
Eurographics Symposium on Parallel Graphics and Visualization (2010), pp. 1–8
J. Ahrens, K. Debattista, and R. Pajarola (Editors)

Multi-Frame Rate Volume Rendering

Stefan Hauswiesner and Denis Kalkofen and Dieter Schmalstieg

Graz University of Technology, Institute for Computer Graphics and Vision

Abstract
This paper presents multi-frame rate volume rendering, an asynchronous approach to parallel volume rendering.
The workload is distributed over multiple GPUs in such a way that the main display device can provide high frame
rates and little latency to user input, while one or multiple backend GPUs asynchronously provide new views.
The latency artifacts inherent to such a solution are minimized by forward image warping. Volume rendering,
especially in medical applications, often involves the visualization of transparent objects. Former multi-frame rate
rendering systems addressed this poorly, because an intermediate representation consisting of a single surface
lacks the ability to preserve motion parallax. The combination of volume raycasting with feature peeling yields an
image-based representation that is simultaneously suitable for high quality reconstruction and for fast rendering
of transparent datasets. Moreover, novel methods for trading excess speed for visual quality are introduced, and
strategies for balancing quality versus speed during runtime are described. A performance evaluation section
provides details on possible application scenarios.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms I.3.1 [Computer Graphics]: Hardware Architecture—Parallel processing

1. Introduction

Modern workstations support multiple GPUs and lend them-
selves to parallel volume rendering approaches. Previous
parallel volume rendering systems have focused on balanced
workloads for maximum utilization of resources. Perfect
load balancing can yield nearly linear speedups in the num-
ber of GPU nodes, but this may still be insufficient for inter-
action with very complex scenes. A recent trend in research
therefore focuses on multi-frame rate rendering [SBW∗07],
which decouples display updates from image generation
into a pipeline with asynchronous communication. The dis-
play update stage can guarantee fast frame rates and nearly
latency-free response to interaction, while one or multiple
GPUs in the backend stage can produce new high quality
images at their own, slower pace.

However, since the slow nodes and the fast node operate
at different frame rates, latency artifacts may arise: objects
drawn by the slow nodes react delayed to user input. The
problem can be reduced by image-based rendering (IBR)
methods, which are able to reconstruct an image seen from
a new camera position using one or more images from pre-
vious camera positions.

Multi-frame rate volume rendering is especially chal-
lenging because of the need for transparent volumetric ob-
jects. When a transparent object moves relative to the cam-
era, its inner structure is revealed by features moving non-
uniformly in screen space. Previous multi-frame rate sys-
tems reconstruct the whole scene as a single surface, which
destroys such a motion parallax perception. Moreover, view-
dependent lighting effects of transparent inner structures are
not possible by shading only a single surface.

The contribution of this paper is a system that combines
multi-frame rate volume rendering with a novel layered ap-
proach to image warping. This combination addresses the
problem of high quality rendering of transparent volumes
with multi-frame rate division of labor. We report on an ef-
ficient and effective layer separation relying on feature peel-
ing and on corresponding shading computations.

Furthermore, we observed that image warping has be-
come a fairly performant task on modern GPUs, thus al-
lowing well-defined raycasting tasks to be performed on the
fast-node GPU in addition to image warping. To make use
of excess rendering time, advanced workload distribution
schemes are introduced, which trade speed for visual quality.
This process can even be driven automatically, which results

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2010)

2 S. Hauswiesner & D. Kalkofen & D. Schmalstieg / Multi-Frame Rate Volume Rendering

in a dynamically optimized quality vs. speed tradeoff dur-
ing runtime. All techniques are evaluated quantitatively with
respect to visual impact and rendering performance.

2. Related work

Volume rendering by raycasting was introduced by [Lev88]
and has remained an active topic of research since, because
of the high complexity of the problem. Recently interactive
volume raycasting has become possible on the GPU, for ex-
ample in [SSKE05] or [KGB∗09], which is the CUDA-based
raycaster used in this work.

Several approaches of parallel volume rendering by dis-
tributing computations to multiple rendering nodes emerged.
Most of these methods can be categorized into three classes:
sort-first, sort-middle and sort-last [MCEF94]. Sort-last sys-
tems with multiple GPUs such as [MMD08] make it easier
to distribute and balance the workload over the render nodes,
but require a lot of memory transfer in the composition stage.
Our system sorts fragments in the compositing stage, and
therefore can be classified as sort-last.

For coping with situations where the computation load ex-
ceeds the interactive rendering power of a parallel system,
but some computations have to be performed with minimum
latency, the concept of multi-frame rate rendering was intro-
duced [SBW∗07]. The speed advantage of multi-frame rate
rendering comes at the price of visual errors: due to the dis-
crepancy between the slow and fast nodes, visual artifacts
may arise, until the scene comes to a rest, i. e., none of
the parts of the scene move relative to one another and the
viewpoint. The error may become intolerable for fast camera
movements.

Image warping [MB95] is a form of image-based render-
ing that allows to extrapolate new views from existing im-
ages with per-pixel depth information. This technique is ca-
pable of reducing the visual errors inherent to multi-frame
rate rendering.

The work in [SvLBF09] and earlier publications of the
group describe a multi-frame rate architecture, which ac-
celerates image warping by using vertex shader programs
for the required scatter operation. It covers the rendering
and communication delay by producing intermediate frames,
which are warped from previous frames. The group reports
on problems with the reconstruction quality, and the tradeoff
between quality and latency that such a system has to make.
However, only non-transparent volume rendering was con-
sidered. [SLRF08] support multi-frame rate volume render-
ing with transparency, but assume a fixed view point. More-
over, no deferred shading step is applied to the volume ren-
dering and workload distribution is less flexible.

Other image-based volume rendering approaches, such as
pixel ray images [SLSM06] or light field representations
[RSTK08] produce richer descriptions of the volume, but

require considerable preprocessing and are less suitable for
frequent bus transfer due to their size.

Fast GPU

CPU

Slow GPU

Volume

Rendering

Device

Memory

Host Memory

Ringbuffer

Downloading Uploading

Reference

Frame Store

Latency

Compensation

User

Interaction

G-Buffers Shading

Screen

Compositing

System Bus

Figure 1: The conceptual architecture of our system. The
task distribution between a slow and a fast node is shown.

3. System overview

From the user’s point of view, our system looks like a sim-
ple model viewer. The camera is able to orbit the model and
move towards the model or away from it, thus enabling zoom
operations. The underlying rendering process is arranged in
a pipeline starting at the slow node or nodes and continu-
ing at the fast node. The GPU nodes of the system are not
required to have equal hardware. Each GPU node executes
CUDA code and is controlled by a separate CPU thread. Re-
sults are always buffered in local GPU memory to allow
asynchronous operation of the pipeline. The slow node re-
trieves the instructions which image to produce as a result
of user interaction (camera change). The fast node is mainly
concerned with latency compensation and image composit-
ing. However, it also processes user input and provides low-
latency visual feedback. The main steps of the pipeline (fig-
ure 1) are:

Raycasting As the frame source of our system, we use a
raycaster implemented in CUDA [KGB∗09], which supports
a large number of volumes, complex translucent and concave
polyhedral objects as well as CSG intersections of volumes
and geometry in any combination. It provides a color, depth
and normal buffer for later stages of the pipeline.

Transfer to fast node Since no direct data link between
GPUs exists, the image produced by the raycaster must first
be downloaded to host memory from the slow node, and
then uploaded to the fast node. The intermediate storage is
process-local heap memory, arranged in a ring buffer, and
therefore can be accessed by all rendering threads. This
shared memory is also used for thread-safe communication

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2010)

S. Hauswiesner & D. Kalkofen & D. Schmalstieg / Multi-Frame Rate Volume Rendering 3

Figure 2: Two different ways of layering a volumetric foot dataset (VIX [Osi09]), showing the first 4 layers and the resulting
image when warped for a rotation of 21 degrees. The left layering approach slices the volume at regular intervals, whereas the
right approach adapts to the features of the dataset.

of job scheduling and flow control in the pipeline. Unfortu-
nately, the data transfer through the host memory can be a
major limitation of performance, especially when the frame
rate of the slow node approaches the frame rate of the fast.
Until a fast inter-GPU link becomes available, multi-frame
rate rendering is therefore only economic for large rendering
problems.

Latency compensation by image warping The reference
frames uploaded to the fast node are stored on the GPU.
From there they can be warped into G-Buffers. Each G-
Buffer stores color, normal and depth. G-Buffers can be pro-
cessed by a number of different operations, for example,
morphological closing. Moreover, the fast node can produce
its own renderings directly into a G-Buffer. Rendering on the
fast node can encompass for example of magic lens effects or
manipulation widgets, and use raycasting or another render-
ing technique. The only condition is that this additional ren-
dering is lightweight and does not slow down the fast node
too much.

Shading To correctly calculate view-dependent lighting in
such a pipeline, the shading step has to be performed after
image warping. The reason for this is that fragments are po-
tentially viewed from a different direction than in the refer-
ence frame.

Compositing The processed buffers are input to the com-
positing step, which sorts all fragments per pixel, blends
them together by accumulating the values from front to back
and finally writes the result to the frame buffer. Compositing
is entirely achieved by CUDA kernels.

4. Layered image warping

Conventional image warping often operates on opaque poly-
gons and therefore only needs one warping operation per
pixel. If the viewpoint is moving, the amount of projected
screen space motion depends on the distance of a fragment.

This effect is called motion parallax. With transparent ob-
jects, it is possible to perceive more than one fragment per
pixel, and therefore a single image warp cannot provide suf-
ficient cues about the inner structure of an object. Moreover,
image warping requires deferred shading to correctly han-
dle view-dependent lighting. A transparent volume cannot
be shaded well by using a single map of normal vectors.

To overcome the most severe limitation of single image
warping, a more detailed representation of the inner structure
of the object is necessary. This structure can be represented
by multiple partial images, each containing a rendering of
a part of the volume, a layer. For a most efficient layered
representation, the elements of the inner structure should be
grouped by distance from the camera, but also by similar
opacity, because opacity is relevant for consistent shading.
For the creation of a suitable representation that addresses
these requirements, we adopted the idea of feature peeling
[MMG07]. Local minima and maxima of smoothed opacity
along the ray are detected and used to separate layers. To
further suppress noise, all layers are required to have at least
10 percent opacity. Separation of connected, highly opaque
regions is avoided, as they usually belong to the same fea-
ture.

Each pixel in a layer image produced by the raycasting of
a volume must be created together with a depth value, so that
it can be used for warping. The depth value should represent
the interval along the ray that was considered for creating the
pixel. The entrance or exit depth along the ray interval would
be simple choices, but frequently fail to capture the main ef-
fect of light attenuation, which may happen somewhere in
the middle of the ray interval. Figure 2 illustrates this obser-
vation. We evaluated two ways of finding this main effect: it
is either located at the point with the maximum opacity af-
ter classification, or at the point with the maximum impact
on the color, which is calculated by the voxel’s opacity mul-
tiplied with the remaining opacity along the ray segment.
We found both approaches viable, with slight advantages for
the maximum color impact method. See figure 3 for such a
layering with depth selection. Local maxima in the discrete

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2010)

4 S. Hauswiesner & D. Kalkofen & D. Schmalstieg / Multi-Frame Rate Volume Rendering

50 100 150 200 250 300 350
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

steps

lo
g
(o

p
a
c
it
y
)

opacity

layer separation

depth value

Figure 3: Ray profile of a ray cast through the head CT
dataset MANIX [Osi09]. On the left side the location of the
ray is shown. The right side visualizes the smoothed opacity
values encountered along the ray, and possible layer sepa-
ration points. The two peaks with high opacity represent the
skull bone.

domain may span several consecutive sample points. In such
cases we select the median of these sample points.

The visual approximation with this approach is better
than with a single layered image warp, because depth cues
are preserved. Figure 4 shows data from a reconstruction
quality measurement. For the MANIX head dataset with a
fairly transparent transfer function, the layered approach
outperforms the single surface approach easily. The VIX foot
dataset (see figure 2) uses an opaque transfer function reveal-
ing the bones: the difference in quality is not as significant,
as there is less inner structure.

Note that layer images can be transferred separately to the
fast node as soon as they are completed, while raycasting
commences. Consequently, more layers reduce the latency
of the slow node as the higher priority layers become avail-
able earlier to the fast node.

However, the feature peeling used to separate layers is a
heuristic and can fail to produce satisfactory results. Mem-
ory for layers must be allocated in advance, which means
that only a fixed number of layers is available. If these layers
are not distributed well inside the volume, the visual quality
is not optimal. Such artifacts can be caused by an insufficient
number of layers, or by an overly sensitive layering heuris-
tic, which “wastes” layers on an over-representation of fea-
tures close to the camera, while distant features are under-
represented as a consequence. See figure 4 for an evaluation.

To correctly calculate view-dependent lighting, the shad-
ing coefficients must not be multiplied with the resulting
color of a fragment before image warping. Instead, a normal
vector is stored for each fragment, and the shading calcu-
lation is performed in a deferred shading step before com-
positing the final image. However, choosing a representative
normal for a ray segment is not trivial, and can only be an
approximation to a conventionally shaded raycasting.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

degrees

a
v
g

.
a

b
s
.

p
ix

e
l
e

rr
o

r

2 layers

3 layers

4 layers

5 layers

6 layers

7 layers

9 layers

2 3 4 5 6 7 8 9 10
20

25

30

35

40

45

50

55

number of layers

F
P

S

framerate

Figure 4: The left plot shows the average pixel error of
the MANIX dataset over an increasing reconstruction angle
for different layer numbers. The right plot shows the frame
rate for these layer numbers at a resolution of 512x512. It
becomes apparent that the benefit of warping more than 6
layers vanishes, whereas the performance degrades linearly.
The bottom row shows the dataset at a rotation of 55 degrees,
with non-layered, 10-times layered and reference images.

During ray traversal, a volume gradient can be computed
at each sampling step, but for deferred shading we can only
use one normal per segment. Possible strategies include se-
lecting the longest gradient, or using transfer function infor-
mation to select the gradient with the highest impact (=opac-
ity) on the ray segment. Following the notion of maximum
visual impact, the gradient vector can be accumulated very
much like the color RGB-vector: by multiplying the current
alpha and the remaining opacity with the normalized gra-
dient, and adding to the result. See figure 5 for evaluation
results that rule out the longest gradient and the gradient at
the opacity maximum.

CT or MRT datasets often suffer from noise in the mea-
sured data, which consequently leads to very noisy gradi-
ents. Choosing the wrong gradient for representing a ray seg-
ment causes strong visual differences to a per-sample shaded
raycasting, as can be seen in the example images of our eval-
uation. The adopted strategy after empirical investigation is
therefore a modified accumulation algorithm, which weights
closer samples along a ray segment even stronger than the
normal accumulation. This behavior can be achieved by tak-
ing the remaining opacity to the third power before accumu-
lation. Since opacity values are defined in the range from 0 to
1, the impact on the resulting gradient falls off very quickly
along the segment. The pixel-error evaluation reveals that
this can indeed be a successful strategy.

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2010)

S. Hauswiesner & D. Kalkofen & D. Schmalstieg / Multi-Frame Rate Volume Rendering 5

0 10 20 30 40 50 60 70 80 90 100
2.5

3

3.5

4

4.5

5

degrees

a
v
g
.
a
b
s
.
p
ix

e
l
e
rr

o
r

1: longest gradient

2: gradient at opacity max.

3: accumulated gradient

4: accumulated w. opacity
3

0 10 20 30 40 50 60 70 80 90
2

2.5

3

3.5

degrees

a
v
g
.
a
b
s
.
p
ix

e
l
e
rr

o
r

1: longest gradient

2: gradient at opacity max.

3: accumulated gradient

4: accumulated w. opacity
3

Figure 5: The figure shows the reconstruction error over an
increasing angle to the reference position with three differ-
ent calculation methods for the fragment normal used by de-
ferred shading for two datasets MANIX (top) and VIX (bot-
tom).

5. Advanced workload distribution schemes

A typical workload distribution in a multi-frame rate system
assigns the raycasting to the slow node, while image warp-
ing, which is used for latency compensation, is performed
on the fast node. The performance of raycasting scales with
viewport resolution and sampling rate, and if either or both
of these factors is small enough, raycasting on modern GPUs
can be acceptably fast. In such a case, the strict assignment to
slow and fast node can be relieved, and visual quality can be
improved by replacing some of the image warping by ray-
casting. This of course reduces the frame rate of the fast
node, so special attention has to be paid to the amount of
workload that is shifted. The latency compensation step of
the system (see figure 1) is extended by raycasting.

Figure 6: Layered separation of raycasting and warping
with number of raycasted layers printed above and result-
ing pixel difference to a fully raycasted reference image.

Typical parallel raycasting algorithms divide the workload
by separation planes either in screen space or object space
(sort-first or sort-last, respectively). When using such a sepa-
ration plane or region to divide forward from backward sam-
pled areas, this approach often leads to a perceivable bound-
ary. This is mainly due to the fact that the deferred shad-
ing from warped images is only an approximation to a per-
sample phong shading. Moreover, these regions do not adapt
well to what is really interesting in a scene: often there are
focus regions, segmentations or magic lenses, which better
describe important scene features. Even if no special region
is present, one can assume that features close to the current
view point are more important and better perceivable than
distant features. To account for these facts, a more flexible
workload distribution has to be found, and sampling algo-
rithms have to be assigned accordingly.

Figure 7: Combination of raycasting (backward sampling,
shown as blue arrows) and forward image warping (shown
as green arrows) on two different GPUs.

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2010)

6 S. Hauswiesner & D. Kalkofen & D. Schmalstieg / Multi-Frame Rate Volume Rendering

5.1. Distribution by depth layer

The distribution by depth layer exploits the observation that
close structures inside a volume dataset typically contribute
more to the final image than distant structures. It is there-
fore beneficial to use the best sampling quality (which in our
case is achieved with raycasting) for the first n depth layers,
and multi-frame rate image warping for the remaining lay-
ers. This implies that raycasting of close layers is performed
by the fast GPU, and raycasting of back layers by the slow
GPU. The number of layers which are raycasted controls
the tradeoff between quality and performance. This process
can even be driven automatically, depending on the current
frame rate and a desired minimum frame rate, and therefore
gives the best quality for a given maximum latency. Our sys-
tem decreases the number of raycasted layers immediately
when the current frame rate falls below the minimum. Like-
wise, it periodically renders the scene with n+ 1 raycasted
layers to check if improved quality is possible. See figure 7
for a schematic view of the process. Figure 8 contains evalu-
ation results, which were obtained from the scene shown in
figure 6.

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

degrees

lo
g
(p

ix
e
l
e
rr

o
r)

10 layers warping

1 layer raycasting, 3 layers warping

2 layers raycasting, 2 layers warping

3 layers raycasting, 1 layer warping

4 layers raycasting

0 1 2 3 4
0

10

20

30

40

50

layers raycasted

F
P

S

Figure 8: Difference error to a reference image during a
rotation of 90 degrees (left). Layered warping is compared
with hybrid raycasted and warped reconstruction. With more
layers raycasted, the reconstruction converges into the ref-
erence image. The right plot shows the frame rate for these
setups.

5.2. Distribution by region of interest

Magic lens applications follow the notion of focus and con-
text, with focus regions being defined by a 2D or 3D shape.
The user indicates the region of interest, so the sampling
quality can be adapted easily: the interior of the magic lens
is raycasted with best quality on the fast GPU, whereas con-
text is established by image warping of frames, which are
produced on a slow GPU.

Segmentations which are common in medical imaging,
behave like fixed 3D magic lenses and therefore also mark
regions of interest. The fact that a segmentation is defined in
object space can be exploited: like in typical sort-last paral-
lel systems, each rendering node only needs to keep its sub-

scene graph in memory. However, this is only feasible if the
regions are static in object space.

Figure 9: Focus and context rendered with raycasting and
image warping respectively in a magic lens setup (left), and
in a segmentation setup (right).

Figure 9 shows these two types in a focus and context
setup. The advantage of this approach is the ability to let the
user decide about the quality/speed tradeoff, which happens
naturally as the focus region is created or moved. However,
this introduces also the disadvantage of not being able to
predict frame rates during a user session.

5.3. Distribution by quality maps

Another way of driving the sampling scheme is based on ac-
tual image quality. For example, [YNXC03] use the disoc-
clusion of a reprojected iso-surface to detect holes in the out-
put image, and apply raycasting to these pixels. Similarly, we
can use the proxy geometry of the volume dataset along with
information on the content of the layers of the volume to pro-
duce a map with relative pixel quality. Badly reconstructed
pixels, which mostly come from disocclusions or undersam-
pling during image warping, can be discarded and replaced
by a high-quality raycasting. Figure 10 shows a scene aug-
mented by its quality map for the current view and the result
after raycasting the disocclusions.

Figure 10: Disocclusions of the image warping process (a)
are detected to form a quality map (b). Low quality regions
are filled by raycasting (c). The quality map parameter m is
set to 1 in this example.

To create such a quality map, the fast node executes the
following tasks: first, use image warping to reconstruct m
layers. Then project the volume’s bounding geometry to the
screen. Iterate through the closest m layers for each pixel that
is covered by the projection. If layers are empty then raycast
this pixel.

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2010)

S. Hauswiesner & D. Kalkofen & D. Schmalstieg / Multi-Frame Rate Volume Rendering 7

In this way, all pixels which are disoccluded to more than
a certain extent are replaced by correct, raycasted pixels. The
parameter m defines how many empty layers are required
per pixel to classify the pixel as disoccluded. Note that in
a layered image warping system, completely empty pixels
are rare, but holes in the foremost layers commonly happen
and disocclude content from the back layers, which results
in unsatisfying reconstructions.

The performance of such an approach scales with the
amount of frame-to-frame coherence: large viewpoint mo-
tion induces more raycasting and thus lower performance,
whereas slow and steady motion allows for using more of
the warped fragments. The system is therefore able to pre-
vent strong disocclusions, but performance is not easily pre-
dictable: the user’s input influences the sampling behavior
of the system. Nevertheless, the m parameter can be used to
roughly steer the quality vs. performance tradeoff. Datasets,
which are relatively fast to render via raycasting, should re-
ceive a lower m in order to switch to raycasting more fre-
quently.

6. Performance evaluation

When the fast node is entirely based on image-based ren-
dering, its performance directly scales with the screen reso-
lution. Each pixel has to be transferred, warped and shaded
several times, depending on the number of layers.

0 5 10 15 20
20

40

60

80

100

120

140

sampling rate

F
P

S

dual GPU fps

MFR fps
Nyquist sampling

0 5 10 15 20
0

10

20

30

40

50

60

70

sampling rate

F
P

S

dual GPU fps

MFR fps

Nyquist sampling

Figure 11: Performance of the two datasets dice (left) and
MANIX (right) at different sampling rates, ranging from 6
times undersampling to 6 times oversampling. The plot com-
pares a multi-frame rate system versus an assumed parallel
approach with a 512x512 viewport resolution.

Figure 11 shows the results of a performance test with
two datasets. We compare a single-frame rate dual GPU ap-
proach, which we assume to be twice as fast as the single
GPU raycaster in our system, and our multi-frame rate sys-
tem. For reconstruction we use 3 layers for the dice (643

voxels), and 7 layers for the MANIX dataset (256x256x230
voxels), both with deferred shading. The frame rate is mea-
sured for different sampling rates, from six times undersam-
pling to six times oversampling compared to Nyquist rate
sampling, thereby covering a wide range of workloads.

The results show that if the complexity of the volume
rendering exceeds a break even point, it is beneficial to
use multi-frame rate rendering. As expected, the fast node’s

frame rate stays stable, independent of the sampling rate.
In fact, due to the frequency of bus transfer, the fast node’s
performance increases slightly when the slow node’s perfor-
mance degrades. At the Nyquist sampling rate, the MANIX
dataset is better handled with multi-frame rate rendering,
whereas the simple dice dataset is not. The opaque surface
plot in figure 12 shows the MANIX dataset under a vary-
ing pixel resolution and sampling rate. For most of the input
range, multi-frame rate again proves to be superior. More-
over, the frame rate is more stable than with sort-first.

7. Dynamic single and multi-frame rate rendering

When the raycasting task becomes simple enough, however,
multi-frame rate rendering may become obsolete or even un-
satisfying, and the rendering system should fully converge
into single-frame rate multi-GPU raycasting, as conventional
sort-first or sort-last parallel volume raycasting avoids image
warping artifacts entirely.

With decreasing raycasting complexity, the dynamic layer
distribution approach mentioned in section 5.1 would even-
tually migrate all layers onto the fast node to be raycasted
there, which follows the notion of converging into a single-
frame rate rendering. Similarly, the quality map approach of
section 5.3 converges into full raycasting with a m setting of
0. But this also renders additional GPUs in the system use-
less, as the raycasting is then entirely performed by the fast
node.

Figure 12: Performance of the MANIX dataset for different
resolutions and sampling rates with multi-frame rate render-
ing (opaque mesh) and conventional sort-first parallel ray-
casting (wireframe mesh).

To counter this problem, the system has to switch to con-
ventional sort-first or sort-last parallel raycasting when ap-
propriate, thus utilizing all available resources. Raycasting
performance depends on a variety of parameters, for exam-
ple the sampling rate, zoom level, occlusion, dataset size and
structure or transfer function. Depending on the application,

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2010)

8 S. Hauswiesner & D. Kalkofen & D. Schmalstieg / Multi-Frame Rate Volume Rendering

some of them can change during runtime. For these parame-
ters, performance data can be collected for their value range
to form a decision function, which yields the best rendering
method for the current frame. This data has to be recomputed
when one or more of the performance relevant parameters,
which are not input to the function, change.

Figure 12 shows such a decision function for the two
parameters sampling rate and resolution. The resolution is
measured by computing the pixel area of the bounding rect-
angle, which makes it a measurement of the model’s zoom
level. The evaluation setup is equivalent to the MANIX setup
also shown in figure 11. The measurements for this plot took
roughly 2 minutes, but a good approximation can be ob-
tained within 10 seconds. Evaluating the function has virtu-
ally no performance impact. The blue, opaque region at the
bottom shows a range in which sort-first parallel raycasting
performs superior to multi-frame rate rendering. Our system
exploits such a situation by evaluating the decision function
periodically and switching the rendering method when ap-
propriate.

8. Conclusions

We have described a system that is suitable for displaying
transparent volumetric scenes at high frame rates and lit-
tle latency to user input using a multi-frame rate approach
in combination with image-based rendering techniques. We
implemented an evaluation system using GPUs as rendering
nodes with unbalanced workloads. The fast node achieves
the required low latency, whereas the slow nodes act as the
frame source. The fast node is not synchronized with any of
the slow nodes to uncouple their rendering cycles and thus
increase speed.

This work focuses on applications of direct volume ren-
dering by raycasting, which requires extensions to existing
approaches: reference images are produced in layers defined
by feature peeling. We discussed methods for selecting rep-
resentative depth values and normal vectors. Latency com-
pensation is performed by image warping from multiple lay-
ers. This approach preserves motion parallax, in particular
for complex interior structures of transparent volumes.

Moreover, we presented novel ways of workload distri-
bution for multi-frame rate volume rendering systems: by
depth layer, by region of interest and by quality maps. Ex-
cess speed can be traded for reconstruction quality, even dy-
namically during runtime. Our implementation was evalu-
ated and limitations are described. The process of recording
performance data, which allows for a dynamic decision be-
tween multi- and single frame rate, is presented.

Future work should focus on improving the quality of the
image warping process, which may include postprocessing
and image-caching. Also, revisiting the idea of frameless
rendering [BFMZ94] for reducing the bus load may be of in-
terest. Direct communication between GPUs would remove

the bandwidth limitation altogether and allow for improved
collaboration.

Acknowledgements This work was supported by the Aus-
trian Research Promotion Agency (FFG) under the BRIDGE
program, project #822702 (NARKISSOS).

References
[BFMZ94] BISHOP G., FUCHS H., MCMILLAN L., ZAGIER E.

J. S.: Frameless rendering: double buffering considered harmful.
In SIGGRAPH ’94: Proceedings of the 21st annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 1994), ACM, pp. 175–176. 8

[KGB∗09] KAINZ B., GRABNER M., BORNIK A., HAUSWIES-
NER S., MUEHL J., SCHMALSTIEG D.: Ray casting of multi-
ple volumetric datasets with polyhedral boundaries on manycore
gpus. In SIGGRAPH Asia ’09: ACM SIGGRAPH Asia 2009 pa-
pers (New York, NY, USA, 2009), ACM, pp. 1–9. 2

[Lev88] LEVOY M.: Display of surfaces from volume data. IEEE
Computer Graphics and Applications (1988). 2

[MB95] MCMILLAN L., BISHOP G.: Plenoptic modeling: an
image-based rendering system. In SIGGRAPH ’95: Proceedings
of the 22nd annual conf. on Computer graphics and interactive
techniques (New York, NY, USA, 1995), ACM, pp. 39–46. 2

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A sorting classification of parallel rendering. IEEE Comput.
Graph. Appl. 14, 4 (1994), 23–32. 2

[MMD08] MARCHESIN S., MONGENET C., DISCHLER J.-M.:
Multi-gpu sort last volume visualization. In EG Symposium on
Parallel Graphics and Visualization (EGPGV’08), Eurographics
(April 2008). 2

[MMG07] MALIK M. M., MÖLLER T., GRÖLLER M. E.: Fea-
ture peeling. In GI ’07: Proceedings of Graphics Interface 2007
(New York, NY, USA, 2007), ACM, pp. 273–280. 3

[Osi09] OSIRIX: Dicom sample image sets. OsiriX Imaging Soft-
ware, http://pubimage.hcuge.ch:8080/, 2009. 3, 4

[RSTK08] REZK-SALAMA C., TODT S., KOLB A.: Raycasting
of light field galleries from volumetric data. Computer Graphics
Forum 27, 3 (May 2008), 839–846. 2

[SBW∗07] SPRINGER J. P., BECK S., WEISZIG F., REINERS D.,
FROEHLICH B.: Multi-frame rate rendering and display. In VR
(2007), Sherman W. R., Lin M., Steed A., (Eds.), IEEE Computer
Society, pp. 195–202. 1, 2

[SLRF08] SPRINGER J. P., LUX C., REINERS D., FROEHLICH
B.: Advanced multi-frame rate rendering techniques. In VR
(2008), IEEE, pp. 177–184. 2

[SLSM06] SHAREEF N., LEE T.-Y., SHEN H.-W., MUELLER
K.: An image-based modelling approach to gpu-based rendering
of unstructured grids. In Volume Graphics (2006), pp. 31–38. 2

[SSKE05] STEGMAIER S., STRENGERT M., KLEIN T., ERTL T.:
A simple and flexible volume rendering framework for graphics-
hardware-based raycasting. International Workshop on Volume
Graphics 0 (2005), 187–241. 2

[SvLBF09] SMIT F. A., VAN LIERE R., BECK S., FRÖHLICH
B.: An image-warping architecture for vr: Low latency versus
image quality. In VR (2009), IEEE, pp. 27–34. 2

[YNXC03] YUAN X., NGUYEN M. X., XU H., CHEN B.: Hy-
brid forward resampling and volume rendering. In VG ’03: Pro-
ceedings of the 2003 Eurographics/IEEE TVCG Workshop on
Volume graphics (New York, NY, USA, 2003), ACM, pp. 119–
127. 6

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2010)

