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Figure 1: Compact Explosion Diagrams. The entire assemblies are demonstrated by a set of representative exploded views. Our system
automatically detects recurring subassemblies before it computes the one which represents the composition best.

Abstract

This paper presents a system to automatically generate compact ex-
plosion diagrams. Inspired by handmade illustrations, our approach
reduces the complexity of an explosion diagram by rendering an ex-
ploded view only for a subset of the assemblies of an object. How-
ever, the exploded views are chosen so that they allow inference
of the remaining unexploded assemblies of the entire 3D model.
In particular, our approach demonstrates the assembly of a set of
identical groups of parts, by presenting an exploded view only for
a single representative. In order to identify the representatives, our
system automatically searches for recurring subassemblies. It se-
lects representatives depending on a quality evaluation of their po-
tential exploded view. Our system takes into account visibility in-
formation of both the exploded view of a potential representative as
well as visibility information of the remaining unexploded assem-
blies. This allows rendering a balanced compact explosion diagram,
consisting of a clear presentation of the exploded representatives as
well as the unexploded remaining assemblies. Since representatives
may interfere with one another, our system furthermore optimizes
combinations of representatives. Throughout this paper we show a
number of examples, which have all been rendered from unmodi-
fied 3D CAD models.
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1 Introduction

Explosion diagrams provide a powerful presentation technique to
enable comprehensible explorations of three dimensional objects.
While other illustrative exploration techniques, such as cutaways
[Li et al. 2007] or ghostings [Kalkofen et al. 2009a] remove parts
from the presentation, explosion diagrams present all parts entirely
opaquely and within full detail, by displacing the elements of an
object. The displacements are carefully designed to encode the as-
sembly of the object. While artists have been trained to intuitively
choose comprehensible arrangements of parts, computer graphics
scientists have been investigating algorithms to compute the layout
of an explosion diagram automatically. For example, the current
state of the art algorithms automatically define relations between
parts, which are subsequently used to control their displacement
[Agrawala et al. 2003; Li et al. 2008].

However, automatically generated explosion diagrams of complex
objects can easily suffer from cluttered layouts. While artists intu-
itively decide which parts of a complex explosion diagram are re-
ally necessary, computer graphics applications had to resort to user
interaction to control the complexity at runtime [Li et al. 2008].
Such interaction requires a certain effort, which increases with the
complexity of the 3D model. In addition, traditional media, such
as textbooks, do not allow interaction with the presentation at all.



Figure 2: Handmade compact explosion diagram [Mijksenaar and
Westendorp 1999] . The assembly of the entire model is presented
by a set of representative exploded views only.

Illustrations targeted for non-interactive media are still required to
present the entire assembly of an object.

1.1 Contribution

In this paper, we present a system which is able to automatically re-
duce the complexity of a still explosion diagram. Inspired by hand-
made illustrations, such as demonstrated in Figure 2, we reduced
the complexity of an explosion diagram by rendering an exploded
view only for a subset of the assemblies of an object. The exploded
views are chosen so that they allow inference of the remaining un-
exploded assemblies of the entire 3D model. Note how the illus-
trator of Figure 2 uses a selective displacement multiple times to
render a more compact explosion layout.

The presented approach automatically mimics this layout tech-
nique. Our renderings demonstrate the assembly of a set of identi-
cal groups of parts by presenting an exploded view only for a single
representative. In order to identify the representatives, our system
automatically searches for frequent subassemblies. We select rep-
resentatives depending on a quality evaluation of its potential ex-
ploded view, including size and explosion directions. Moreover,
our system takes into account visibility information of the remain-
ing unexploded assemblies. This allows rendering a balanced com-
pact explosion diagram consisting of a clear presentation of both
the exploded representatives and the unexploded remaining assem-
blies. Since representatives may interfere with one another, our sys-
tem furthermore optimizes combinations of representatives using
the approach of threshold acceptance [Dueck and Scheuer 1990].

1.2 System Overview

The presented approach reduces the visual complexity of an ex-
plosion diagram by reducing the number of exploded assemblies
to a set of representatives. To select those which will be disassem-
bled, our system first searches for assemblies which appear multiple
times in the model. Subsequently, representative assemblies will be
selected to demonstrate the assembly. Finally a pre-computed ex-
plosion layout is used to disassemble the selected representatives.

The architecture of our system is presented in Figure 3. It consists
of three components. An initial explosion layout (Figure 3(A)) is
used to present to render an exploded view of a set of represen-
tatives. An optimized combination of representatives is computed
(Figure 3(C)) based on a previous detection of groups of similar
assemblies (Figure 3(B)).

In the remainder of this paper we present each of these compo-

nents in detail. Section 3 discusses our approach to compute an
explosion layout. Note, since a representative exploded view has to
demonstrate all other disassemblies of the same type, the algorithm
to compute an explosion layout has to compute similar exploded
views of similar assemblies. Section 4 presents our algorithm to
find similar assemblies before Section 5 describes our approach to
select an optimal combination of representative disassemblies, even
in different levels of hierarchical groups.

The 3d models used in this paper were downloaded from public
repositories or created from scratch. The spaceship shown in Fig-
ure 1 was downloaded from The 3D Studio (www.the3dstudio.com).
The radial engine and the plane were obtained from Google 3D
Warehouse (sketchup.google.com/3dwarehouse).

2 Related Work

Over the past 15 years, computer graphic researchers have inves-
tigated a number of different methods to automate the generation
of explosion diagrams. These methods create explosion diagrams
from many different kinds of data, ranging from 3D-CAD data [Rist
et al. 1994], triangle soups [Niederauer et al. 2003] and volumetric
data [Bruckner and Gröller 2006] to 2D image data [Li et al. 2004].
In addition, a number of different approaches have been presented
to automatically compute the explosion’s layout. Distortion tech-
niques as presented by Raab [Raab and Rüger 1996] scale occlud-
ing parts. Force based techniques as presented by Sonnet [Sonnet
et al. 2004] and Bruckner [Bruckner and Gröller 2006] use a set
of interactively applied repelling and attracting forces, which allow
defining the directions and distances for offset parts. Agrawala et
al. [Agrawala et al. 2003] and Li et al. [Li et al. 2008] use spa-
tial blocking information between parts as well as a size analysis to
automatically derive the relations and directions.

To control the visual complexity of an explosion diagram, the ex-
isting approaches mainly provide interactive techniques. For ex-
ample, Sonnet et al. [Sonnet et al. 2004] presented an interactive
system which moves parts of an object out of the 3D volume of an
explosion probe. Bruckner et al. [Bruckner and Gröller 2006] in-
teractively define the amount and the relationships between forces
to control the distances, direction and relative movements of parts.
Li et al. [Li et al. 2008] presented techniques, such as dragging or
riffling of parts to interactively explore a pre-computed explosion
diagram, starting from a completely unexploded presentation.

Even though research on rendering of explosion diagrams has of-
ten focused on interactive systems, a few others have investigated
an automatic search of groups of parts to simplify the explosion
layout. Thus, the works closest to our approach are the systems
of Ruiz et al. [Ruiz et al. 2008], Kalkofen et al. [Kalkofen et al.
2009b], Agrawala et al.[Agrawala et al. 2003] and Niederauer et al.
[Niederauer et al. 2003]. Niederauer et al. [Niederauer et al. 2003]
attempt to explode the floors of a building searching for those tri-
angles which group up to a floor. Since different floors are usually
offset at a certain distance and oriented similarly, Niederauer was
able to find groups of triangles by applying a statistical analysis of
their locations and orientations. Ruiz et al. [Ruiz et al. 2008] define
the thicknesses of parallel slabs of a volume, based on a similarity
measure between neighboring slabs. The similarity values are com-
puted using mutual information computations. While the former
approach only performed well on structures similar to buildings,
the latter is optimized for volumetric data.

Explosions of groups of parts of a 3D CAD model have been pre-
sented by Kalkofen et al. [Kalkofen et al. 2009b], Agrawala and
later Li et al. [Agrawala et al. 2003; Li et al. 2008]. While Agrawala
and Li manually annotated their models with group information,
Kalkofen and his colleagues automatically group elements based on



Figure 3: System Architecture. Our system consists of three different modules which affect the rendering of compact explosion diagrams.
By supplying a 3D CAD model, it automatically computes an initial explosion layout (A), it finds groups of equal parts (B) and it selects a
representative (C) before it initiates the rendering.

a selected focus element, which they aim to uncover. In a complete
AND/OR-Graph data structure, they search for the largest groups of
parts which can be displaced from the subassembly containing the
object of interest. By recursively applying this search strategy on
the AND/OR-Graph data structure, their approach is able to com-
pute a Focus and Context explosion layout with an uncovered object
of interest and a minimal amount of contextual groups.

3 Initial Explosion Layouts

The layout of an explosion diagram depends on the direction and
the distance chosen for each part, to set it apart from its initial po-
sition. To reduce the mental load to reassemble an exploded ob-
ject, explosion directions often follow mounting directions, there-
fore collisions between displaced parts are avoided. Explosion dia-
grams implement this feature by introducing relations between the
parts of an assembly. For example, each screw in Figure 3 moves
relative to the purple cylinder which it fastens. By displacing one
of the purple cylinders, the corresponding black screws will be dis-
placed implicitly.

The relationships between parts of an explosion diagram also al-
low parts to follow related parts. This enables a part to move rel-
ative to its initial location in the assembly, which also reduces the
number of mental transformations to reassemble the object. For
example, note how the grey bolts follow the green gearbox in the
explosion diagram in Figure 3. However, it is often not obvious
which part best represents the initial location of another part. For
example, while the initial locations of the black screws in Figure 3
are clearly defined by the holes of the engine they fasten, the initial
location of the wheels in Figure 4 is surrounded by a number of
parts. As demonstrated in Figure 4(a), the wheels in front of the car
may follow the blue steering gear. This will result in a translation
along the up-vector of the car, before the wheels explode along the
x-directions of the model’s coordinate system. In contrast, the ex-
plosion diagram in Figure 4(b) uses a relation between the wheels
in the front of the car and the green base-plate. This results in a dis-
placement of the wheels without a translation along the up-vector
of the coordinate system. The same behavior appears for a stack of
parts in the back of the car. Since in Figure 4(a) the parent of the
stack follows the red seat of the car, all the parts between the wheels
and the seat have been moved along the up-vector before they have
been separated from each other. In contrast, the explosion diagram
in Figure 4(b) uses a relationship between the parent of the stack
and the green base-plate of the car, which reduces the number of

translations of all the elements in the stack.

3.1 Disassembly Sequence, Part Relations and Explo-
sion Directions

We define relations between parts by computing a disassembly se-
quence. A relationship is set up for each exploded part and the
biggest part in the remaining assembly it has contact with. To avoid
collisions between exploding parts, the directions in which a part
can be displaced are restricted to only those in which a part is not
blocked by any other parts. This implies that the algorithm dis-
places parts which are unblocked in at least one direction, before it
is able to explode parts which are blocked in all directions. Thus,
by removing the exploded parts from the assembly, we gradually
remove blocking constraints which allows us to explode previously
blocked parts in a subsequent iteration of the algorithm. Since the

Figure 4: Different relationships between parts results in different
layouts of the explosion diagram. (a) The stacks of parts to the left
and the right in the back of the car have been related to the seat.
The wheels in the front of the car follow the blue steering gear. (b)
The front wheels have been related to the base-plate of the car, as
have both purple elements, which connect the wheels in the back to
the car.



algorithm gradually removes parts from the assembly, the set of
directions for which a part is not blocked (and thus the set of poten-
tial explosion directions) depends on the set of previously removed
parts. Consequently, the disassembly sequence directly influences
the set of potential explosion directions.

Disassembly Sequence Previous approaches [Li et al. 2008;
Agrawala et al. 2003] compute a sequence depending on how fast a
part is able to escape the bounding box of the remaining parts in the
assembly. However, since this approach does not comprise any in-
formation about the similarity between exploded parts, the resulting
explosion layout does not ensure similar exploded views for similar
assemblies. Consequently, we encode information about the simi-
larity of the parts in the sequence. We remove similar parts in a row,
starting with the smallest. If no similar part can be removed from
the assembly, we choose the current smallest part. This strategy en-
ables us to set up relationships which subsequently allow smaller
parts to follow bigger ones during explosion. Take note that, by
computing a larger amount of similar explosion layouts, our system
is able to choose a representative exploded view out of a larger set
of similarly exploding assemblies.

Figure 5 demonstrates the difference between previous approaches
and our new strategy to find a disassembly sequence. A sequenc-
ing based on a bounding box intersection is demonstrated in Figure
5(a,b,c). The algorithm first removes part A before part B and part C
will be exploded. By using this strategy, relationships between part
A and part B and subsequently between part C and part B will be
set up. The resulting explosion layout is illustrated in Figure 5(c).
As can be seen, different explosion directions have been assigned
to the similar parts B and C.

In contrast, our algorithm computes a sequence which is based on
a comparison of the previously exploded part and all removable
part in the remaining assembly. As demonstrated in Figure 5(d,e,f),
our strategy will result in a sequence which supports similarly ex-
ploded views of similar assemblies. Both parts B and C have been
displaced in the same direction and both parts have been related to
the same part in the remaining assembly (part A).

Relationships Both strategies in Figure 5 set up relationships
between the current part and the bigger one. However, since our
sequence removes similar parts one after the other, the remaining
assemblies are identical for similar parts, with the exception of the
previously removed part (which is similar to the current one). Since
almost identical conditions exist for similar parts, our algorithm is
able to set up similar relationships for those parts and the parts in
the remaining assembly.

In addition to the initial assignment of relationships between parts,
we change the relationships for penetrating elements in a stack. For
example, the black screws in Figure 3 have contact with the purple
cylinder and the green gearbox. Since the green gearbox is the big-
ger item, the initial relation is set between a screw and the gearbox.
However, this would result in an explosion diagram in which the
screws follow the gearbox instead of the purple cylinder.

To handle such cases, we search for stacks of parts by searching for
the elements which are located between the exploded part and the
one it is related to. If parts exist in-between and if these parts share
an explosion direction with the currently removed part, the initial
relationships are changed so that the exploded part is related to the
closest part in the stack of parts in-between.

Explosion Directions Previous approaches compute the explo-
sion direction of a part out of a set which contains only the six
directions along the three main axes of the model [Li et al. 2008;

(a) (b) (c)

(d) (e) (f)

Figure 5: Different disassembly sequences may result in different
layouts. The sequence is labeled in red. The resulting explosion
diagram is illustrated in the image on the right. (a,b,c) The se-
quence has been computed based on previous approaches which
select parts depending on the distance a part has to be moved to es-
cape the bounding of the remaining assembly. The bounding boxes
of the remaining parts have been framed in red and green. (d) We
compute the next element in the sequence based on a comparison
with the previous one. (e) By removing similar parts in a row we
ensure that the remaining assemblies contain the same elements,
except for one part which is similar to the next one. (f) This strat-
egy allows us to explode similar parts within similar conditions,
which in turn results in more similar exploded views of similar sub-
assemblies.

Agrawala et al. 2003; Kalkofen et al. 2009b]. However, this ap-
proach is very limited (e.g. consider the differences in directions
in the explosion diagram in Figure 3). Therefore, we compute a
non-directional blocking graph, similar to the algorithm proposed
by Wilson [Wilson 1992], by computing blocking information be-
tween all pairs of parts. For each exploded part, we determine the
set of unblocked directions by removing all blocked directions from
the set of exiting 3D directions. We represent all directions by a
unit sphere and we remove blocked ones by cutting away the half
sphere with a cutting plane which is perpendicular to the direction
of a blocking part. By iteratively cutting the sphere, using all block-
ing information from parts in contact with it, the remaining patch
of the sphere represent all unblocked directions for a part. Thus, we
output the center of gravity from the remaining patch of the sphere.

3.2 Explosion Distance

If a subassembly appears multiple times in another subassembly,
we introduce a hierarchy of subassemblies from which we choose
representatives depending on an explosion style (see Section 5.3
for a discussion on hierarchical subassemblies). For example, the
screws in Figure 3 form a cluster of screws which depends on the
part they fasten. Each cluster consists of four screws which fasten
a single cylinder. If a style is chosen, which explodes all screws
in a single cluster, we have to compute a representative out of a
higher level group of parts. Therefore, our system has to support an
alignment of the distances of similar parts.

Since similar parts appear to be similarly large, we set the distance



of displacement from the parent part to be proportional to the size of
the exploded part. Nevertheless, since a linear mapping may easily
result in very distant parts, we introduce a non-linear mapping using
equation 1.

Distance = SizeOfPart.(1− k.RelativeSize)2 (1)

For parts which cannot be removed at all, we compute a distance
where they can be moved until colliding with other parts. For ex-
ample, the lower purple cylinder in Figure 3 cannot be removed
before the black screws have been removed. However, the black
screws will collide with the cylinder it fastens if we explode them
into a single direction. Nevertheless, we can explode the screws
a certain distance before they collide with the cylinder. Since this
distance is sufficient to reveal the screws, we compute the maximal
distance they can be exploded. We explode the screws a distance
smaller than this maximal distance and we remove the screws from
the assembly, so that we are able to subsequently explode the cylin-
der from the assembly.

We compute the maximal distance a globally locked part can be
moved by rendering both parts - the one which is about to be re-
moved and the one which blocks its mounting direction- into a tex-
ture. We position the camera at the vector along the explosion di-
rection to point at the exploded part. In a vertex shader we use the
current model-view transformation matrix to transform each vertex
into camera space. The corresponding fragment shader finally ren-
ders the location of each fragment in camera coordinates into the
textures. By calculating the difference between the texture values,
we get a map of distances between the fragments of both parts. The
maximal distance a part can be removed, before it collides with the
blocking part, is finally represented by the smallest difference be-
tween the values in the texture.

4 Frequent Subassemblies

We determine sets of similar subassemblies by performing a fre-
quent subgraph (FSG) search on a graph representation of the as-
sembly. The implemented approach is based on the gSpan algo-
rithm of Yan and Han [Yan and Han 2002], which uses depth-first-
search (DFS) codes to differentiate two graphs. A DFS code de-
scribes the order in which the nodes of a subgraph have been vis-
ited. Two graphs are defined isomorphic if their DFS codes are
equal and if their corresponding node labels (which represent the
parts) match. Nodes of equal parts receive the same label and
equally assembled objects generate equal DFS codes. By using
DFS codes and node labels, the implemented FSG algorithm finds
non-overlapping sets S = {G1, . . . , Gk} of the largest subassem-
blies G contained in the graph.

4.1 Graph Representation of Assembly

To apply an FSG on the 3D model we have to transform it into
an assembly graph Ag which contains all parts P = {p1 . . . pn},
with n being the number of parts in the assembly. The nodes of
the graph are the parts pi (with i = 1 . . . n) of the input model. If
two parts are in contact, an undirected edge is created between the
corresponding nodes.

We detect similar parts (and therefore the nodes which receive the
same label) by exploiting the DESIRE shape descriptor of Vranic
et al. [Vranic 2005]. The descriptor computes a feature vector for
each part which we use to compare their shapes with. We consider
two parts as being similar, if the l2-distance of their corresponding
feature vectors falls below a certain threshold. Besides the set of
node labels, the result of the part comparison is a list of disjointed
sets of similar parts Ps = {pi, . . . , pk}, for i 6= k, and i, k < n.

4.2 Frequent Subgraph Mining

Input to the algorithm is the whole graph Ag . All nodes of parts
p for which no similar counterpart exist (|Ps| = 1), are removed
from the graph. This ensures that only parts occurring more than
once are considered. Then, for each set of similar parts Ps a set S0

is created, containing |Ps| number of groups G0, each containing
a single part p ∈ Ps. The sets S0 define the starting parts for the
FSG search. All of these sets have to be processed separately by
the mining algorithm, to find all FSGs of the assembly. A recursive
FSG mining procedure is applied on each of the sets S0 and iterates
through all groups Gi of its input set Si. The algorithm now tries
to grow the groups Gi in the following way.

In each iteration, a reference group Gr is chosen from Si. For Gr

the set of neighbors Nr of the part last added to the group, are re-
trieved. If all neighbors of this part have already been visited, the
ones of the previous part are chosen. If no unvisited neighbor is
found, then all neighbors have been visited and the group Gr can-
not be extended further. For each Gi, those neighbors similar to the
ones in Nr are determined. Neighbors are similar to each other if
their labels and number of contact parts to the corresponding group
Gi are equal. Furthermore, the DFS codes and labels of those con-
tacts have to be equal. This similarity measure ensures that the
structures of the found groups are equal.

If at least two similar neighbors ni and nj are found for different
groups Gi and Gj a new set Sn is created containing the groups
Gn1 = Gi ∪ ni and Gn2 = Gj ∪ nj . This is done for all groups
having similar neighbors. Note, that for each set of similar neigh-
bors a new set of groups is created and these groups differ only by
one part from the groups of Si. Hence, by recursively calling the
mining procedure on the new sets, a DFS is performed, growing
these groups further.

After all neighbors have been processed, each group which was
extended by a similar neighbor, is removed from the set Si because
these groups have become subgroups of larger groups. If |Si| = 0
all groups were extended and the set is deleted. If |Si| = 1 the set is
also deleted, but the group is processed further, because it may still
contain smaller similar subgraphs. Therefore, the mining algorithm
is applied again to eventually extract these graphs.

The FSG mining returns with the sets So of largest similar groups
Go. Overlapping output sets are resolved by keeping only one of
the overlapping sets So and applying the FSG again to the set of
Ag \ So. This operation is repeated for all results, until the out-
put sets So do not overlap anymore. We keep the one overlapping
set which contains the groups holding the most number of parts. If
this measure is ambiguous, the set having the most groups is pre-
ferred. If this is still ambiguous the one containing the largest part
is chosen.

4.3 Group-based Layout

Our system calculates similar subassemblies independent from the
initial layout of the explosion diagram. However, even though our
sequence generator specifically supports similar exploded views of
similar subassemblies, if the neighborhood of both differ, the ex-
ploded views may be different. For example, the model in Figure
6(a) consists of one set of four similar subassemblies (marked by
the green rectangle). Each of them contains two parts. Figure 6(b)
shows its explosion diagram in which each single part has been dis-
placed. As can be seen from the initial layout, the exploded view
of the subassembly in the lower right corner is different from the
other. If we choose this exploded view as the representative of its
set of similar subassemblies, the resulting compact explosion di-
agram lacks a presentation of the other subassemblies of this set



(a) (b) (c)

(d) (e) (f)

Figure 6: Explosion Layouts containing group information. (a) Groups have been created independently from the explosion layout. (b)
Therefore, the explosion layout does not take information about similar subassemblies into account. This may generate different exploded
views of similar subassemblies. (c) If we select a representative from a set of similar subassemblies which do not explode the same way,
the explosion does not demonstrate all other subassemblies. (d) By recalculating group information from the layout, the number of similar
groups is reduced which results in more exploded views. (e) Therefore, we modify the initial layout so that similar subassemblies explode in
a similar way. (f) This strategy allows us to choose a representative from a larger set of subassemblies which in turn reduces the amount of
required exploded views to demonstrate the assembly.

(Figure 6(c)).

To prevent representatives which explode differently to other simi-
lar subassemblies, we can adjust the sets of similar subassemblies in
a way that only similarly exploding subassemblies will be grouped
together. Therefore we use the layout information to modify the
identification of similar subassemblies. Only those parts of the
assembly are candidates for extending a group which would set
up a relationship to another part in the subassembly. Figure 6(d)
shows the result of this restriction. This strategy finds a set of only
three instead of the previously identified four similar subassemblies
(marked in green). Consequently, less subassemblies will be pre-
sented assembled which results in a layout which is not as compact
as in the previous case.

In order to create a more compact explosion layout, without risking
to choose a representative which does not demonstrate the compo-
sition of other similar subassemblies, we modify the layout of the
explosion diagram instead of the information about the similarity of
subassemblies. As illustrated in Figure 6(e) we aim to modify the
layout to prevent relationships with parts outside the subassembly.
We allow only one relationship between a part in the subassembly
and the remaining 3D model.

Note, this is similar to the approach of Li et al. [Li2008] who ex-
plode a manually defined group of parts as if it was a single element
in the assembly. However, we use a different approach to handle in-
terlocking groups. Rather than splitting a subassembly, we ignore
blocking parts. This allows us to keep subassemblies connected.
Note, this could be at the cost of explosion diagrams which are
not completely free from collisions. Nevertheless, we believe that
preventing such collisions is less important for the final compact
explosion layout than a larger amount of explosions or a represen-
tative which does not demonstrate the composition of its associated
subassemblies. In the case of a compact explosion diagram, it is

more important to select a representative from a rather large set of
similar subassemblies, which additionally all explode in a similar
way.

Thus, we compute an explosion diagram which ensures similar ex-
plosion layouts of similar subassemblies as explained in section 3.
However, for each part pi we determine if it is a member of a sub-
assembly Gi which occurs multiple times in the model. If the al-
gorithm is about to explode a part pi which is a member of Gi, we
choose a representative part pr out of Gi which we explode instead
of pi . We define pr as the biggest part in the subassembly Gi which
has at least one face in contact with at least one part of the remain-
ing assembly, not considering other parts of the subassembly. In
addition, the representative part pr has to be removable in at least
one direction without considering blocking constraints of parts of
the same subassembly.

Even though pr influences the explosion direction of the entire sub-
assembly, we may not set the relationship between pr and a part out
of the remaining assembly. Since we are only able to explode each
part once and since we want to further continue to explode all fre-
quent subassemblies in the same way, we have to choose the same
part in each subassembly to set up the relation to the remaining as-
sembly. Moreover, since we want to explode subassemblies using
the guidelines presented in section 3, we want to explode the small
parts before the bigger ones. Therefore we choose the biggest part
in the assembly as the main part of the assembly and we relate it to
the biggest part in the remaining assembly which the subassembly
has contact with.

If frequent subassemblies exist in an exploded subassembly we can-
not simply search for the bigger part in the main subassembly, be-
cause we also want to create a similar exploded view of all frequent
subassemblies, even if they appear cascaded. Instead, we first com-
pute a hierarchy of subassemblies (see section 5.3 for details) before



we choose the biggest part from only the highest level of the hier-
archy. The highest level ensures that no other part is similar to the
chosen one and consequently no conflicting explosion layout can
result. Note once again, by removing entire subassemblies in an
unblocked direction of a single representative member we ignore
collisions between parts during explosion. Even though this may
result in physically incorrect sequences to disassemble the object,
we are able to explode subassemblies independent of the overall
model, which in turn enables to calculate a single explosion layout
for all similar subassemblies.

5 Selecting Representatives

After identifying frequent subassemblies and after computing an
initial explosion layout, a compact representation is created by dis-
placing only one representative group out of a set of similar groups.
We select a representative subassembly by calculating its quality as
the weighted sum of a set of different measurements (section 5.1).
Since the combination of representatives may influence the mea-
surements of a single subassembly, we optimize the selection based
on the idea of threshold accepting [Dueck and Scheuer 1990] (sec-
tion 5.2). In the following, we will first describe our algorithm to
select a representative subassembly out of a set of similar subassem-
blies, before we present our approach to combine representatives to
the final compact explosion diagram

5.1 Quality Measurements

We define the quality of a group of parts as a combination of several
measurements. Therefore, for each group we render its local explo-
sion (which displaces only the parts of the group and parts which
block the group) and we compute the following values:

• Size of footprint of the exploded group. The footprint f de-
scribes its size in screen space. The footprint is used to es-
timate the overall visibility of a part, given its position and
orientation.

• Visibility of parts of the exploded group. The visibility v is a
relative measure for the general visibility of the parts.

• Part directions relative to current camera viewpoint. Assum-
ing that explosions, which are similar to the viewing direction,
are more difficult to read than those which explode more per-
pendicular to the viewing direction, we compute the dot prod-
uct a between the viewing vector and the explosion direction
for each part. The average value of all values a is used as the
value for a group.

• Size of footprint of all other similar groups without any dis-
placements. This value describes how well other similar and
unexploded groups will be visible, if the tested one will be
chosen as the representative. Therefore, footprint fr of the
unexploded groups is determined.

The final score Qr of an exploded view of a subassembly consists
of the weighted sum of these four measurements (see equation 2).
The weights (fc, vc, ac, frc) indicate the importance of each single
parameter to describe the quality of the group. Since an evalua-
tion of ideal weights is left for future work, our system allows to
interactively modifying them.

Qr = f.fc + v.vc + (1− a).ac + fr.frc (2)

Figure 7 shows the results of two differently weighted scorings.
Since we compute the score of a group locally, visual overlaps of
representatives (such as in Figure 8(a)) or interdependent explo-
sion, which change the score of a group are not considered at this

(a)

(b)

Figure 7: Differently weighted scoring parameter. (a) Highly
weighted visibility of representative groups. The algorithm favors
exploded views which cover larger amounts of screen space. (b)
By weighting the dot product between the viewing direction and
the explosion direction higher, the algorithm selects representatives
which explode more perpendicular to the viewing direction.

point of our computations. The following section describes how we
optimize such combinations.

5.2 Combining Representatives

To avoid the interference of representatives with each other, we ap-
ply the search for an optimal combination of exploded groups using
the idea of threshold accepting [Dueck and Scheuer 1990], a heuris-
tic optimization strategy. In each optimization step, the quality of
a different combination of exploded representative groups is evalu-
ated by adding their scores.

The initial layout consists of exploded representatives with the
highest local scores. Therefore, if the sum of their local scores is
equal to the global score, the local representatives are global repre-
sentatives too. Consequently, we do not search further for a better
combination. However, if the global score is less than the sum of
local scores, we change the initial layout by a single representa-
tive group and recompute the global score of the modified layout.
If the score of the changed layout is higher than the current best
finding, this new one is used as the current best combination of rep-
resentatives. Therefore, if the new score is equal or less than the



current best score, we do not consider the current combination to
be displayed. However, even if the current score is less than the
best one, we compute the next tested layout based on the current
one, if its difference to the best score is less than a threshold value.
Otherwise, we modify the layout which the current layout was com-
puted from. While the algorithm progresses, the threshold value
decreases, which gradually allows better layouts to be the starting
point for further changes.

Figure 8(b) shows the results of optimizing the locally scored com-
pact explosion diagrams presented in Figure 8(a). Since repre-
sentatives in Figure 8(a) overlap each other, a different group has
been selected in the optimized compact explosion diagram in Fig-
ure 8(b). Figure 8(c) shows a compact explosion diagram where the
visibility of unexploded parts was weighted higher.

5.3 Hierarchical Subassemblies

After applying the FSG search to the graph Ag of the whole as-
sembly, a list of sets which contain the largest available non-
overlapping subassemblies has been discovered. However, the se-
lected subassemblies may even contain other frequent subassem-
blies. If we also identify these subassemblies we are able to se-
lect a representative in multiple levels of the hierarchy, which in
turn allows us to further reduce the number of displaced parts in
a representative exploded view. To find frequent subassemblies
within a previously determined subassembly, we apply the FSG al-
gorithm recursively until no subassembly can be determined any-
more. When performing the FSG search on a set S of groups G,
each group G is considered to be a separate graph to be mined for
subassemblies. This means that a subsequent FSG search does not
exceed the limits of the groups they are applied to.

5.4 Similar Neighborhoods

By recursively applying the FSG search algorithm to a subassem-
bly we receive a hierarchy of frequent subassemblies. The groups
of the detected sets and subsets are similar to each other, because
their graph representations are isomorphic. However, groups of the
same set may have different neighborhood relations to the group
they are contained in. The reason for this is that the FSG mining al-
gorithm removes all parts from the input graph, which do not have
similar counterparts. Basically, this removes the neighborhood be-
tween a subgroup and the group it is contained in. By recovering
this information, we are able to refine the hierarchy. This allows us
to choose better representatives from a set, because similar groups
are then also distinguishable by their neighborhoods. Therefore, we
define that similar groups Gl not only have to be similar in terms
of graph isomorphism, but also the neighborhood to the groups Gh

they are contained in has to be similar. We implemented the follow-
ing algorithm, which searches for similar neighbors of groups of a
set.

For each neighbor of a group the set of adjacent groups En is de-
termined. Sets En of similar neighbors in different groups Gh are
merged into the set Es. Then, simple set operations are performed
on the sets Es to retrieve the common neighborhood for similar
groups. For a representative Er from the sets of Es, the following
operations are performed in combination with each other Es. First,
the intersection Ec = Er ∩Es is created. If |Ec| = |Er|, all groups
share the same neighbor and the algorithm continues. Otherwise,
the groups of Er share different neighbors. These groups are elim-
inated from Er (Er = Er \ Ec). The algorithm continues until
either all Es have been considered, or |Er| = 0. Those groups left
in Er have similar neighborhoods. The algorithm finally terminates
when all sets of Es have been considered as representative set Er .

(a)

(b)

(c)

Figure 8: Optimized Selection of Representative. (a) A local scor-
ing using high weighting factors for visibility information of the
exploded parts may result in an overlap of exploded parts. Notice
the hidden wing at the back of the plane (b) We compute an opti-
mized layout by selecting new combinations which we accept based
on a dynamic threshold. (c) The systems calculates an optimized
compact explosion diagram using higher impact of visibility of un-
exploded parts.

5.5 Selection in Hierarchical Groups

If a hierarchy of groups exists, we allow to select representative ex-
ploded views using three different strategies. We allow either to
choose the representative parts from a single subassembly (Figure
9(a), Figure 9(b)), or to select representative parts independently in
different subassemblies of the same set (Figure 9(c)). If we chose
to restrict the explosions to a single hierarchy, we have to decide
if we want to explode the entire subassembly (Figure 9(a)) or only
a single representative in each level of the hierarchy (Figure 9(b)).
Figure 9 shows an example for each given situation. Since it is
an open question which strategy results in the perceptually best re-
sults, our system allows selecting a strategy at runtime. We leave a
perceptive evaluation of the comprehensibility of each strategy for



future work.

6 Conclusion

Explosion diagrams provide a powerful technique to visually com-
municate the composition of 3D objects. However, if complex mod-
els have to be presented, the explosion diagram may suffer from
clutter which is caused by the excess of displaced parts. To reduce
the complexity in explosion diagrams, illustrators often chose to
displace only a subset of parts. In this paper we have presented a
system which is able to automatically mimic this technique. We
have presented an algorithm to find similar subassemblies in a 3D
object. We discuss several strategies to ensure that a representative
exploded view demonstrates the unexploded remaining subassem-
blies. In addition, we have presented a new quality measure for
exploded views of subassemblies. We have demonstrated the im-
pact to the resulting explosion layout of our quality parameters.
Additionally, we introduced a strategy to calculate optimized com-
binations of representative exploded views, which we discussed in
different examples, which demonstrate its performance using dif-
ferently weighted quality parameters. We have presented a new
algorithm to compute a disassembly sequence which allows us to
compute an explosion layout in which similar subassemblies have
been exploded in a similar way.

Our work focuses on assemblies which consist of recurring sub-
assemblies. However, even if no such subassemblies exist, the cal-
culated explosion diagram does not differ from any other exploded
view which displaces all of the parts of the input model.

In a future system we will extend the set of quality parameters e.g. a
contrast information between exploded parts and their background
information. We will furthermore evaluate the impact of the differ-
ent quality parameters on the comprehension of the demonstrated
subassemblies. In addition, we will extend the information about
groups of parts to also consider the cluster of recurring subassem-
blies which do not have direct contact with each other.
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Figure 9: Selection Strategies in Hierarchical Groups. (a) All parts
in a subassembly have been exploded. (b) Representatives have
been selected in each level of the hierarchy. (c) Representatives
have been selected in different subassemblies.
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