
68 PERVASIVE computing Published by the IEEE CS n 1536-1268/11/$26.00 © 2011 IEEE

S e n S o r n e t w o r k S

Automatic Configuration
of Pervasive Sensor
networks for
Augmented reality

M ost virtual reality (VR) and
augmented reality (AR)
systems are constrained to
laboratories by the limited
range of a single, expensive

six degrees of freedom (6DOF) tracking system.
Diverse low-cost electronics and sensors deployed
in a ubiquitous manner could allow AR applica-
tions to cast off their shackles and roam through-
out much larger environments. Ultimately, we
can best realize this goal, not by extending the
range of a single tracker, but by dynamically

and automatically incorporat-
ing the heterogeneous sensors
we anticipate will pervade the
environment in the future.

AR and VR applications
require a high update rate and
low latency, so communicating
tracking information requires
a fast, highly optimized system
with a direct network connec-
tion from sources of tracking
data (sensors) to sinks (appli-
cations). In contrast, informa-
tion involving the availability

of sensors, objects, and users, and the associated
topological considerations (for example, where

the user is or which source should be connected
to which sink) occurs at much lower frequencies
but requires the oversight of a complex problem
domain potentially involving numerous entities.

In general terms, a middleware architecture
for location sensing in distributed and heteroge-
neous environments should support several key
requirements:

•	 device abstraction enabling portability of ap-
plications between families of similar devices;

•	 network transparency allowing access to de-
vice data independent of the device’s physical
connection;

•	 flexible processing of data from multiple de-
vices delivered in a form that the application
can use (for example by filtering, fusion, cali-
bration, or registration);

•	 architectural support for established trans-
formation, sensor fusion, and calibration
algorithms;

•	 efficient processing and transport of tracking
data for time-critical AR applications; and

•	 dynamic reconfiguration of the sensor data
flow.

In AR and VR applications, dataflow networks
have proven useful for efficient device abstraction

The ubiquitous tracking (Ubitrack) approach uses spatial relationship
graphs and patterns to support a distributed software architecture for
augmented reality (AR) systems in which clients can produce, transform,
transmit, and consume tracking data.

Daniel Pustka, Manuel Huber,
Christian Waechter,
Florian Echtler, Peter Keitler,
and Gudrun Klinker
Technical University of Munich

Joseph Newman
University of Cambridge

Dieter Schmalstieg
Graz University of Technology

PC-10-03-Pustka.indd 68 6/24/11 11:07 AM

JULY–SEPTEMBER 2011 PERVASIVE computing 69

and network transparency (see the
“Related Work in Ubiquitous Tracking”
sidebar). However, to deliver a continu-
ous stream of tracking data, these net-
works must be manually configured for
every tracking situation.

The ubiquitous computing (ubicomp)
community has developed several ap-
proaches that incorporate dynamic and
heterogeneous wide-area sensor net-
works (see the sidebar). However, these
approaches primarily consider low-fre-
quency data. Our Ubiquitous Tracking
(Ubitrack) system combines the perfor-
mance advantage of AR and VR data-
flow networks with the flexibility and
more sophisticated reasoning typically
found in ubicomp systems to support
distributed access to an array of sensing
technologies.

System overview
We propose a two-layered approach to
distributed tracking for AR/VR appli-
cations: a configuration layer, respon-
sible for low-frequency events, sets up
the runtime layer, which handles the
high-frequency events. The configura-
tion layer stores structural information

concerning the physical environment
and technical infrastructure in a spa-
tial relationship graph (SRG) and mines
it for the configuration information the
runtime layer needs. The runtime layer
polls the sensors and transforms, fuses,
and delivers the sensor data through a
distributed dataflow network.

Figure 1 shows the architecture’s
basic components and the most relevant
communication channels. The design’s
core idea is to separate the configura-
tion of data producers and consumers
from the actual production and con-
sumption of sensor data. This separa-
tion permits the relatively resource-
intensive coordination process to run on
the server, while clients communicate
directly with one another according to
the low-latency requirements of AR ap-
plications. For performance reasons,
this approach uses a centrally coordi-
nated peer-to-peer architecture rather
than a pure client-server solution.

Ubitrack Server
The Ubitrack server is the system’s cen-
tral component, maintaining a data-
base of all coordinate frames, sensors,

and tracked objects as an SRG. The
SRG, although initially empty, con-
tains the aggregated spatial relation-
ships specified by clients and thus
contains complete knowledge of the
tracking infrastructure’s topology. It
doesn’t, however, contain actual sen-
sor measurements.

Clients can query the server about
parts of the SRG, including spatial rela-
tionships that can’t be measured directly
but can only be inferred using spatial
relationship patterns.1 The server con-
tinuously matches the SRG against reg-
istered client queries. If it finds a match,
it generates a data-flow network de-
scription, which it sends to the client.
During this process, the server can also
order a client to construct a dataflow
network in support of other clients by
processing tracking data and transmit-
ting them over the network.

Ubitrack Client
Ubitrack system clients can be sen-
sors, output devices, and other human-
computer interaction components as
well as mixed forms, such as software
agents representing virtual characters

Figure 1. Ubitrack architecture overview. The Ubitrack server coordinates clients that directly exchange sensor data with low
latency and apply transformation, calibration, and sensor fusion algorithms as instructed by the server.

P2P
network transport

Ubitrack library Dataflow
network

Sensor client

Ubitrack library Dataflow
network

Hybrid sensor/application client

Ubitrack library Dataflow
network

Application client

Sensor

Configuration (UTQL)
Measurements

Type of exchanged data

Ubitrack server

PC-10-03-Pustka.indd 69 6/24/11 11:07 AM

70 PERVASIVE computing www.computer.org/pervasive

SenSor networkS

that both react to the environment and
provide information about their loca-
tion in space.

To keep the interface for application
programmers minimal, the client-
side network communication is en-
capsulated in the Ubitrack client
library. It supports interaction with
the Ubitrack system at various degrees
of complexity, ranging from simple
“Where is object A?” queries to persistent
requests for tracking data of all objects
matching a given predicate with the
additional specification of desired
tracking quality and base coordinate
frames.

Application
A developer writes an application con-
forming to interfaces in the Ubitrack
client library. Using this interface, the
application becomes part of the data-
flow network. The application retrieves
information using callback nodes in the
data flow and can pass information into
the data flow using call-forward nodes.

Dataflow network
The dataflow network is formed by
jointly executed processes run by the cli-
ents. It retrieves, processes, transmits,
and delivers the actual sensor data.
The data flow’s reconfiguration is

triggered by the Ubitrack server, but it’s
interpreted and executed by the Ubi-
track client library.

Spatial relationship Graphs
To enable the automated analysis and
synthesis of complex tracking scena-
rios, a formal description of the situation
is necessary. Inspired by the informal
coordinate frame drawings frequently
found in robotics papers (such as that by
R.Y. Tsai and R.K. Lenz2), we proposed
the use of SRGs.3 The graph’s nodes
represent the coordinate frames of real
or virtual objects, whereas the directed
edges represent the spatial relationships

T he Ubitrack approach incorporates results from several

research areas.

Augmented and Virtual Reality
Distributed VR applications have traditionally relied on

application-level rather than device-level distribution of events,

for example, through distributed scene graphs.1,2 This might

have been a more straightforward solution for connecting dis-

tributed VR sites with static physical configuration, but it doesn’t

address the need for dynamic reconfiguration at runtime.

AR applications, especially those for mobile users, require

coverage of larger physical areas as well as greater flexibility in

the type of supported devices. Specifically, fusion of hetero-

geneous sensors is used both to improve tracking quality and

cover larger areas.3 Gudrun Klinker and her colleagues first

postulated distributed tracking concepts necessary to propel

AR beyond the confines of the laboratory into serious industrial

settings.4

In AR and VR applications, dataflow networks processing high-

frequency streams of sensor data have proven to be a useful ap-

proach for device abstraction. Two prominent examples are the

Virtual Reality Peripheral Network (VRPN) 5 and OpenTracker.6

The Ubitrack framework automatically computes suitable data-

flow graphs given an abstract semantic representation of the

world in form of an spatial relationship graph (SRG).

In recent years, researchers have made significant progress in

the development of optical natural feature-based self-localization

systems,7 which don’t rely on technical infrastructure. Therefore,

the use of middleware might seem unnecessary for such systems.

However, to realize a meaningful pervasive AR application, com-

mon coordinate frames must be established and positions of

objects and features exchanged. In addition, access to other

sensors can improve robustness and accuracy.

Ubiquitous Computing
The use of heterogeneous sensors and context-aware computing

is much more common in the ubicomp area than in AR. Several

ubicomp systems deal with wide-area sensor networks and fed-

erated sensor data models, such as Nexus,8 QoSDream,9 and the

context toolkit.10 However, these approaches primarily consider

low-bandwidth communication. Therefore, they aren’t directly

applicable to AR’s real-time and low-latency requirements.

Location models for ubicomp are frequently described in

terms of Hightower’s location stack.11 The Ubitrack system

mostly covers the functionality of the measurement, fusion, and

arrangement layers. However, because we separate configura-

tion and runtime layers, a straightforward mapping of individual

Ubitrack components onto the location stack layers is impossible.

The EasyLiving Geometric Model used graph models to repre-

sent different coordinate systems.12 However, because it used un-

directed (rather than directed) graph edges and a simple graph

search (rather than spatial relationship patterns), this approach is

less powerful than the Ubitrack framework.

Computer Vision and Robotics
The SRG concept was heavily inspired by the informal coordinate

frame drawings frequently found in robotics papers.13 Further-

more, robotics has developed a rich collection of algorithms for

alignment and fusion in multisensor systems. Our development

of the spatial relationship pattern framework was driven by the

desire to make these algorithms available to mobile AR and VR

setups, which our first Ubitrack system didn’t support.

related work in Ubiquitous tracking

PC-10-03-Pustka.indd 70 6/24/11 11:07 AM

JULY–SEPTEMBER 2011 PERVASIVE computing 71

between these objects. Thus, in the case
of two 3D coordinate frames, an edge
might describe a transformation with
6DOF, three for position and three for
orientation. This is the most common
case for AR tracking setups, although
other edge types are equally important.
The graph contains a separate edge for
each relationship. It can thus contain
multiple edges between the same pair of
nodes—for example, if multiple inde-
pendent trackers are tracking the same
objects. Furthermore, both nodes and
edges have a set of attributes describing
important characteristics, such as an
object’s name or the measurement data

type of an edge (6DOF pose, 3D posi-
tion, and so on).

Although the SRG describes the
layout of a tracking environment in
detail, an application doesn’t immedi-
ately benefit from access to the SRG.
The application needs the relevant data
from the sensors rather than data de-
scribing the sensors. To obtain this
data, the Ubitrack server provides the
application with an abstract dataflow
graph (DFG), which the application
instantiates into a concrete dataflow
network. The DFG is a directed graph
with nodes representing computa-
tional units (such as matrix inversion or

multiplication) and edges representing
the flow of tracking data through this
graph. Sources in a DFG generally rep-
resent sources of tracking data, whereas
sinks mostly correspond to interfaces to
other parts of the application.

Spatial relationship Patterns
We use spatial relationship patterns to
infer suitable DFGs from an SRG repre-
sentation. A spatial relationship pattern
identifies parts of the overall SRG for
which a known algorithm exists. The
corresponding dataflow component
executes the algorithm and provides
the result, again as an edge in the SRG.

Semantic Web and Graph Rewriting
An interesting approach to the inference of context from sen-

sor data is the use of Semantic Web technologies (ontologies),

such as in the Cobra project.14 This kind of system description

has some similarities to our SRG approach in that ontologies can

evaluate complex relationships between entities.

In the model-driven engineering field, researchers have in-

vestigated the automatic analysis of model diagrams. This has

resulted in graph transformation systems, such as Progres,15

which are used to transform, simulate, and verify UML models

and similar diagrams. Although the graph transformation rules

used there are more complex than spatial relationship pat-

terns, our system implementation profits from the results of this

research.

REfEREnCES

 1. E. Frecon and M. Stenius, “Dive: A Scaleable Network Architecture
for Distributed Virtual Environments,” Distributed Systems Eng. J.,
vol. 5, no. 3, 1998, pp. 91–100.

 2. B. MacIntyre and S. Feiner, “A Distributed 3D Graphics Library,” Proc.
ACM Siggraph, ACM Press, 1998, pp. 361–370.

 3. D. Hallaway, T. Hoellerer, and S. Feiner, “Bridging the Gaps: Hybrid
Tracking for Adaptive Mobile Augmented Reality,” Applied Artificial
Intelligence, vol. 25, no. 5, 2004, pp. 477–500.

 4. G. Klinker, T. Reicher, and B. Bruegge, “Distributed User Tracking
Concepts for Augmented Reality Applications,” Proc. IEEE Int’l Symp.
Augmented Reality (ISAR), IEEE Press, 2000, pp. 37–44.

 5. R.M. Taylor et al., “VRPN: A Device-Independent, Network-
Transparent VR Peripheral System,” Proc. ACM Symp. Virtual Reality
Software and Technology, ACM Press, 2001, pp. 55–61.

 6. G. Reitmayr and D. Schmalstieg, “Opentracker: A Flexible Software
Design for Three-Dimensional Interaction,” Virtual Reality, vol. 9,
no. 1, 2005, pp. 79–92.

 7. G. Klein and D. Murray, “Parallel Tracking and Mapping for Small
AR Workspaces,” Proc. 6th Int’l Symp. Mixed and Augmented Reality
(ISMAR), IEEE CS Press, 2007, pp. 1–10.

 8. M. Bauer and K. Rothermel, “Towards the Observation of Spatial
Events in Distributed Location-Aware Systems,” Proc. 22nd Int’l
Conf. Distributed Computing Systems Workshops, IEEE CS Press, 2002,
pp. 581–582.

 9. G. Coulouris, The QOSDream Project, tech. report, Laboratory for
Comm. Eng., Univ. of Cambridge, 2002.

 10. A.K. Dey, “Providing Architectural Support for Building Context-
Aware Applications,” doctoral thesis, College of Computing, Georgia
Inst. of Technology, 2000.

 11. J. Hightower, B. Brumitt, and G. Borriello, “The Location Stack: A
Layered Model for Location in Ubiquitous Computing,” Proc. 4th IEEE
Workshop Mobile Computing Systems and Applications (WMCSA), IEEE
CS Press, 2002, pp. 22–28.

 12. B. Brumitt and S. Shafer, “Better Living Through Geometry,” Personal
Ubiquitous Computing, vol. 5, no. 1, 2001, pp. 42–45.

 13. R.Y. Tsai and R.K. Lenz, “A New Technique for Fully Autonomous and
Efficient 3D Robotics Hand/Eye Calibration,” IEEE Trans. Robotics and
Automation, vol. 5, no. 3, 1989, pp. 345–358.

 14. H. Chen, T. Finin, and A. Joshi, “An Ontology for Context-Aware
Pervasive Computing Environments,” The Knowledge Eng. Rev.,
vol. 18, no. 3, 2003, pp. 197–207.

 15. A. Schürr, A.J. Winter, and A. Zündorf, “The PROGRES Approach:
Language and Environment,” Handbook of Graph Grammars and
Computing by Graph Transformation: Vol. 2: Applications, Languages,
and Tools, G. Rozenberg, ed., World Scientific Publishing, 1999,
pp. 487–550.

PC-10-03-Pustka.indd 71 6/24/11 11:07 AM

72 PERVASIVE computing www.computer.org/pervasive

SenSor networkS

We apply this technique recursively to
further identify solvable subproblems
until a solution for all required data-
flow elements is found.

Such patterns define the signature
of an algorithm for solving a specific
problem in a tracking setup. These
algorithms have as input a set of mea-
surement edges, defined by the prob-
lem, and return a set of measurement
edges that is part of the solution. Spatial
relationship patterns don’t merely de-
fine the type of arguments and return
values; they also impose restrictions
on the geometric relationship between
them. Hence, a pattern has two types of
edges: input edges required in the SRG
before a pattern can be applied (drawn
as solid lines) and output edges added
by a pattern (drawn as dashed lines). In-
puts edges can be further restricted by
specifying predicates over the attributes
of the SRG edges.

Figure 2 shows the two basic spatial
relationship patterns, which sufficiently
describe many runtime setups (after
calibration). The basic patterns create
an SRG’s transitive reflexive closure:

•	 Inversion. Edges in an SRG are di-
rected and can be inverted, depending
on their type. If the transformation is

represented by a matrix, this simply
gives the inverse matrix.

•	Concatenation. The most common
way to compute the transformation
on an unknown edge is by concatena-
tion of subsequent edges, that is, by
multiplying the transformations.

Consider a simple lab-based AR ap-
plication where a single high-precision
tracker tracks both a mobile display
and a tangible object to be augmented
(Figures 2c and 2d). In this case, an in-
version pattern (Figure 2e) would be
used to change the reference coordinate
frame from the tracker to the display,
followed by a concatenation (Figure 2f)
that computes the object’s location rela-
tive to the display. (You can find more
complex patterns that describe sensor
fusion and calibration methods from
robotics and computer vision in earlier
research.1)

Sensor Synchronization
Most algorithms with multiple input
edges, such as concatenation, require
that measurements on all their inputs
are synchronized to produce correct
results. Our system ensures this by
choosing one sensor as the time re-
ference. The system synchronizes the

measurements of other sensors by in-
serting interpolation components that
compute results for the reference sen-
sor’s time stamps.

In the pattern framework, we attri-
bute edges with the type of interface
that’s used for communication. Push
edges provide measurements whenever
they’re available, whereas pull edges
can be queried for a given time stamp.
For correct synchronization, a pattern
can have at most one push input that
provides the reference timing. When
combining multiple push sensors, the
other inputs must be converted from
push to pull by inserting an interpola-
tion pattern.

Figure 3 shows the different vari-
ations of the concatenation pattern re-
sulting from this push-pull expansion,
together with the interpolation pattern.

Using Patterns to Create
Dataflow networks
The procedure that results in a data-
flow network suitable for an appli-
cation client’s needs can roughly be
divided into several steps.

Client request
The protocol we used to exchange in-
formation between servers and clients is

Figure 2. The basic spatial relationship patterns (a) inversion and (b) concatenation form the reflective and transitive closure of
a spatial relationship graph, as shown in the examples: (c) example scenario, (d) spatial relationship graph (SRG), (e) inversion
application, and (f) concatenation application.

A B

(a) (b)

(c) (d) (e) (f)

type:6DOF

A B Ctype:6DOF type:6DOF

Tangible
object

Mobile
display

Mobile
display

Tracker Tracker

Tangible
object

Mobile
display

Tracker

type: 6DOF type: 6DOF type: 6DOF
type: 6DOF

type: 6DOF
type: 6DOF

type: 6DOF

type: 6DOF

type: 6DOF

type:6DOF type:6DOF

Tangible
object

PC-10-03-Pustka.indd 72 6/24/11 11:07 AM

JULY–SEPTEMBER 2011 PERVASIVE computing 73

an XML dialect called Ubitrack Query
Language (UTQL). The client starts the
communication by sending a request to
the server, which contains descriptions
of sensors, processing capabilities, and
queries for particular spatial relation-
ships. All this is expressed in the form
of spatial relationship patterns, which
have only outputs (sensors), only inputs
(queries), or both (processing patterns).

Depending on the kind of patterns
transmitted, we can distinguish be-
tween sensor, application, and process-
ing clients. However, mixed forms are
also frequent, such as the mobile setup
presented later. Because each client can
transmit a different set of patterns, the
system supports clients with different
processing capabilities. Clients can add
or remove patterns from the server at
any time, which triggers a recomputa-
tion of the DFG.

Pattern Application
The server first creates an initial SRG by
adding all the clients’ sensor patterns.
On this SRG, it systematically applies
processing patterns until solutions to all
requests are found (or the search fails).
This search for patterns can be split into
a detection and control problem. Detec-
tion of all instances of a given pattern
(subgraph isomorphism) is NP-complete
in the general case, but we can apply
some simple heuristics and cut-off crite-
ria to quickly yield the relevant results.
For example, new edges are only added
if they don’t provide the same informa-
tion as existing edges, only derived in a
different order. The control mechanism
is bootstrapped by the detection and
aims to apply patterns systematically
toward a given goal (a client’s request).
The currently implemented strategies
are simple and apply a combination of
known relevant patterns.

Dataflow Construction
Constructing the DFG from a sequence
of located pattern instances is straight-
forward. All edges in the initial SRG
are associated with a tracking compo-
nent or some other service (such as a

database) in the DFG that provides the
initially unprocessed measurements.
Whenever a pattern is applied to the
SRG, it creates a new algorithmic com-
ponent in the DFG. This component
provides new outputs, which are asso-
ciated with the new SRG edges, while
the component’s inputs are connected
to the components associated with the
input edges of the patterns. This is re-
peated for all pattern applications until
the desired measurement is available at
the end of the DFG.

To support network transport of
measurements with minimal latency,
the tracking data must be sent directly
from one client to another. Therefore,
the server splits a global dataflow de-
scription into client-specific parts and
integrates network sources and sinks.
This results in distributed DFGs where
several clients collaborate to satisfy a
specific client’s request.

Dataflow Instantiation
When the server has computed a suit-
able DFG in response to a client’s query,
it sends UTQL messages to one or more
clients, requesting that they instanti-
ate and connect the required dataflow
components corresponding to the ap-
plied patterns.

Dynamic reconfiguration
at runtime
The methods we’ve described provide
the necessary formal framework to

derive optimal dataflow configura-
tions for AR applications, given a
particular sensor configuration. For
configuring static sensor arrangements,
this can help in setting up an AR system
because specifying an SRG is easier and
less error-prone than manually config-
uring a dataflow configuration. Using
a graphical SRG editor,4 members of
our group implemented complex multi-
sensor calibration tasks within a few
minutes.

In a ubicomp scenario where mobile
systems move between tracking areas
covered by different sensors, mecha-
nisms are necessary to reconfigure
the SRG based on sensor availability
or region containment. These recon-
figurations are generally triggered by
analysis of the actual sensor data. As
in our framework, the server coordi-
nates the clients, but it doesn’t receive
actual tracking data. Such function-
ality must be implemented by special
clients.

transition Between Locales
To ensure system scalability, we limit
queries for available objects, such as
persons, sensors, or fiducials, to a rea-
sonable area of interest, a locale. In
the SRG formalism, we treat locales as
nodes. Containment in a locale is ex-
pressed as an edge of type inLocale, which
is drawn from the locale node to the ob-
ject in question. This lets us model que-
ries for objects as spatial relationship

Figure 3. Pattern extensions for sensor synchronization: (a) push-pull, (b) pull-push,
(c) pull, and (d) interpolation. Push inputs provide the time reference to which the
pull inputs are synchronized. Push edges can be converted to pull by instantiating an
interpolation pattern.

A B Ctype:6DOF
mode:push

type:6DOF
mode:pull

type:6DOF
mode:push

A B Ctype:6DOF
mode:pull

type:6DOF
mode:pull

type:6DOF
mode:pull

(a)

(c)

A B

type:6DOF
mode:push

type:6DOF
mode:pull(d)

A B Ctype:6DOF
mode:pull

type:6DOF
mode:push

type:6DOF
mode:push(b)

PC-10-03-Pustka.indd 73 6/24/11 11:07 AM

74 PERVASIVE computing www.computer.org/pervasive

SenSor networkS

patterns. In the following example,
we look for objects of type marker that
are contained in the same locale as the
camera1 node, shown in Figure 4.

Using this formalism, an object can
be in multiple locales simultaneously,
and there’s no need for a hierarchical re-
lationship between locales. In addition,
locales need not necessarily correspond
to physical entities, such as rooms, but
they could also express abstract con-
cepts such as a social network.

A dedicated locale manager adds the
locale edges at runtime. In our system,
we implemented a general-purpose lo-
cale manager that can be configured
using XML to listen for events from a
particular sensor and insert or remove
locale edges when an object enters or

leaves a particular locale, or when a
sensor starts to deliver data about an
object at all. Locales are defined by the
convex hull of a set of points. Each lo-
cale has a separate manager to enhance
scalability.

Unlike the sensors used for AR visu-
alization and interaction, sensors that
are monitored to detect locale contain-
ment don’t need to be extremely precise.
Therefore, we can use relatively cheap
technology, such as Wi-Fi or RFID po-
sitioning, for this purpose.

Identity Pattern for
Assigning Anonymous Sensors
Most sensors typically used in AR set-
ups can uniquely identify the objects
they’re tracking. Other (cheap) sensors
don’t offer this feature, such as a sur-
veillance camera combined with a sim-
ple blob-detection algorithm. In terms
of the SRG, we model these objects as
nodes with a special anonymous attri-
bute and a temporary ID, assigned by
the anonymous sensor client. In a situ-
ation where an ID-sensing tracker de-
tects one of the objects with sufficient
accuracy, the system can conclude that
the two objects actually are the same
by comparing the positions of both
sensors. In this situation, the ID sen-
sor doesn’t need to provide continuous
measurements, but a single event, such
as the read-out of an RFID tag or the
detection of a marker in a single camera
image, is sufficient. In the Ubitrack for-
malism, we model this object merging
by inserting symmetric identity edges
between the two nodes in the SRG.
The meaning of an identity edge is that
each measurement of one object is valid
for the other object as well. The mea-
surement identity pattern, shown in
Figure 5, expresses this in the Ubitrack
formalism.

The actual insertion of identity edges
is done by a general-purpose identity
manager, which is configured and in-
stantiated for each anonymous sensor.
This manager queries the Ubitrack sys-
tem for all anonymous objects of the
given tracker and a list of candidate

objects, usually limited to a particular
locale or type (for example, person). By
comparing the positions of both anony-
mous and candidate objects, the man-
ager can detect matching objects and
insert identity edges, which lets the sys-
tem use the anonymous sensor until it
loses track of the object.

Dynamic Sensor
Fusion example
To illustrate Ubitrack’s capabilities, we
describe an example involving dynamic
fusion of multiple sensors for present-
ing AR objects to a mobile user. The
user is guided through the hallway to a
lab, where a virtual sheep is pastured.
The mobile AR system collaborates
with several stationary tracking devices
installed in the environment. Figure 6a
shows a map of the environment.

The user carries a tablet PC with
integrated camera and an inertial mea-
surement unit (IMU) with compass (Inter-
sense InertiaCube), shown in Figure 6b.
The camera image provides a video see-
through AR view on the screen. The
camera also detects black-and-white
fiducial markers and determines their
pose relative to the camera. For higher
robustness and accuracy, the results are
fused with the IMU using a Kalman fil-
ter. The client PC retrieves set of avail-
able markers from the Ubitrack server,
depending on the current locale.

The mobile user enters the hallway
in front of the lab. Using the camera,
the user can track a fiducial marker at
the hallway entrance. As the user looks
at the marker, the system registers the
user’s position.

On the hallway ceiling, an overhead
tracker with a wide-angle camera de-
tects and tracks people. This overhead
tracker adds newly detected people as
anonymous objects to the SRG. How-
ever, the identity manager can identify
one of them as the user by comparing
positions reported by the overhead
camera and the marker tracker.

As the user turns (measured by the
IMU) and looks down the hallway, he
or she can see a sign in front of the lab

Figure 4. Query pattern resulting in all
objects of type marker that are contained
in the same locale as the camera1 node.

L

M

type:
inLocale

C

type:
inLocale

id:camera1 type:marker

C

B

type:
3D Pos

type:
identity

A

type:
3D Pos

Figure 5. The Measurement identity
pattern for 3D Pos measurements. It
can be read as, “measurements of type
3D Pos valid for any object A are also valid
for any other object B connected
to A via an identity edge.”

PC-10-03-Pustka.indd 74 6/24/11 11:07 AM

JULY–SEPTEMBER 2011 PERVASIVE computing 75

door. Walking down the hallway, the
user stays tracked by the overhead cam-
era. In front of the lab door, another
marker lets the user take a look at the
sign with higher accuracy.

The lab is covered by a commer-
cial Ubisense ultra-wideband (UWB)

RF location system, providing po-
sition updates with an accuracy of
approximately 15 centimeters. A UWB-
emitting tag is attached to the mobile
setup, allowing the PC to be detected
and uniquely identified. In the cen-
ter of the lab, a working volume of

approximately 4 × 4 meters is covered
by a high-precision A.R.T. infrared-
optical tracker. To be tracked by this
system, the mobile setup includes a set
of retro-reflective marker balls.

When the user enters the lab,
the UWB-emitting tag is detected.

Figure 6. Illustration of the example scenario: (a) a map of the environment, showing the positions of markers, the overhead tracker
and ultra-wideband and infrared-optical tracking systems, (b) the handheld PC with an integrated camera, inertial measurement
unit (IMU), ultra-wideband emitter (UWB) and infrared-optical tracking target and (c) the spatial relationship graph (SRG) of the
setup. (Note: For clarity, this SRG only contains sensor and query edges. Also, we show only the “type” attribute.)

Infrared tracking area

Table with
virtual sheep

Augmented reality lab

Hallway

UWB
receiver

Overhead camera

D

A Handheld PC

B Integrated camera

C IMU

D UWB emitter

E IR tracking target

B A
E

C

Overhead
camera

Anon01 Anon02 Anon03

Hallway

Virtual
hallway

sign

Marker

Person

Mobile
camera

IMU/
compass

3D Pos3D Pos 3D Pos

6DOF

3D Ori
6DOF

6DOF

6DOF6DOF

3D Ori

6DOF
(Query)

Anonymous objects

Magnetic
world

3D Ori

Lab

IR
tracker

UWB
tracker

IR target

UWB
emitter

Virtual
sheep

6DOF

6DOF

3D Pos

6DOF

6DOF
6DOF6DOF

6DOF

6DOF (Query)

3D Ori

Lab setup

Mobile setup

Hallway setup

(a)

(c)

(b)

PC-10-03-Pustka.indd 75 6/24/11 11:07 AM

76 PERVASIVE computing www.computer.org/pervasive

SenSor networkS

Using the tag data and the compass,
the system determines the user’s pose,
and the user can see the virtual sheep
on the table. As the user approaches
the table, he or she enters the tracking
area of the high-performance infrared
tracking system (detected by the UWB
tracker), which automatically connects
to the mobile setup.

Figure 6c shows the SRG of the setup.
The edges connecting the mobile setup
and the hallway or lab might be unavail-
able, depending on the user’s locale.

The software system used in the sce-
nario consists of a Ubitrack server and
a set of clients, which together provide
the information for the SRG and dy-
namically add or remove information
derived from the tracking context. For
the static parts of the hallway and lab,
two world clients add the relationships
between the different stationary track-
ing systems and the rooms to the global
SRG. These clients also add the virtual
object nodes, which contain the URL
of associated 3D models for rendering.

The mobile client sends the SRG de-
scribing the mobile setup to the server
at startup. The setup includes a camera,
IMU, UWB emitter, and infrared target
as well as the calibrated relationships
between them. Because the mobile cli-
ent contains the rendering application,
it also sends a query for the 6DOF pose
of all renderable objects in the current
room relative to the camera coordinate
frame. Another query provides the
square marker tracking with the list of
available markers in the room.

Figure 7. Results of the example scenario. (a) One of the generated dataflow graphs and (b) some captured video frames as seen
by the mobile AR user.

(b)

(a)

tempSubgraph1016
CCamera2XSens

tempSubgraph1013
Marker2XSensWorldStatic

tempSubgraph1000
MarkerVisibility

tempSubgraph1014
DsvlCamera1

tempSubgraph1017
XSens

tempSubgraph1011
SPArtWorld2Marker tempSubgraph1010

SLabVis

tempSubgraph1008
SSchrankOcclusion AB

tempSubgraph1006
SHallwayVis

AB

Output

Output

Output

AB

AC

Intrinsics

ErrorPose

Output

Image 1 query2000
BackgroundImage

CameraIntrinsics

Image

visibility

query2001
RendererIntrinsics

InInverseRotationVelocity

InPose
patternMarkerTrackerFull2021

patternPoseKalmanFilterPush2022

pattern04CastErrorPose2PosePull2053

pattern05PosePullMultiplication2018

pattern05PosePullMultiplication2093

pattern05PosePullMultiplication2095
pattern05PosePullMultiplication2095

pattern05PosePullMultiplication2092
pattern05PosePullMultiplication2092

pattern05PosePullMultiplication2093

pattern05PosePullMultiplication2018

pattern04CastErrorPose2PosePull2053

pattern05PosePullInversion2003 BAAB

AB

AB

AB
PullInput

query2003
X3DQueryHallwayVis

query2006
X3DQueryLabVis

query2009
X3DQueryLabVisShadow

query2012
X3DQuerySchrankOcclusion

PullInput

PullInput

PullInput

AB
AC

AC

BC

BC

AB
AC

BC

AB
AC

BC

pattern05PosePullInversion2003

OutPose

Input Output

patternPoseKalmanFilterPush2022

patternMarkerTrackerFull2021

AB

BC

StaticCondition

pattern02RotationVelocityPullPushTransformation2000
pattern02RotationVelocityPullPushTransformation2000

AB

Intrinsics

RotationVelocity

PC-10-03-Pustka.indd 76 6/24/11 11:07 AM

JULY–SEPTEMBER 2011 PERVASIVE computing 77

The overhead tracking system is rep-
resented by another client that runs on
a stationary computer. It adds detected
people as anonymous objects with tem-
porary IDs to the server’s SRG. The
data association between the overhead
tracking and the mobile setup is done
by a separate identity management
client, which receives the positions of
anonymous and candidate objects in
the hallway from the Ubitrack system.

Inside the lab, the UWB client adds
detected UWB emitters to the SRG and
provides their positions to the data-
flow network. Because these emitters
have unique IDs, they can be directly
associated with other clients’ objects.
Locale containment for the lab and the
infrared tracker is handled by a locale

manager running on a computer in
the lab.

Figure 7 shows an example of the
generated DFGs and some captured
video frames from the view of the mo-
bile AR user.

O ur system architecture
fulfills the exacting per-
formance requirements
necessary for immersion

in an AR world, while simultaneously
extending the bounds within which
uses can experience AR environments,
thus bridging the divide between the
pervasive computing and AR worlds.

Ubitrack differs in several aspects
from current ubicomp approaches such

as the location stack.5 In Ubitrack,
all sensor measurements are mod-
eled as (relative) spatial relationships
between two arbitrary coordinate
systems. Therefore, basic coordinate
system transformations are handled
at the same conceptual layer as more
advanced sensor fusion algorithms. In
fact, transformations are necessary to
enable fusion and not just a convenience
function for application programmers.

On the architectural side, Ubitrack
maintains a strict separation between
configuration and runtime layers. All
processing that involves inspection of
measurements (such as ID assignment)
must be done by specialized clients at
the runtime layer that in turn reconfig-
ure the configuration layer’s SRG.

Daniel Pustka is a research and development
engineer at Advanced Realtime Tracking (A.R.T.).
His research interests include sensor fusion,
multisensor registration, and the convergence
of augmented reality and ubiquitous comput-
ing. Pustka has a diploma in computer science
from the Technical University of Munich, where
he performed the research reported here. He is a
member of IEEE. Contact him at daniel.pustka@
ar-tracking.de.

Manuel Huber is a research assistant and PhD
student in the Augmented Reality Group at the
Technical University of Munich. His research
interests include augmented reality, multisen-
sor systems, and RFID-based localization. Huber
has a diploma in computer science from the
Technical University of Munich. He is a member
of the ACM, IEEE, and the German Society for
Computer Science (Gesellschaft für Informatik).
Contact him at huberma@in.tum.de.

Christian Waechter is a research assistant in the
Augmented Reality Group at the Technical Uni-
versity of Munich. His research interests include
people tracking, multisensor environments, and
ubiquitous tracking. Waechter has a diploma in
computer science from the Technical University
of Munich. He is a member of IEEE. Contact him
at waechter@in.tum.de.

florian Echtler is a postdoctoral researcher at
the Munich University of Applied Sciences. His
research interests include touch-based user inter-
faces and augmented reality. Echtler has a PhD in
computer science from the Technical University
of Munich, where he performed the research
reported here. He is a member of the ACM and
the German Society for Computer Science
(Gesellschaft für Informatik). Contact him at
echtler@in.tum.de.

Peter Keitler is co-founder of Extend3D (www.
extend3d.com), a company offering products and
services in the field of industrial augmented reality.
He was formerly a research assistant in the Augmented
Reality Group at the Technical University of Munich.
Keitler has a PhD in computer science from the Tech-
nical University of Munich. Contact him at peter.
keitler@extend3d.de.

Gudrun Klinker is a professor of computer science
at the Technical University of Munich. Her research
interests include approaches to ubiquitous aug-
mented reality that lend themselves to realistic in-
dustrial applications. Klinker has a PhD in computer
science from Carnegie Mellon University. Contact
her at klinker@in.tum.de.

Joseph newman is a senior software engineer at
Ubisense. His research interest lies in the intersection
of ubiquitous computing and mixed reality, espe-
cially with regard to mobility. Newman has a PhD in
ubiquitous tracking for distributed mixed-reality en-
vironments from the Graz University of Technology,
where he performed the research reported here.
Contact him at joe.newman@ubisense.net.

Dieter Schmalstieg is a full professor of virtual real-
ity and computer graphics at the Graz University
of Technology, where he directs the Studierstube
research project on augmented reality. His research
interests include augmented reality, virtual reality,
real-time graphics, 3D user interfaces, and ubiqui-
tous computing. Schmalstieg has a PhD in computer
science from Vienna University of Technology.
Contact him at schmalstieg@tugraz.at.

the AUThORS

PC-10-03-Pustka.indd 77 6/24/11 11:07 AM

78 PERVASIVE computing www.computer.org/pervasive

SenSor networkS

UTQL provides a common standard
that lets clients describe previously
unknown sensors and environments
and express the relationships in which
they are interested. Sensor data is dy-
namically fused and communicated
to clients in a peer-to-peer fashion via
a dataflow network. The emergent
structure of this network depends on
the behavior of clients implemented as
reusable extensible and largely decen-
tralized components.

ACkNOWleDGMeNTS
This work was supported by the Bayerische
Forschungsstiftung (project TrackFrame, AZ-653-05)
and the Presenccia Integrated Project funded

under the European Sixth Framework Program,
Future and Emerging Technologies (FET)
(contract number 27731).

ReFeReNCeS
 1. D. Pustka et al., “Spatial Relationship

Patterns: Elements of Reusable Track-
ing and Calibration Systems,” Proc.
IEEE Int’l Symp. Mixed and Augmented
Reality (ISMAR), IEEE CS Press, 2006,
pp. 88–97.

 2. R.Y. Tsai and R.K. Lenz, “A New Tech-
nique for Fully Autonomous and Efficient
3D Robotics Hand/Eye Calibration,”
IEEE Trans. Robotics and Automation,
vol. 5, no. 3, 1989, pp. 345–358.

 3. J. Newman, “Ubiquitous Tracking
for Augmented Reality,” Proc. IEEE

Int’l Symp. Mixed and Augmented
Reality (ISMAR), IEEE CS Press, 2004,
pp. 192–201.

 4. J. Hightower, B. Brumitt, and G.
Borriello, “The Location Stack: A Lay-
ered Model for Location in Ubiquitous
Computing,” Proc. 4th IEEE Workshop
Mobile Computing Systems and Appli-
cations (WMCSA), IEEE CS Press, 2002,
pp. 22–28.

 5. P. Keitler et al., “Management of Tracking
for Mixed and Augmented Reality Sys-
tems,” The Engineering of Mixed Real-
ity, E. Dubois, P. Gray, and L. Nigay, eds.,
Springer, 2009, pp. 251–273.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

PC-10-03-Pustka.indd 78 6/24/11 11:07 AM

JULY–SEPTEMBER 2011 PERVASIVE computing 79

PC-10-03-Pustka.indd 79 6/24/11 11:07 AM

