering (filt.) 54 (70) 53 (71) 53 (72)

The resolution of volumetric datasets has a significant impact on DSM compu-
tation times and even more on rendering. These results – summarized in Table 2
– are in line with ray casting performance in general. A higher dataset resolution
also leads to a higher number of depth layers.

As expected, the DSM resolution has a significant impact on performance.
Filtering slightly increases rendering times. Clustering timings are compared
for four clusters and halved map resolution. Clustering leads to higher map
computation and rendering times. The overhead of the n rendering passes and
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Fig. 4. Top: Clustering overview for the view from Figure 3 and for a totally different
view (bottom). Objects of the same color enter the same DSM.

lookup while rendering is more costly than dealing with a higher resolution map.
However, clustering is justified if demands on image quality are high.

Table 3 shows that chunk based memory management decreases DSM com-
putation times, but slightly increases rendering times.

The choice of ε as error tolerance threshold for DSM pre-compression influ-
ences the number of nodes in the visibility functions as shown in Table 4. The
equal maximum number of depth layers per DSM texel for ε = 0.05, ε = 0.1 and
ε = 0.2 reflects a scene-dependant lower bound for accurate representation of
the visibility function in some region. It can only be lowered by an excessively
higher ε, resulting in major rendering artifacts.

Rendering times and DSM computing times scale rather linearly with the
number of scene objects, regardless of the memory management methods used.
Chunked memory management constantly results in faster DSM computation
but slightly higher rendering times. However, chunked memory has the addi-
tional advantage of lower memory requirements, which can be important for
large volumetric scenes. Memory management was tested on a scene with up to
24 similar polyhedral and volumetric objects.

Since memory for DSMs has to be allocated at startup, the 3D texture man-
agement size has to be chosen based on the maximum number of depth layers
required to store the DSM obtained through pre-compression using a given ε.
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Table 2. Computation times in [ms] for varying volumetric dataset resolutions. Chun-
ked Memory is used as the memory management method (4× 256 × 256 DSM).

time Avg. # layers Max. # layers

DSM generation
512× 512× 96 74 ms 3.74 31
256× 256× 48 55 ms 3.64 27
128× 128× 24 52 ms 3.64 24
Rendering (filt.)
512× 512× 96 846 ms
256× 256× 48 340 ms
128× 128× 24 130 ms

Table 3. Computation times in [ms] for varying DSM resolutions and chunk based
memory management. Numbers in brackets are timings with clustering turned on.

2562 5122 10242

[ms] (4 × 1282) (4 × 2562) (4 × 5122)

DSM generation 7 (17) 17 (30) 54 (79)
Rendering 48 (55) 49 (56) 49 (57)
Rendering (filt.) 56 (69) 56 (69) 57 (70)

Table 4. The number of layers / DSM texel depends on the error tolerance ε

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.2

Avg. # layers 4.01 3.32 3.12 3.00
Max. # layers 28 21 21 21

For our test scene (Figure 3), this number (21 for ε = 0.05) can be found in
Table 4. With chunk based memory, giving an estimated average number of lay-
ers is sufficient. Therefore chunk based memory management reduces memory
consumption by ≈ 80% for the test scene.

7 Conclusion

We have shown a fully hardware-accelerated implementation of deep shadow
maps for scenes combining direct volume rendering with polygonal models. This
rendering system yields high quality soft shadows at interactive frame rates. It
features a unified handling of volumetric and non-volumetric objects, and can
also deal with large, sparse scenes due to its application of multiple deep shadow
maps after scene clustering. We believe that our approach is an important step
towards the adoption of volumetric shadows in everyday rendering tasks.

We are planning several extensions of the system. Special translucent geom-
etry, in particular hair, can be supported by extending the rasterization stage.
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Alternatively, the new CUDA interface in OpenGL 4.0 allows to combine the
OpenGL rasterizer with the CUDA raycasting kernel. We have verified in early
experiments that this approach increases framerates of typical scenes from 5 to
15-20 fps. Relying the OpenGL rasterizer also makes integration of our approach
with conventional game engines much easier. Finally, an extension of our DSM
approach to colored shadows inspired by [16] seems straight forward.
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