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S e n S o r  n e t w o r k S

Automatic Configuration 
of Pervasive Sensor 
networks for 
Augmented reality

M ost virtual reality (VR) and 
augmented reality (AR) 
systems are constrained to 
laboratories by the limited 
range of a single, expensive 

six degrees of freedom (6DOF) tracking system. 
Diverse low-cost electronics and sensors deployed 
in a ubiquitous manner could allow AR applica-
tions to cast off their shackles and roam through-
out much larger environments. Ultimately, we 
can best realize this goal, not by extending the 
range of a single tracker, but by dynamically 

and automatically incorporat-
ing the heterogeneous sensors 
we anticipate will pervade the 
environment in the future.

AR and VR applications  
require a high update rate and 
low latency, so communicating 
tracking information requires 
a fast, highly optimized system 
with a direct network connec-
tion from sources of tracking 
data (sensors) to sinks (appli-
cations). In contrast, informa-
tion involving the availability 

of sensors, objects, and users, and the associated 
topological considerations (for example, where 

the user is or which source should be connected 
to which sink) occurs at much lower frequencies 
but requires the oversight of a complex problem 
domain potentially involving numerous entities.

In general terms, a middleware architecture 
for location sensing in distributed and heteroge-
neous environments should support several key 
requirements:

•	 device abstraction enabling portability of ap-
plications between families of similar devices; 

•	 network transparency allowing access to de-
vice data independent of the device’s physical 
connection;

•	 flexible processing of data from multiple de-
vices delivered in a form that the application 
can use (for example by filtering, fusion, cali-
bration, or registration);

•	 architectural support for established trans-
formation, sensor fusion, and calibration 
algorithms;

•	 efficient processing and transport of tracking 
data for time-critical AR applications; and

•	 dynamic reconfiguration of the sensor data 
flow.

In AR and VR applications, dataflow networks 
have proven useful for efficient device abstraction  
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and network transparency (see the  
“Related Work in Ubiquitous Tracking”  
sidebar). However, to deliver a continu-
ous stream of tracking data, these net-
works must be manually configured for 
every tracking situation.

The ubiquitous computing (ubicomp) 
community has developed several ap-
proaches that incorporate dynamic and 
heterogeneous wide-area sensor net-
works (see the sidebar). However, these 
approaches primarily consider low-fre-
quency data. Our Ubiquitous Tracking 
(Ubitrack) system combines the perfor-
mance advantage of AR and VR data-
flow networks with the flexibility and 
more sophisticated reasoning typically 
found in ubicomp systems to support 
distributed access to an array of sensing 
technologies.

System overview
We propose a two-layered approach to 
distributed tracking for AR/VR appli-
cations: a configuration layer, respon-
sible for low-frequency events, sets up 
the runtime layer, which handles the 
high-frequency events. The configura-
tion layer stores structural information 

concerning the physical environment 
and technical infrastructure in a spa-
tial relationship graph (SRG) and mines 
it for the configuration information the 
runtime layer needs. The runtime layer 
polls the sensors and transforms, fuses, 
and delivers the sensor data through a 
distributed dataflow network.

Figure 1 shows the architecture’s  
basic components and the most relevant 
communication channels. The design’s 
core idea is to separate the configura-
tion of data producers and consumers 
from the actual production and con-
sumption of sensor data. This separa-
tion permits the relatively resource- 
intensive coordination process to run on 
the server, while clients communicate 
directly with one another according to 
the low-latency requirements of AR ap-
plications. For performance reasons, 
this approach uses a centrally coordi-
nated peer-to-peer architecture rather 
than a pure client-server solution.

Ubitrack Server
The Ubitrack server is the system’s cen-
tral component, maintaining a data-
base of all coordinate frames, sensors,  

and tracked objects as an SRG. The 
SRG, although initially empty, con-
tains the aggregated spatial relation-
ships specified by clients and thus 
contains complete knowledge of the 
tracking infrastructure’s topology. It 
doesn’t, however, contain actual sen-
sor measurements.

Clients can query the server about 
parts of the SRG, including spatial rela-
tionships that can’t be measured directly 
but can only be inferred using spatial  
relationship patterns.1 The server con-
tinuously matches the SRG against reg-
istered client queries. If it finds a match, 
it generates a data-flow network de-
scription, which it sends to the client. 
During this process, the server can also 
order a client to construct a dataflow 
network in support of other clients by 
processing tracking data and transmit-
ting them over the network.

Ubitrack Client
Ubitrack system clients can be sen-
sors, output devices, and other human- 
computer interaction components as 
well as mixed forms, such as software 
agents representing virtual characters 

Figure 1. Ubitrack architecture overview. The Ubitrack server coordinates clients that directly exchange sensor data with low 
latency and apply transformation, calibration, and sensor fusion algorithms as instructed by the server.
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that both react to the environment and 
provide information about their loca-
tion in space. 

To keep the interface for application 
programmers minimal, the client-
side network communication is en-
capsulated in the Ubitrack client 
library. It supports interaction with 
the Ubitrack system at various degrees 
of complexity, ranging from simple 
“Where is object A?” queries to persistent 
requests for tracking data of all objects 
matching a given predicate with the 
additional specification of desired 
tracking quality and base coordinate  
frames.

Application
A developer writes an application con-
forming to interfaces in the Ubitrack 
client library. Using this interface, the 
application becomes part of the data-
flow network. The application retrieves 
information using callback nodes in the 
data flow and can pass information into 
the data flow using call-forward nodes.

Dataflow network 
The dataflow network is formed by 
jointly executed processes run by the cli-
ents. It retrieves, processes, transmits, 
and delivers the actual sensor data.  
The data flow’s reconfiguration is  

triggered by the Ubitrack server, but it’s 
interpreted and executed by the Ubi-
track client library.

Spatial relationship Graphs
To enable the automated analysis and 
synthesis of complex tracking scena-
rios, a formal description of the situation  
is necessary. Inspired by the informal 
coordinate frame drawings frequently 
found in robotics papers (such as that by 
R.Y. Tsai and R.K. Lenz2), we proposed 
the use of SRGs.3 The graph’s nodes 
represent the coordinate frames of real 
or virtual objects, whereas the directed 
edges represent the spatial relationships 

T he Ubitrack approach incorporates results from several 

research areas.

Augmented and Virtual Reality
Distributed VR applications have traditionally relied on  

application-level rather than device-level distribution of events, 

for example, through distributed scene graphs.1,2 This might 

have been a more straightforward solution for connecting dis-

tributed VR sites with static physical configuration, but it doesn’t 

address the need for dynamic reconfiguration at runtime.

AR applications, especially those for mobile users, require 

coverage of larger physical areas as well as greater flexibility in 

the type of supported devices. Specifically, fusion of hetero-

geneous sensors is used both to improve tracking quality and 

cover larger areas.3 Gudrun Klinker and her colleagues first 

postulated distributed tracking concepts necessary to propel 

AR beyond the confines of the laboratory into serious industrial 

settings.4

In AR and VR applications, dataflow networks processing high-

frequency streams of sensor data have proven to be a useful ap-

proach for device abstraction. Two prominent examples are the 

Virtual Reality Peripheral Network (VRPN) 5 and OpenTracker.6 

The Ubitrack framework automatically computes suitable data-

flow graphs given an abstract semantic representation of the 

world in form of an spatial relationship graph (SRG).

In recent years, researchers have made significant progress in 

the development of optical natural feature-based self-localization 

systems,7 which don’t rely on technical infrastructure. Therefore, 

the use of middleware might seem unnecessary for such systems. 

However, to realize a meaningful pervasive AR application, com-

mon coordinate frames must be established and positions of  

objects and features exchanged. In addition, access to other  

sensors can improve robustness and accuracy.

Ubiquitous Computing
The use of heterogeneous sensors and context-aware computing 

is much more common in the ubicomp area than in AR. Several 

ubicomp systems deal with wide-area sensor networks and fed-

erated sensor data models, such as Nexus,8 QoSDream,9 and the 

context toolkit.10 However, these approaches primarily consider 

low-bandwidth communication. Therefore, they aren’t directly 

applicable to AR’s real-time and low-latency requirements.

Location models for ubicomp are frequently described in 

terms of Hightower’s location stack.11 The Ubitrack system 

mostly covers the functionality of the measurement, fusion, and 

arrangement layers. However, because we separate configura-

tion and runtime layers, a straightforward mapping of individual 

Ubitrack components onto the location stack layers is impossible. 

The EasyLiving Geometric Model used graph models to repre-

sent different coordinate systems.12 However, because it used un-

directed (rather than directed) graph edges and a simple graph 

search (rather than spatial relationship patterns), this approach is 

less powerful than the Ubitrack framework.

Computer Vision and Robotics
The SRG concept was heavily inspired by the informal coordinate 

frame drawings frequently found in robotics papers.13 Further-

more, robotics has developed a rich collection of algorithms for 

alignment and fusion in multisensor systems. Our development 

of the spatial relationship pattern framework was driven by the 

desire to make these algorithms available to mobile AR and VR 

setups, which our first Ubitrack system didn’t support.

related work in Ubiquitous tracking
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between these objects. Thus, in the case 
of two 3D coordinate frames, an edge 
might describe a transformation with 
6DOF, three for position and three for 
orientation. This is the most common 
case for AR tracking setups, although 
other edge types are equally important. 
The graph contains a separate edge for 
each relationship. It can thus contain 
multiple edges between the same pair of 
nodes—for example, if multiple inde-
pendent trackers are tracking the same 
objects. Furthermore, both nodes and 
edges have a set of attributes describing  
important characteristics, such as an 
object’s name or the measurement data 

type of an edge (6DOF pose, 3D posi-
tion, and so on).

Although the SRG describes the 
layout of a tracking environment in  
detail, an application doesn’t immedi-
ately benefit from access to the SRG. 
The application needs the relevant data 
from the sensors rather than data de-
scribing the sensors. To obtain this 
data, the Ubitrack server provides the 
application with an abstract dataflow 
graph (DFG), which the application 
instantiates into a concrete dataflow 
network. The DFG is a directed graph 
with nodes representing computa-
tional units (such as matrix inversion or  

multiplication) and edges representing 
the flow of tracking data through this 
graph. Sources in a DFG generally rep-
resent sources of tracking data, whereas 
sinks mostly correspond to interfaces to 
other parts of the application. 

Spatial relationship Patterns
We use spatial relationship patterns to 
infer suitable DFGs from an SRG repre-
sentation. A spatial relationship pattern 
identifies parts of the overall SRG for 
which a known algorithm exists. The 
corresponding dataflow component 
executes the algorithm and provides 
the result, again as an edge in the SRG.  

Semantic Web and Graph Rewriting
An interesting approach to the inference of context from sen-

sor data is the use of Semantic Web technologies (ontologies), 

such as in the Cobra project.14 This kind of system description 

has some similarities to our SRG approach in that ontologies can 

evaluate complex relationships between entities.

In the model-driven engineering field, researchers have in-

vestigated the automatic analysis of model diagrams. This has 

resulted in graph transformation systems, such as Progres,15 

which are used to transform, simulate, and verify UML models 

and similar diagrams. Although the graph transformation rules 

used there are more complex than spatial relationship pat-

terns, our system implementation profits from the results of this 

research.
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We apply this technique recursively to 
further identify solvable subproblems 
until a solution for all required data-
flow elements is found.

Such patterns define the signature 
of an algorithm for solving a specific 
problem in a tracking setup. These  
algorithms have as input a set of mea-
surement edges, defined by the prob-
lem, and return a set of measurement 
edges that is part of the solution. Spatial 
relationship patterns don’t merely de-
fine the type of arguments and return 
values; they also impose restrictions 
on the geometric relationship between 
them. Hence, a pattern has two types of 
edges: input edges required in the SRG 
before a pattern can be applied (drawn 
as solid lines) and output edges added 
by a pattern (drawn as dashed lines). In-
puts edges can be further restricted by 
specifying predicates over the attributes 
of the SRG edges.

Figure 2 shows the two basic spatial 
relationship patterns, which sufficiently 
describe many runtime setups (after 
calibration). The basic patterns create 
an SRG’s transitive reflexive closure:

•	 Inversion. Edges in an SRG are di-
rected and can be inverted, depending  
on their type. If the transformation is 

represented by a matrix, this simply 
gives the inverse matrix.

•	Concatenation. The most common 
way to compute the transformation 
on an unknown edge is by concatena-
tion of subsequent edges, that is, by 
multiplying the transformations.

Consider a simple lab-based AR ap-
plication where a single high-precision 
tracker tracks both a mobile display 
and a tangible object to be augmented 
(Figures 2c and 2d). In this case, an in-
version pattern (Figure 2e) would be 
used to change the reference coordinate 
frame from the tracker to the display, 
followed by a concatenation (Figure 2f) 
that computes the object’s location rela-
tive to the display. (You can find more 
complex patterns that describe sensor 
fusion and calibration methods from 
robotics and computer vision in earlier 
research.1)

Sensor Synchronization
Most algorithms with multiple input 
edges, such as concatenation, require 
that measurements on all their inputs 
are synchronized to produce correct 
results. Our system ensures this by  
choosing one sensor as the time re-
ference. The system synchronizes the  

measurements of other sensors by in-
serting interpolation components that 
compute results for the reference sen-
sor’s time stamps.

In the pattern framework, we attri-
bute edges with the type of interface 
that’s used for communication. Push 
edges provide measurements whenever 
they’re available, whereas pull edges 
can be queried for a given time stamp. 
For correct synchronization, a pattern 
can have at most one push input that 
provides the reference timing. When 
combining multiple push sensors, the 
other inputs must be converted from 
push to pull by inserting an interpola-
tion pattern.

Figure 3 shows the different vari-
ations of the concatenation pattern re-
sulting from this push-pull expansion, 
together with the interpolation pattern. 

Using Patterns to Create  
Dataflow networks
The procedure that results in a data-
flow network suitable for an appli-
cation client’s needs can roughly be  
divided into several steps.

Client request
The protocol we used to exchange in-
formation between servers and clients is 

Figure 2. The basic spatial relationship patterns (a) inversion and (b) concatenation form the reflective and transitive closure of 
a spatial relationship graph, as shown in the examples: (c) example scenario, (d) spatial relationship graph (SRG), (e) inversion 
application, and (f) concatenation application.
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an XML dialect called Ubitrack Query 
Language (UTQL). The client starts the 
communication by sending a request to 
the server, which contains descriptions 
of sensors, processing capabilities, and 
queries for particular spatial relation-
ships. All this is expressed in the form 
of spatial relationship patterns, which 
have only outputs (sensors), only inputs 
(queries), or both (processing patterns).

Depending on the kind of patterns 
transmitted, we can distinguish be-
tween sensor, application, and process-
ing clients. However, mixed forms are 
also frequent, such as the mobile setup 
presented later. Because each client can 
transmit a different set of patterns, the 
system supports clients with different 
processing capabilities. Clients can add 
or remove patterns from the server at 
any time, which triggers a recomputa-
tion of the DFG.

Pattern Application
The server first creates an initial SRG by 
adding all the clients’ sensor patterns. 
On this SRG, it systematically applies 
processing patterns until solutions to all 
requests are found (or the search fails). 
This search for patterns can be split into 
a detection and control problem. Detec-
tion of all instances of a given pattern 
(subgraph isomorphism) is NP-complete 
in the general case, but we can apply 
some simple heuristics and cut-off crite-
ria to quickly yield the relevant results. 
For example, new edges are only added 
if they don’t provide the same informa-
tion as existing edges, only derived in a 
different order. The control mechanism 
is bootstrapped by the detection and 
aims to apply patterns systematically 
toward a given goal (a client’s request). 
The currently implemented strategies 
are simple and apply a combination of 
known relevant patterns.

Dataflow Construction
Constructing the DFG from a sequence 
of located pattern instances is straight-
forward. All edges in the initial SRG 
are associated with a tracking compo-
nent or some other service (such as a 

database) in the DFG that provides the 
initially unprocessed measurements. 
Whenever a pattern is applied to the 
SRG, it creates a new algorithmic com-
ponent in the DFG. This component 
provides new outputs, which are asso-
ciated with the new SRG edges, while 
the component’s inputs are connected 
to the components associated with the 
input edges of the patterns. This is re-
peated for all pattern applications until 
the desired measurement is available at 
the end of the DFG.

To support network transport of 
measurements with minimal latency, 
the tracking data must be sent directly 
from one client to another. Therefore, 
the server splits a global dataflow de-
scription into client-specific parts and 
integrates network sources and sinks. 
This results in distributed DFGs where 
several clients collaborate to satisfy a 
specific client’s request.

Dataflow Instantiation
When the server has computed a suit-
able DFG in response to a client’s query, 
it sends UTQL messages to one or more 
clients, requesting that they instanti-
ate and connect the required dataflow 
components corresponding to the ap-
plied patterns. 

Dynamic reconfiguration  
at runtime
The methods we’ve described provide 
the necessary formal framework to  

derive optimal dataflow configura-
tions for AR applications, given a 
particular sensor configuration. For  
configuring static sensor arrangements, 
this can help in setting up an AR system 
because specifying an SRG is easier and 
less error-prone than manually config-
uring a dataflow configuration. Using 
a graphical SRG editor,4 members of 
our group implemented complex multi-
sensor calibration tasks within a few 
minutes.

In a ubicomp scenario where mobile 
systems move between tracking areas 
covered by different sensors, mecha-
nisms are necessary to reconfigure 
the SRG based on sensor availability 
or region containment. These recon-
figurations are generally triggered by 
analysis of the actual sensor data. As 
in our framework, the server coordi-
nates the clients, but it doesn’t receive 
actual tracking data. Such function-
ality must be implemented by special  
clients.

transition Between Locales
To ensure system scalability, we limit 
queries for available objects, such as 
persons, sensors, or fiducials, to a rea-
sonable area of interest, a locale. In 
the SRG formalism, we treat locales as 
nodes. Containment in a locale is ex-
pressed as an edge of type inLocale, which 
is drawn from the locale node to the ob-
ject in question. This lets us model que-
ries for objects as spatial relationship  

Figure 3. Pattern extensions for sensor synchronization: (a) push-pull, (b) pull-push, 
(c) pull, and (d) interpolation. Push inputs provide the time reference to which the 
pull inputs are synchronized. Push edges can be converted to pull by instantiating an 
interpolation pattern.
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patterns. In the following example, 
we look for objects of type marker that 
are contained in the same locale as the  
camera1 node, shown in Figure 4.

Using this formalism, an object can 
be in multiple locales simultaneously, 
and there’s no need for a hierarchical re-
lationship between locales. In addition, 
locales need not necessarily correspond 
to physical entities, such as rooms, but 
they could also express abstract con-
cepts such as a social network.

A dedicated locale manager adds the 
locale edges at runtime. In our system, 
we implemented a general-purpose lo-
cale manager that can be configured 
using XML to listen for events from a 
particular sensor and insert or remove 
locale edges when an object enters or 

leaves a particular locale, or when a 
sensor starts to deliver data about an 
object at all. Locales are defined by the 
convex hull of a set of points. Each lo-
cale has a separate manager to enhance 
scalability.

Unlike the sensors used for AR visu-
alization and interaction, sensors that 
are monitored to detect locale contain-
ment don’t need to be extremely precise. 
Therefore, we can use relatively cheap 
technology, such as Wi-Fi or RFID po-
sitioning, for this purpose.

Identity Pattern for  
Assigning Anonymous Sensors
Most sensors typically used in AR set-
ups can uniquely identify the objects 
they’re tracking. Other (cheap) sensors 
don’t offer this feature, such as a sur-
veillance camera combined with a sim-
ple blob-detection algorithm. In terms 
of the SRG, we model these objects as 
nodes with a special anonymous attri-
bute and a temporary ID, assigned by 
the anonymous sensor client. In a situ-
ation where an ID-sensing tracker de-
tects one of the objects with sufficient 
accuracy, the system can conclude that 
the two objects actually are the same 
by comparing the positions of both 
sensors. In this situation, the ID sen-
sor doesn’t need to provide continuous 
measurements, but a single event, such 
as the read-out of an RFID tag or the 
detection of a marker in a single camera 
image, is sufficient. In the Ubitrack for-
malism, we model this object merging 
by inserting symmetric identity edges 
between the two nodes in the SRG. 
The meaning of an identity edge is that 
each measurement of one object is valid 
for the other object as well. The mea-
surement identity pattern, shown in  
Figure 5, expresses this in the Ubitrack 
formalism.

The actual insertion of identity edges 
is done by a general-purpose identity 
manager, which is configured and in-
stantiated for each anonymous sensor. 
This manager queries the Ubitrack sys-
tem for all anonymous objects of the 
given tracker and a list of candidate 

objects, usually limited to a particular 
locale or type (for example, person). By 
comparing the positions of both anony-
mous and candidate objects, the man-
ager can detect matching objects and 
insert identity edges, which lets the sys-
tem use the anonymous sensor until it 
loses track of the object.

Dynamic Sensor  
Fusion example
To illustrate Ubitrack’s capabilities, we 
describe an example involving dynamic 
fusion of multiple sensors for present-
ing AR objects to a mobile user. The 
user is guided through the hallway to a 
lab, where a virtual sheep is pastured. 
The mobile AR system collaborates 
with several stationary tracking devices 
installed in the environment. Figure 6a 
shows a map of the environment. 

The user carries a tablet PC with  
integrated camera and an inertial mea-
surement unit (IMU) with compass (Inter-
sense InertiaCube), shown in Figure 6b.  
The camera image provides a video see-
through AR view on the screen. The 
camera also detects black-and-white 
fiducial markers and determines their 
pose relative to the camera. For higher 
robustness and accuracy, the results are 
fused with the IMU using a Kalman fil-
ter. The client PC retrieves set of avail-
able markers from the Ubitrack server, 
depending on the current locale.

The mobile user enters the hallway 
in front of the lab. Using the camera, 
the user can track a fiducial marker at 
the hallway entrance. As the user looks 
at the marker, the system registers the 
user’s position.

On the hallway ceiling, an overhead 
tracker with a wide-angle camera de-
tects and tracks people. This overhead 
tracker adds newly detected people as 
anonymous objects to the SRG. How-
ever, the identity manager can identify 
one of them as the user by comparing 
positions reported by the overhead 
camera and the marker tracker.

As the user turns (measured by the 
IMU) and looks down the hallway,  he 
or she can see a sign in front of the lab 

Figure 4. Query pattern resulting in all 
objects of type marker that are contained 
in the same locale as the camera1 node.
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inLocale
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Figure 5. The Measurement identity 
pattern for 3D Pos measurements. It  
can be read as, “measurements of type 
3D Pos valid for any object A are also valid 
for any other object B connected  
to A via an identity edge.” 
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door. Walking down the hallway, the 
user stays tracked by the overhead cam-
era. In front of the lab door, another 
marker lets the user take a look at the 
sign with higher accuracy.

The lab is covered by a commer-
cial Ubisense ultra-wideband (UWB) 

RF location system, providing po-
sition updates with an accuracy of  
approximately 15 centimeters. A UWB-
emitting tag is attached to the mobile 
setup, allowing the PC to be detected 
and uniquely identified. In the cen-
ter of the lab, a working volume of  

approximately 4 × 4 meters is covered 
by a high-precision A.R.T. infrared-
optical tracker. To be tracked by this 
system, the mobile setup includes a set 
of retro-reflective marker balls.

When the user enters the lab, 
the UWB-emitting tag is detected.  

Figure 6. Illustration of the example scenario: (a) a map of the environment, showing the positions of markers, the overhead tracker 
and ultra-wideband and infrared-optical tracking systems, (b) the handheld PC with an integrated camera, inertial measurement 
unit (IMU), ultra-wideband emitter (UWB) and infrared-optical tracking target and (c) the spatial relationship graph (SRG) of the 
setup. (Note: For clarity, this SRG only contains sensor and query edges. Also, we show only the “type” attribute.) 
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Using the tag data and the compass, 
the system determines the user’s pose, 
and the user can see the virtual sheep 
on the table. As the user approaches 
the table, he or she enters the tracking 
area of the high-performance infrared 
tracking system (detected by the UWB 
tracker), which automatically connects 
to the mobile setup.

Figure 6c shows the SRG of the setup. 
The edges connecting the mobile setup 
and the hallway or lab might be unavail-
able, depending on the user’s locale.

The software system used in the sce-
nario consists of a Ubitrack server and 
a set of clients, which together provide 
the information for the SRG and dy-
namically add or remove information 
derived from the tracking context. For 
the static parts of the hallway and lab, 
two world clients add the relationships 
between the different stationary track-
ing systems and the rooms to the global 
SRG. These clients also add the virtual 
object nodes, which contain the URL 
of associated 3D models for rendering. 

The mobile client sends the SRG de-
scribing the mobile setup to the server 
at startup. The setup includes a camera, 
IMU, UWB emitter, and infrared target 
as well as the calibrated relationships 
between them. Because the mobile cli-
ent contains the rendering application, 
it also sends a query for the 6DOF pose 
of all renderable objects in the current 
room relative to the camera coordinate 
frame. Another query provides the 
square marker tracking with the list of 
available markers in the room.

Figure 7. Results of the example scenario. (a) One of the generated dataflow graphs and (b) some captured video frames as seen 
by the mobile AR user.
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The overhead tracking system is rep-
resented by another client that runs on 
a stationary computer. It adds detected 
people as anonymous objects with tem-
porary IDs to the server’s SRG. The 
data association between the overhead 
tracking and the mobile setup is done 
by a separate identity management 
client, which receives the positions of 
anonymous and candidate objects in 
the hallway from the Ubitrack system. 

Inside the lab, the UWB client adds 
detected UWB emitters to the SRG and 
provides their positions to the data-
flow network. Because these emitters 
have unique IDs, they can be directly 
associated with other clients’ objects. 
Locale containment for the lab and the 
infrared tracker is handled by a locale 

manager running on a computer in  
the lab.

Figure 7 shows an example of the 
generated DFGs and some captured 
video frames from the view of the mo-
bile AR user.

O ur system architecture  
fulfills the exacting per-
formance requirements 
necessary for immersion 

in an AR world, while simultaneously 
extending the bounds within which 
uses can experience AR environments, 
thus bridging the divide between the 
pervasive computing and AR worlds.

Ubitrack differs in several aspects 
from current ubicomp approaches such 

as the location stack.5 In Ubitrack, 
all sensor measurements are mod-
eled as (relative) spatial relationships 
between two arbitrary coordinate 
systems. Therefore, basic coordinate 
system transformations are handled 
at the same conceptual layer as more 
advanced sensor fusion algorithms. In 
fact, transformations are necessary to 
enable fusion and not just a convenience 
function for application programmers. 

On the architectural side, Ubitrack 
maintains a strict separation between 
configuration and runtime layers. All 
processing that involves inspection of 
measurements (such as ID assignment) 
must be done by specialized clients at 
the runtime layer that in turn reconfig-
ure the configuration layer’s SRG.
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UTQL provides a common standard 
that lets clients describe previously 
unknown sensors and environments 
and express the relationships in which 
they are interested. Sensor data is dy-
namically fused and communicated 
to clients in a peer-to-peer fashion via 
a dataflow network. The emergent 
structure of this network depends on 
the behavior of clients implemented as 
reusable extensible and largely decen-
tralized components.
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