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Abstract
Filtering data is an essential process in a drill-down

analysis of large data sets. Filtering can be necessary for
several reasons. The main objective for filters is to uncover
the relevant subsets of a dataset. Another, equally relevant
goal is to reduce a dataset to dimensions to which either vi-
sualization or algorithmic analysis techniques scale. How-
ever, with multiple filters applied and possibly even logi-
cally combined, it becomes difficult for users to judge the
effects of a filter chain. In this paper we present a simple,
yet effective way to interactively visualize a sequence of fil-
ters and logical combinations of these. Such a visualized
filter-pipeline allows analysts to easily judge the effect of
every single filter and also their combination on the data
set under investigation and therefore, leads to a faster and
more efficient workflow.

We also present an implementation of the proposed tech-
nique in an information visualization framework for the life
sciences. The technique, however, could be employed in
many other information visualization contexts as well.

Keywords—filter-pipeline, brushing, logical operations, in-
teractive, data analysis, compound filter

1 Introduction
Visualizing large amounts of data has been one of the

grand challenges of information visualization for over a
decade now. With ever more data being produced, the abil-
ity to efficiently extract knowledge out of data becomes
more important. There are several ways to analyze large
quantities of data. Examples are aggregation or drill-down
techniques, focus and context methods, and so on. In the
sense of visual analytics [12, 7], visualization is combined
with computational methods, such as machine learning or
statistics. However, in many cases, raw data has several
undesired attributes: parts of it can be redundant, noisy or
irrelevant for a given task. Also, most methods – either
computational or visual – do not scale arbitrarily. Fortu-
nately, there is a simple and yet effective method to reduce

the data to a manageable size: filtering. Filtering allows
parts of the data to be removed, based on a given criteria.
A filter can be defined visually or textually as a processing
rule. Filters can be based on fairly simple concepts, such
as thresholds, or on more complex processes, such as a
statistical evaluation of significance. Related concepts are
dynamic querying [1] (selecting only a desired subset of a
data set instead of removing undesired parts) and to some
extend also brushing (highlighting a subset of a data set).

It is common to use a combination of filters to contin-
ually refine the analysis result. In many cases, such com-
binations are equivalent to logical operations, cf., [10, 5].
While a logical AND is the most commonly used, other op-
erations such as OR, XOR and NOT are feasible as well.

While the reduced data set itself becomes more manage-
able, the overall filtering process and the individual effects
of filters on the data set become increasingly obscured. To
alleviate this, methods to visualize the combination of ap-
plied filters have been developed. Hong Chen [4] for exam-
ple visualizes filters and other parameters of the visualiza-
tion pipeline in a graph. However, to our knowledge, there
has not been any technique that conveys not only the se-
quence of filters or brushes, but also the effects on the data
size. Inspired by Minard’s work, the famous Carte Figura-
tive des pertes successives en hommes de l’arme franaise
dans la campagne de Russie 1812-1813 [13], which shows
the continuous reduction of men in Napoleon’s army dur-
ing his Russian campaign, we have developed a visualiza-
tion technique showing the effects of individual filters on a
data set.

Our primary contribution is an interactive visualization
technique for the effects of multiple filters, including the
effects of logical operators applied to combinations of fil-
ters. This visualization technique enables users to under-
stand the effects of individual and combined filters. A sec-
ondary contribution is a general and detailed analysis of
requirements for visualizing multiple filters. Having these
requirements at hand, we demonstrate how the proposed



technique satisfies each of the specified requirements.

2 Related Work
Much of how we interact with large quantities of data

in visualization has its roots in the 1980s and early 1990s.
Becker proposed some basic principles for dynamic data
analysis [2], like linking & brushing – a technique that
is commonly used until today. In 1992 Ahlberg et al. [1]
conducted an experiment with dynamic queries performed
on a database with different combinations of graphical and
textual input and output, respectively. As the different pa-
rameters used for the dynamic queries have the effect of
refining the data set, this work is an early example of dy-
namically adapted filters.

In 1995 Martin and Ward propose an improvement of
the XmdvTool which contains methods to combine multi-
ple brush operations with different logical operations [10].

A recent example of an approach of filtering high di-
mensional data can be found in [14] where cross-filtering
across multiple views is presented.

These works lay the foundation for modern visualiza-
tion systems which widely employ combined filters or
brushes to refine data sets or selections. However, only
very few systems visualize these combinations in an ex-
plicit way. One notable exception is the work by Hong
Chen [4] where node-link diagrams are used to visual-
ize operations like a brush or selections. He also employs
combined nodes which visualize logical or analytical op-
erations. However, while individual operations are visual-
ized, the effects of the operations on the data are not.

3 Problem Analysis
Users often find it hard to remember the steps conducted

to get a specific result [14]. To support analysts and reduce
the required cognitive load, we believe that an explicit rep-
resentation of the filter sequence helps to understand the in-
terdependencies between and consequences of filters. We
elicited the following main requirements for such a filter-
pipeline meta-visualization technique:

1. Show Sequence
As filters are typically applied sequentially, it is es-
sential to show the filters in the sequence they were
applied.

2. Show Consequences
To allow a user to judge how much data is removed
by a filter, a filter visualization needs to show how
much elements a filter reduces.

3. Show and Create Compositions
A simple sequence of filters is equal to logical AND
operations (i.e., show all elements which are not re-
moved by filter X and filter Y). Other logical opera-
tions such as OR and XOR cannot be visualized as

easily. It is essential, that such compositions are ade-
quately represented in a dedicated filter visualization
technique.
Additionally to the visualization of composed filters,
it should also be possible to create composed filters
based on pre-existing filters.

Aside from these main requirements for a filter visu-
alization technique, there are several other requirements
which provide added benefit to users:

4. Modify Filters
An interactive filter visualization technique should
enable a user to modify a filter (i.e., change its pa-
rameters), to remove a filter and to move a filter to
another position in the sequence of filters.

5. Hide Filters
In some cases it may be desirable to hide filters.
A common example is an initial filter that removes
noisy data. If such a filter removes a lot of data
items, the consequences of subsequently applied,
fine-grained filters become hard to perceive, due to
the small change relative to the initial filter. One
solution would be to use logarithmic scales for the
amount of data removed. However, as log scales are
not intuitive, we believe that the ability to hide filters
is superior.

6. Show Filter Efficiency
When a filter is visualized in relation to a previous
filter, it is impossible to judge its effect on the global
data set, since only the effects on the already fil-
tered data set is shown. To make a user understand
the consequences and the efficiency of a filter better,
an effective filter visualization technique should also
enable a user to see how much data a filter would
remove from the complete data set.

In the following chapter, we will describe how we ad-
dress each of these requirements and challenges to create a
simple and yet effective filter visualization technique.

4 Method
Similar to the visualization of the reduction of men in

Napoleon’s army [13], we render each filter as a quadran-
gle where the left side represents the input and the right
side the output of the filter (see Figure 1). The size is
chosen in way that the largest visible filter always fills the
available height, and the length is equally distributed over
all visible filters. The height of the left edge of the filter en-
codes the elements going in, while the height of the right
edge encodes the elements going out of a filter. Conse-
quently, the difference in height (which is known to be the
most powerful visual variable [3]) as well as the slope of
the top edge allow to easily judge the effect of the filter.



To convey a sense of absolute numbers, we also chose to
show the number of current elements and the number of
elements each filter removes from its input.
4.1 Basic Sequence of Filters

We show a sequence of filters as an equivalent to the
logical AND operation, which simply concatenates one fil-
ter after each other, such that the output of a filter is passed
to the next filter as input. This simple, yet effective method
satisfies Requirements 1 and 2.

Figure 1: Sequence of filters. The result is equivalent to a
logical AND operation of the filters.

4.2 Compound Filters
For more advanced filter-pipelines, combinations of

multiple filters into a single filter can be necessary. We pro-
vide the possibility to create meta-filters where all involved
(sub)-filters are combined in one filter in the sequence of
top-level filters. This can be achieved by dragging an ex-
isting filter and dropping it onto another already created
filter. The whole meta-filter’s input data is passed to each
sub-filter. The output is then calculated based on the de-
sired logical operations – most commonly an OR.

In order to visualize this combination, we experimented
with two different approaches. One is to stack every in-
volved sub-filter on top of each other and embed this stack-
ing into the overall meta-filter. Alternatively, we embed all
sub-filters in the top-level meta filter without overlaps. In
the following, we will briefly discuss the advantages and
disadvantages of each method.

Stacked Sub-Filters

As each sub-filter of the combined filter receives the same
input, it is intuitive to render all sub-filters on top of each
other at the same location (see Figure 2). The filters are
sorted from top to bottom, where the topmost sub-filter (in
our example rendered in a light purple color) is the least
effective one (the one that removes the least elements from
the input data), thus guaranteeing that no filter is com-
pletely occluded. The height on the left side of each filter
is the total input of the compound filter and the height on
the right side of each filter represents its individual output.

Additionally, in the background, the union of all filters is
rendered, visualizing the total influence of the combined
filters on the filter-pipeline. In our example, this is the
largest filter with the light yellow background.

It is also of interest, to know which part of the input that
passes all filters, which is the intersection of all individ-
ual sub-filter outputs (the result of an AND operation). We
visualize this by adding another quadrangle on top. Ac-
cording to the characteristics of set intersection this will
always be the smallest quadrangle (in Figure 2 it is ren-
dered in green). This information can also be confusing to
the user and misinterpreted as an additional filter. Thus,
we only show it if the user moves the mouse over the fil-
ter. This allows him to detect inefficient filters, i.e., filters
that only contribute few or even no elements, apart from
the elements also contributed by the other filters.

A problem with this approach is that it becomes clut-
tered easily. We found that for as little as three filters, es-
pecially if they are similar in terms of their efficiency, it
is not easy to distinguish individual filters. Furthermore, it
discontinues the flow of the data through the filter-pipeline,
as all sub-filters have dead ends on their right sides with-
out an equivalent at the left side of the next filter. Conse-
quently, we devised an alternative method which addresses
both issues.

Figure 2: Two filters combined with logical OR, both sub-
filters stacked over each other. The largest filter with the
light yellow background is the resulting filter (A|B), the
two purple filters are the combined sub-filters (just A or
just B) and the green filter on top of all filters represents
the intersection of the elements filtered by both sub-filters
(A&B).

Separate Sub-Filters

As the sub-filters in a compound filter operate in parallel
(contrary to the sequence of filters on the top-level), we
considered to also express this property in the visualiza-
tion technique. Consequently, we render the sub-filters at



a smaller scale in parallel inside the resulting compound
filter. To provide a continuous flow of the data through the
filter-pipeline, we connect the input of the compound filter
to each sub-filter using curved shapes (see Figure 3). The
surfaces use the same color as the respective sub-filters,
with transparency increased to allow a user to see the over-
lapping regions. Inspired by Kosara et al.’s work on cate-
gorical data visualization [8], we then calculate all possi-
ble intersections between the contributed elements of every
sub-filter. Consequently, for a composition of two filters,
if the underlying operation is an OR, there are two cate-
gories of elements. Those which are contributed by only
one sub-filter, and those that are contributed by both. We
render each set with a trapezoid using the same color as
we did for the incoming surfaces (see Figure 3). To make
the relative size of the set intersections more obvious, we
use the space right of the filter, to show the set sizes in de-
tail. Moving the mouse over an intersection, shows which
filters are intersected for this sub-set.

With the technique of using separate sub-filters embed-
ded in a meta-filter, we have successfully addressed Re-
quirement 3.

Figure 3: Two filters (labeled with A and B) combined with
logical OR, visualized in parallel. The large filter in the
background, rendered in light yellow, is the resulting filter.
The left edge of the resulting filter is connected with the
sub-filters using curved surface. On the right side, all in-
tersections between the elements that are passed to at least
one of the sub-filters are visualized – elements contributed
only by filter A (A&!B), elements contributed only by fil-
ter B (B&!A), and elements contributed by both, filter A
and B (A&B).

4.3 Modifying Filters
The described filter visualization lends itself to allow

interaction with the filters themselves. As discussed in Re-
quirement 4, the essential operations are: modify, remove

and move. We provide intuitive access to those features,
for example by drag and drop for moving filters, or by
double clicking on a filter for modifying it.

4.4 Hiding Filters
We have already discussed the issue of combinations of

strong filters that initially remove large portions of the data,
and more sensitive, refining filters that remove only smaller
parts (see Section 3, Requirement 5). Another issue, aside
from the inability to perceive the effects of filters remov-
ing only a view elements, is the fact, that composed meta-
filters containing several sub-filters are hard to see because
of the tiny amount of space available. These problems are
illustrated in Figure 4. As a solution to this problem, we
provide the possibility to hide a number of filters at the
front of the filter-pipeline. This way, the remaining filters
can be scaled up to the whole height, which makes their
subtle effects on the filter-pipeline, as well as the embed-
ded filters visible again. The effect is shown in Figure 4.

Below each filter, there is a button that enables the an-
alyst to hide all filters from the front up to the according
filter. If at least one filter is hidden, we show a button on
the left margin to again display the hidden filters.

Figure 4: Hiding filters: By pressing the arrow button be-
low the filter, the filter and all filters left of it are hidden.
The example shown reduces the visible pipeline to only
two filters which are scaled to the whole available height,
as depicted in the lower image. Notice that the relative
changes and the composition of the compound filter are
much better visible when compared to the upper figure. By
clicking on the button on the left border, the hidden filter
can be made visible again.



4.5 Show Filter Efficiency
As every filter in the pipeline gets the output of its pre-

ceding filter, the amount of elements filtered is smaller (in
most cases) than if it were applied on the whole input data
set. However, as discussed in Section 3, Requirement 6, it
can be useful to get an idea on how the filter would behave
if it were applied to the whole data set. This, for example,
is desirable when the data is filtered to meet a pre-condition
for a feasible runtime of a given algorithm. In such a case, a
user can apply different filters at the same time, and judge,
whether he could meet the requirements with for example
only one of the filters.

We address this challenge by overlaying an transparent
version of the filter, showing its size as if it were the only
filter in the pipeline, on mouse over. This is shown in Fig-
ure 5.

Figure 5: When hovering over the filter, its full size is
shown in the background.

Having fulfilled all of the elicited requirements, we will
now discuss how the described visualization technique is
embedded in an information visualization framework, and
give some examples on how the filter-pipeline is used.

5 Visualization Environment
The filter-pipeline view is a part of the Caleydo visu-

alization framework1 [9], developed at our institute. It is
intended to be used for the analysis of large data sets from
the life science domain, more specifically genetic and clin-
ical data. Its multiple coordinated view system provides
different ways to explore the loaded data set. For example,
to explore gene expression data parallel coordinates, a hier-
archical heat map, scatterplots and many further views are
available. Figure 6 shows a screenshot of a typical analysis
session in Caleydo.

Figure 6: Example of a possible usage of Caleydo with a
heat map, parallel coordinates and a view showing the hi-
erarchical grouping of experiments.

As the initially loaded data sets in this domain are of-
ten very large, different types of filters are usually applied
to reduce the size of the viewed data set, which is espe-
cially relevant to enable algorithmic methods. The dif-
ferent views support various ways of brushing and conse-
quently filtering data. In the parallel coordinates, it is pos-
sible to filter data where the gene expression values never
leave a given interval and therefore, for example, filter
genes that are neither over- nor under-expressed. Another
possibility to create a filter is to use the angular brush [6]
which removes experiments with a deviation exceeding a
visually specified threshold from the gene expression value
of the selected gene of a specific experiment.

Caleydo also provides computational filters commonly
used in gene expression analysis. One example is the fold-
change filter that removes all elements which change less
than a specified n-fold change to a reference experiment.
Other examples are statistical variance tests, which ensure
that outliers within control groups, which may be the result
of errors in measurement, are removed.

The described filter-pipeline is used in Caleydo to con-
vey the effects of complex combinations of filters. A typi-
cal scenario is shown in Figure 7.

1http://www.caleydo.org



Figure 7: Example of using Caleydo with the described
filter-pipeline view opened in the bottom right part of the
window.

6 Use Case
In this section, we describe how Caleydo is used for the

analysis of gene expression data, acquired in an experiment
to find the genetic cause for liver cirrhosis. Liver cirrhosis
is known to have a significant genetic component, since,
for example only a portion of heavy alcohol abusers actu-
ally suffer from it, and conversely, many others, especially
those with diabetes suffer from it as well. Our partners
at the Medical University of Graz have found, that a spe-
cific genotype of mice (i.e., a genetic variant), do not suffer
from steatohepatitis, a precursory symptom to liver cirrho-
sis, when fed with poison over a course of eight weeks,
while other genotypes do. They therefore conducted a con-
trolled experiment with the different mouse genotypes, and
analyzed their genetic expression after 0 days, 7 days and
8 weeks.

For the analysis they used the Caleydo software. The
first step in the analysis is to filter those genes with too
much deviation within the control group, thereby ensur-
ing statistical significance of the experiments. The second
step is to filter out all genes which are not at least twice as
low or twice as high in the 7 days and 8 weeks scenarios,
compared to the 0 day values (by using the fold-change
filter). The filter-pipeline in this case revealed that only
a small portion of genes was actually dropping more than
two-fold, the majority of the data was removed by the filter.
A a significant part however had a two-fold increase. The
biologists then investigated the remaining subset in greater
detail by interactively adding, removing and refining fil-
ters.

7 Implementation Details
The Caleydo visualization framework [9] is written in

Java and is based on the Eclipse Rich Client Platform
(RCP)2. The framework is designed in a modular manner
where a minimal core contains integral parts, such as the
data management, the event system, etc.. Everything else is
outsourced into separate and completely independent plug-
ins which communicate with each other by using the core’s
message-based event mechanism.

Each view can either use the Standard Widget Toolkit
(SWT)3 to create a user-interface by using the default wid-
gets provided by the operating system, or for graphically
more advanced or three dimensional user-interfaces use the
OpenGL API provided by the Java Bindings for OpenGL
(JOGL)4.

In order to synchronize all views, the data set containing
the data to by analyzed is stored centrally, so that each view
can access it. View changes are handled first by the view
under interaction itself and then propagated to all other
views which in turn update their visualization based on the
new context.

The statistical filters use the R statistics toolkit [11] for
calculating the filter elements which are added to the cor-
responding list.

8 Conclusions and Future Work
As the amount of data to be analyzed is constantly grow-

ing, filtering it is a crucial part in the processing pipeline.
Therefore, it is important that an analyst is supported in un-
derstanding complex sequences as well as compositions of
filters. Visualization of those filters in the proposed filter-
pipeline is an ideal tool for this task. It allows to understand
even complex combinations of filters, and can be modified
interactively until the desired result is achieved. Visualiz-
ing a sequence of AND combined filter is straight forward,
but complex combinations, like a logical OR operation ap-
plied to several filters, require much care in visualization
design.

We have presented two ways of visualizing composi-
tions of logical filters (see Figure 8 for a complex scenario
with four filters combined in an OR operation). The first
one, a simple, stacked rendering of filters has shown to be
very cluttered and hard to understand. Consequently we
developed an alternative that shows each filter in parallel
contained in a compound meta-filter, thereby providing an
intuitive representation of a compound filter.

Aside from these main objectives, we have elicited sev-
eral minor requirements improving the interaction with
such filter visualization techniques, and proposed solutions
for each of the discussed points.

2http://www.eclipse.org/home/categories/rcp.php
3http://www.eclipse.org/swt/
4http://jogamp.org/jogl/www/



Figure 8: Comparison of different visualizations of com-
pound filters as described in Section 4.2 using four sub-
filters.

The support of the complete set of logical operations as
well as nested filters, for example by using zoom levels,
are promising directions for future research.
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