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Abstract— This paper investigates possible physical alterations 
of tracking targets to obtain improved 6DoF pose detection for 
a camera observing the known targets. We explore the 
influence of several texture characteristics on the pose 
detection, by simulating a large number of different target 
objects and camera poses. Based on statistical observations, we 
rank the importance of characteristics such as texturedness 
and feature distribution for a specific implementation of a 
6DoF tracking technique. These findings allow informed 
modification strategies for improving the tracking target 
objects themselves, in the common case of man-made targets, 
as for example used in advertising. This fundamentally differs 
from and complements the traditional approach of leaving the 
targets unchanged while trying to optimize the tracking 
algorithms and parameters. 
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I.  INTRODUCTION AND RELATED WORK 

Much work has gone into improving algorithms for 
detecting feature-points and estimating a 6DoF camera pose 
from a set of point correspondences. In the following such an 
algorithm is simply called ‘tracker’. In comparison, the 
analysis and specifically the improvement of the natural 
objects to be tracked themselves received little attention from 
the research community so far. However, in industrial 
scenarios such as Augmented Reality (AR) applications, it is 
often the case that a certain tracker is given and can only be 
minimally tuned, whereas the texture of the object or 
environment to be tracked may be subtly or even drastically 
changed to improve tracking.    

Many common 3D tracking techniques rely on feature 
points on textured surfaces, which are often part of man-
made objects, for example, a billboard used in advertising or 
product packaging, on top of which shoppers may want to 
experience AR annotations. In this case, the application 
developer would like to understand the trackability of the 
target object, i.e., which parts of the target can be tracked 
accurately and robustly. The trackability assessment can aid 
the AR designer in making modifications to the target object 

to improve the quality of the tracking, as long as certain 
aesthetic goals are not sacrificed. 

Previous work focuses on the analysis of feature sets, 
feature set improvement, and the evaluation of descriptors 
and tracking algorithms. Shi and Tomasi [4] used feature set 
analysis for the selection and monitoring of features during 
the tracking process to optimize the Kanade-Lucas-Tomasi 
(KLT) tracker. For feature set improvements, Knapek et al. 
[1] explore methods for selecting promising features from an 
image. The methods were tested empirically by simulating 
the possible changes of a feature window. All this work 
focuses on the analysis and improvement of the feature set 
selected from a given set of fixed objects, without 
considering modifications to the tracked objects themselves. 

An evaluation system for local descriptors was presented 
by Mikolajczyk and Schmid [3], which has become a 
standard framework in the computer vision community. 
Similarly, Moreels and Perona [2] used a computer-
controlled turntable and real objects to match 3D object 
features under different viewpoint and lighting conditions, in 
order to evaluate feature detectors and descriptors under 
more realistic conditions. Both methods compared 
algorithms, not objects/environments as we do here.  

In this paper, we present a tool chain for the simulation of 
tracking target objects using a given feature-point based 3D 
tracker. In a pilot experiment, the tool chain was used to 
evaluate the trackability of a large number of planar, textured 
objects, to gather statistical relevant data on the quantitative 
influence of object parameters such as the number, 
texturedness, spatial distribution and similarity of features as 
well as environmental conditions such as lighting and 
camera pose. The accuracy of the simulation was verified 
with a robotic arm setup. We then show case studies how the 
tools can be applied to systematically improve the 
trackability of a given tracking target. Based on the findings 
about the quantitative influence of tracking target 
characteristics to the trackability of an object, we have 
chosen different image manipulation techniques such as 
contrast enhancement or content and structure adding to 
improve the trackability of a tracking target. 



II. TRACKING TARGET SIMULATION 

We define a tracking target object as any physical object 
or environment with a surface texture that can be used to 
estimate the 6 DoF pose of a camera directed at it, using a 
vision based feature detection algorithm. This includes single 
objects as well as complete environments.  

The success of the tracking process is dependent on the 
geometry and appearance of the tracking target, the tracking 
algorithms (e.g. feature detection, feature descriptors, and 
frame-to-frame pose estimation) and their parameters, as 
well as the environmental conditions (e.g., lighting, camera 
choice and parameters). In this paper, we address the 
situation that the designer of a real-time tracking experience 
wants to optimize tracking performance for a given tracker 
and fixed range of environmental conditions, by optimizing 
the tracking target. 

Our work focuses on visual detection and tracking 
methods. Hence, a tracking target T can be represented by a 
set of natural feature points. As indicated above, the feature 
point set is dependent on the employed tracking algorithms 
(e.g. feature detector) and their parameters, the 
environmental conditions, and of course the surface texture 
and appearance of the target object itself. In most cases, the 
surface representation of T consists of simple 2D geometry 
with a certain topology (often piece-wise planar). We are 
interested in how to optimize these surfaces to improve 
tracking, and thus we explore the characteristics of different 
textures and their influence on tracking performance under 
various environmental conditions. 

III. EXPLORING DOMINANT TRACKING TARGET 

CHARACTERISTICS BY SIMULATION 

 To this end, we developed a simulation framework by 
synthesizing a vast variety of views onto sample tracking 
targets under varying conditions, thus gathering a sizeable 
amount of data for statistical evaluation.  

In this work we only consider planar tracking targets, 
which can be printed on a sheet of cardboard in real live, or 
rendered as a single textured polygon for simulation 
purposes. Consequently, the pose can be computed as a 
homography. The natural feature tracker described in [7] was 
used as the tracking technique to collect the data. However, 
all functionality of the tracker such as feature point detection 
and pose estimation are invoked via a public interface, and 
consequently the tool chain is open to accommodate other 
tracking techniques. 

IV. SIMULATION OF TRACKING TARGET OBJECTS 

As input for our simulation tool chain we used a database 
of 1188 images with a wide variety of subjects (peoples, 
cars, bikes, objects, animals) as tracking target sources. For 
each of the 1188 tracking targets, we created views for 200 
camera poses at varying distances and rotations each under 6 
lighting conditions, resulting in 1425600 synthesized views 
rendered at a resolution of 320x240 pixels, which is very 
common for real-time computer vision applications as for 
example in the AR domain. The views were analyzed with 
three feature sets per targets (500, 1000, 1500 key-points, 

total 20490 datasets). To compensate for variations 
introduced by random-seed RANSAC outlier removal in the 
tracker, we repeated each combination of view and feature 
set 10 times. The overall computation time for the 42.7 
million tracker runs was 2.5 days on 4 desktop computers. 

V. SIMULATION VS. REAL WORLD SETUP 

Synthesizing images for evaluation raises the question 
how reliably the results characterize real world situations. 
We therefore validated the results of our simulation 
framework using a Mitsubishi RV-1A robotic arm with six 
degrees of freedom. We attached printed tracking targets to 
the tip of the arm and recorded them with a Logitech 
Quickcam 9000 Pro mounted at a fixed position. 

We calibrated the intrinsic and extrinsic camera 
parameters using the method of Tsai et al. [5]. After 
calibration, position and orientation of the robotic arm 
relatively to the camera coordinate system are known with an 
accuracy of 0.4 mm. The calibrated setup therefore enables 
the determination of exact ground truth data. 

We evaluated 155 poses with 3 lighting conditions each 
resulting in 465 captured images per target. In total we 
attached seven different tracking targets to the robotic arm 
(see Fig. 2f). We then compared the ground truth from the 
robotic arm with corresponding synthesized images from our 
simulation pipeline. The result of our simulation vs. real-
world comparison (see Fig. 1) is the median of the 
consistency rate C: 0.78. The average of C is 0.74 and the 
standard deviation is 0.23. We define the consistency rate C 
as follows in equation (1) where DSv and DSv are the 
detection rates of synthesized and real views, and views is 
the number of views per targets.  
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(1) 

The detection rate itself is the percentage of the views 
where a pose is detected successfully. The criteria for a 
positive pose detection is a minimum of eight detected key-
points (after RANSAC optimization). The detection rate is 
used to compare the tracking performance or trackability of 
the simulation and the real-world test data. 

 

 
Figure 1.  Validation setup results: Consistency C (y-axis) of detection 

ratio of simulated and real data. 

VI. EVALUATING TRACKING TARGET CHARACTERISTICS 

For evaluating the relationship of inherent tracking target 
characteristics on the detection rate R we computed the 
correlation between R and the target properties as detailed 



below using the Spearman correlation test. In the following, 
we present characteristics which show highly significant 
correlations (p<.01, n = 20490). Our expectations that 
texturedness and distribution have high impact on R were 
confirmed. Other characteristics such as feature similarity do 
not have such high importance for the employed natural 
feature tracker. 

A. Feature texturedness (FT) 

The texturedness of a feature provides information on 
how strongly the image intensity in the feature window 
varies. Whereas Shi and Tomasi [4] used the Eigenvalues of 
the second moment matrix to determine the texturedness of 
features, we use the standard deviation of 8 bit intensities in 
the (in our case 8x8) feature window as a general and simple 
approach. The result from our evaluation for texturedness is 
a positive Spearman correlation of r=0.201. The greater the 
texturedness, the more poses are successfully detected. 
Investigating the influence of texturedness under varying 
lighting conditions shows that the correlation increases for 
underexposed and overexposed lighting. An ambient lighting 
model was employed. The global intensity of each light level 
corresponds to the brightness of the final simulated image. 
The correlation between texturedness and pose ratio gets 
stronger for extremer light levels: Level 2 (36% brightness, 
highly underexposed) r=0.289; Level 4 (52% brightness, 
moderate) r=0.187; and Level 7 (76% brightness, highly 
overexposed) r=0.326. 

B. Spatial feature distribution (FD) 

We use a dispersion index d [8] to describe the 
distribution pattern on feature points in 2D over the surface 
of a tracking target. The dispersion index depends on the 
standard deviation s and the median m of the number of 
features per cell: d = s²/m. As expected, the dispersion index 
has a negative correlation with the pose detection: 0.405. The 
correlation is getting weaker for extremer light levels: Level 
2 (36% brightness, highly underexposed) r=0.460; Level 4 
(52% brightness, moderate) r=0.610; and Level 7 (76% 
brightness, highly overexposed) r=0.443 

C. Feature similarity (FS) 

Feature similarity of a keypoint describes how many 
similar keypoints exist in the same feature set, which are 
likely to be confused with this keypoint. Naturally this metric 
strongly depends on the way the used tracker builds 
descriptors (in our case the length of the descriptor is 36), 
such as on the size of the support region used to describe 
keypoints. A keypoint’s similarity value is given by the 
number of keypoints with feature descriptors that are similar 
to the original keypoint descriptor within a summed 
Euclidean distance below a certain threshold (in our case, 
19200). The Spearman test shows that the similarity has a 
very weak negative correlation with the pose detection 
(r=0.053). 

D. Number of features (FN) 

The total number of features of a tracking target was 
intuitively expected to have an influence on the pose 

detection quality: Targets, which are poor on features, are 
generally hard to detect. The correlation test confirms a 
positive correlation (r=0.196). 

VII. TRACKING TARGET OPTIMIZATION 

In the following section, we discuss possibilities how to 
improve tracking target objects with common image 
manipulation tools. We applied sigmoidal non-linear contrast 
modification without saturating highlights or shadows (see 
[9]) using the image magic toolbox [10] to 40 target images 
and then submitted the manipulated images to the simulation 
tool chain, calculated R for 200 camera poses and 6 light 
levels. The “α” value indicates how much the contrast is 
increased and the “β” value defines where the mid-tones fall 
in the output image (0: white, 50%: middle-gray, 100%: 
black). 

The results were compared to the results from the 
original images. The analysis of R showed that the contrast 
enhancement has a positive effect to the tracking rate. For 
example, a contrast enhancement of α=14 and β=50% 
increases the tracking rate from 0.14 to 0.35, which can be 
explained by the corresponding increase in average 
texturedness from 21 to 33. Especially for difficult light 
situations, a large improvement can be achieved: for dark 
scenes (level 2) from 0.16 to 0.32 and for overexposed 
scenes (level 7) from 0.05 to 0.19. In Table I the results of 
the two examples - ”castle” (C) and “motor bike” (B) - are 
reported (entities defined in Section III). 

TABLE I.  SIMULATION RESULTS AND TRACKING TARGET 
CHARACTERISTICS FOR 2 EXAMPLES. 

 R FN FT FS FD 
C Original 0.15 1520 24 2.6 1.6 

C α=14, β=50%  0.44 1394 40 3.1 1.3 
B Original 0.55 1431 33 1.9 1.9 

B α=14, β=50%  0.67 1349 52 3.1 1.5 

 
To show the potential for improving detection results by 

optimizing the tracking target object for concrete examples, 
we present two randomly selected tracking target objects, 
which have been modified with different techniques. Fig. 2 
shows the target image “castle” and the modified images of 
the tracking target object. 

 
Figure 2.  Fig. 1. a) Original image, b) contrast α=5, β=50% c) contrast 
α=14, β=50%, d) added content, e) added structure, f) captured target 

object. 



TABLE III.  POSE RATIO R FOR TARGET “BIKE” Our feature distribution metric for the image indicated 
that features were predominantly clustered in specific 
subareas, which we alleviated by adding new content which 
fits into the image context (in this case we added a swarm of 
birds) to largely homogeneous texture regions (Fig. 2d). 
Increased contrast (Fig. 2b/c) and background structure 
which is unobtrusively embedded in the image (Fig. 2e) 
increase both, texturedness and feature distribution.We 
explored the effect of tracking target optimization with a real 
setup with a webcam and the printed targets. To ensure 
comparability of the tests, we used the robotic arm to capture 
images from predefined positions. In Table II, the detection 
rates for 4 illumination levels are presented for various 
modifications of the target image “castle” (Fig. 2). The 
controllable light source in this setup was a projector. An 
illumination level states a certain percentage of the 
maximum intensity of the projector: 100% equals white with 
max light emission and 0% equals to no light emission. The 
used illumination levels were: 30%: weak, 40%: moderate, 
50%: overexposed and 60%: highly overexposed. The results 
show that each of the optimization techniques achieves an 
improvement. Only the strong contrast enhancement for 
highly illuminated images shows a decline; which is likely 
caused by over-modulation. 

Illumination Intensity 30% 40% 50% 60% 
Original  1 1 0,97 0.82 

Contrast α=14,β=50% 1 1 1 0,97 

VIII. CONCLUSION 

This paper investigated how to characterize and optimize 
the appearance of tracking target objects and how the quality 
of pose detection can be predicted through simulation. Based 
on these results we demonstrated how to improve the pose 
estimation by slightly altering the tracking target object 
itself, which is a relatively new and unexplored approach. 

In the future, we plan to extend our work by considering 
additional tracking algorithms, which should lead to even 
more generalizable guidelines for tracking target design. The 
possibility of analyzing 3D targets instead of only 2D 
images, which can be generally supported by our system, 
offers a wide space for further investigations.  
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TABLE II.  POSE RATIO R FOR TARGET “CASTLE”. 

Illumination Intensity 30% 40% 50% 60% 
Original  0,58 0,86 0,81 0,53 

Contrast α=5, β=50%  0,94 0,96 0,90 0,73 
Contrast α=14,β=50% 0,94 0,98 0,79 0,40 

Added content  0,91 0,92 0,90 0,63 
Added structure  0,72 0,95 0,83 0,69 
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