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ABSTRACT 

Outdoor Augmented Reality typically requires tracking in 
unprepared environments. For global registration, Global 
Positioning System (GPS) is currently the best sensing 
technology, but its precision and update rate are not sufficient for 
high quality tracking. We present a system that uses Kalman 
filtering for fusion of Differential GPS (DGPS) or Real-Time 
Kinematic (RTK) based GPS with barometric heights and also for 
an inertial measurement unit with gyroscopes, magnetometers and 
accelerometers to improve the transient oscillation. Typically, 
inertial sensors are subjected to drift and magnetometer 
measurements are distorted by electro-magnetic fields in the 
environment. For compensation, we additionally apply a visual 
orientation tracker which is drift-free through online mapping of 
the unknown environment. This tracker allows for correction of 
distortions of the 3-axis magnetic compass, which increases the 
robustness and accuracy of the pose estimates. We present results 
of applying this approach in an industrial application scenario. 
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1 INTRODUCTION 

Augmented Reality (AR) is increasingly gaining acceptance 
outside of research labs in various application domains, such as 
industrial planning, utility maintenance or engineering.  
One important enabling factor is the evolution of AR setups 
towards ergonomically and socially more acceptable form factors, 
such for example handhelds and mobile phones. A second crucial 
enabling factor is accurate and robust global pose estimation for 
delivering high-quality registration and overlays. 
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For global outdoor registration, GPS is currently the best sensing 
technology, but its precision, update rate and quality deteriorates 
significantly in urban environments. We have designed and 
developed a hardware tracking module using Differential GPS 
(DGPS) or Real-Time Kinematic (RTK) based GPS. This 
hardware tracking module is suited for use for handheld AR 
devices due to its small weight and form factor. To obtain 
orientation estimates Inertial Measurement Units (IMU), 
combined with a magnetic compass are often used. To improve 
the orientation estimates we implemented a second Kalman filter 
that is able to estimate the orientation, velocities, accelerations 
and sensor biases by processing measurements obtained from 
gyroscopes (angular velocities), accelerometers (linear 
accelerations) and magnetometers (magnetic field). This filter 
eliminates the rather long transient oscillation behavior of the 
inertial sensor. 

The simultaneous requirements of real-time performance, 
robustness and low latency are not met by a single approach alone 
and require a solution that combines the strengths of different 
approaches. For example, the magnetometer is very susceptible to 
electromagnetic interference in outdoor environments, thus 
leading to deviation. Magnetic deviation is the error induced in a 
compass by local magnetic fields such as variations caused by 
mountains, iron ore deposits, etc or caused by electric circuits. 

A convincing tracking solution must overcome inherent 
limitations of individual techniques by combining different 
complementary methods. This work takes the common approach 
of combining visual trackers with inertial sensors. While the 
orientation information from the IMU and the position from GPS 
only provide complementary measurements of the camera pose, 
the video stream encodes relative motion information about both 
translation and rotation.  

For compensation of the drift of the inertial sensor and of the 
magnetic deviation effect induced by electro-magnetic influences, 
we additionally apply a drift-free, deviation-free visual tracker 
that allows for online learning of natural features. By online 
mapping of the unknown environment, this tracker detects and 
corrects the deviation of the 3-axis magnetic compass. This visual 
tracker improves both accuracy and robustness of the rotation 
estimation. 

Natural feature detection and tracking are an essential research 
area for AR. One promising research direction in visual tracking 
is model-based tracking. But these tracking systems rely on 
models of natural features such as architectural lines or feature 
points extracted from reference images. By contrast, the approach 
presented here does not use any models of the environment. The 
features to be tracked by our visual panorama tracker are 
dynamically determined at runtime. Still occlusions may provide 
wrong motion cues and generate a failure in the tracking system.  

 



For example, a pedestrian or large vehicle crossing the field of 
view can induce a motion in the visual tracker filter because the 
tracked features are occluded. A robust system should detect and 
recover from such disturbances. The visual tracker creates a map 
of features of the environment allowing the tracker to operate in a 
drift-free manner and to also immediately re-initialize and 
continue tracking, when the moving object left the field of view. 

The first contribution of this paper is the use of complex GPS 
and IMU data for global pose estimation. We use a differential 
GPS/IMU hardware module which is combined with barometric 
height measurements in a Kalman filter to improve the accuracy 
of the user’s 3D position estimate. The second contribution of this 
paper comprises the combination of the filtered inertial tracking 
with a drift-free visual panorama tracker that allows for online 
learning of natural features. By detecting and correcting of the 
deviation of the magnetometer housed in the inertial sensor, this 
visual tracker improves both accuracy and robustness of the 
rotation estimation. 

The paper is organized as follows. Section 2 discusses related 
work. In section 3 the used AR hardware platform is introduced. 
Section 4 highlights both the Position Kalman filtering and 
Attitude Kalman filtering approach, explains the visual panorama 
tracker and furthermore details the fusion of GPS, inertial and 
vision measurements. The high stability and accuracy of this 
multi-sensor fusion approach is demonstrated in a practical 
location-based application (see section 5) and evaluated against 
ground truth based on map data of the test site. Section 6 draws a 
final conclusion. 

2 RELATED WORK 

Outdoor augmented reality requires accurate tracking of 6D pose 
in unprepared environments. No single sensor provides all 6 
degrees of freedom while being robust, accurate and covering a 
large environment. Therefore a combination of sensors is usually 
used, with the most popular being GPS for global position and 
magnetic compasses and inertial sensors for orientation 
[6][7][13][16].  

However such systems are severely limited by the accuracy and 
update rate of GPS. While GPS can deliver good performance in 
open areas, its accuracy typically degrades severely in urban 
environments. Urban canyons of dense buildings block the line-
of-sight to satellites and produce multi path signals giving wrong 
distance measurements [15]. Additionally, foliage and roof 
structures attenuate signals leading to drop outs in position 
updates. Our system improves on existing work through using a 
custom DGPS/RTK receiver and fuses its output with barometric 
height information.  

For rotation estimation a magnetic compass provides a 
convenient absolute orientation with respect to the Earth's 
magnetic field. However, local electro-magnetic fields from 
industrial installations and general infrastructure can severely 
distort the field and thus produce large offsets in the estimated 
orientation. Better devices cannot compensate for this source of 
error and the resulting deviation needs to be estimated [11] with a 
second, redundant sensor.  

Possible choices for additional sensors are gyroscopes yielding 
an estimate of rotational velocity that can be integrated to give 
relative rotation, linear accelerometers yielding an estimate of 
gravity or computer vision-based tracking [17][22]. Gyroscopes 
suffer from drift through the integration step, thus creating their 
own offset in the orientation estimation which requires some 
manual calibration to remove [11][12]. 

Computer vision-based tracking can provide either relative 
measurements through optical flow or absolute measurements if a 
model of the observed environment is known [1][2][17]. In this 
work we chose a drift-free tracking method that estimates camera 
orientation with respect to a map of the environment which is 
created online [4]. As the map is not changed after initial creation, 
no drift is incurred. However, without any additional input the 
absolute orientation of this map with respect to the environment is 
unknown. 

3 HARDWARE PLATFORM 

We developed a handheld AR platform that is build around a 
Sony VAIO UX ultra-mobile PC with 1.06 GHz Pentium CPU 
based on the work of Kruijff [14] (see Figure 1). Alternatively, we 
employ the rugged UMPC Panasonic U1 featuring sunlight-
viewable touch screen and sealed all-weather design for 
demanding outdoor use. The handheld platform is equipped with 
various sensors. A UEye USB 2.0 camera using a 4.2mm wide-
angle lens provides the video-background and delivers the video 
frames, which are used as input for the visual tracker. The camera 
captures video frames with a resolution of 640×480 at 30 Hz. A 
3DOF inertial sensor (XSens MTi-G, built-in GPS receiver is not 
used) is mounted at the encasing at the back of the AR platform. 
Today’s high-tech GNSS receivers combine two standards (GPS, 
GLONASS) on two frequency bands (L1 and L2 for GPS and G1 
and G2 for GLONASS). We use a Novatel OEMV-1 L1 
DGPS/RTK receiver with an external antenna, which is 
eliminating multi-path signals. Furthermore, a 3G modem is used 
for connecting to the internet to receive NTRIP (Networked 
Transport of RTCM via Internet Protocol) GPS correction data via 
a serial connection from nearby reference stations. This 
continuous data stream is used to achieve positional accuracies in 
the sub-meter to centimeter range.  
 

 
 

Figure 1: Handheld outdoor AR platform. 

A seven-port USB hub connects all sensors with the USB port 
of the UMPC. The energy demands of these sensors together led 
us to use a special Lithium polymer battery (3200mAh), that 
supplies the GPS receiver and via a voltage transformer the USB 
hub too.  

Figure 2 depicts the tracking module, which has been designed 
towards low kinematic and high rotational movements. This is 
optimally suited for pedestrian outdoor user’s inspecting an 
environment with the handheld AR device. The update rate of the  



  
 

Figure 2: Novatel OEMV-1 receiver (DGPS/RTK) (11x6x3cm) 
placed in the middle of connectors, antenna and battery (left). Side 
view of the receiver (right). 

 
tracking module consists of the of inertial sensors update rate of 
25 Hz and the GPS update rate. The NTRIP GPS correction data 
is received every second while the GPS receiver itself has a higher 
update rate. The system is able to perform at around 20 Hz using 
this configuration. Only a few mobile AR systems have been 
built, which are using differential GPS/RTK tracking. For 
example, a mobile system was built by Höllerer et al. [9] or 
Piekarski and Thomas [16]. However, these systems use rather 
bulky hardware and limited sensor fusion and are therefore not 
suited for handheld AR. To the knowledge of the authors the 
described device is the only handheld AR system with integrated 
DGPS/RTK tracking support and sensor fusion support. 

4 GLOBAL POSE ESTIMATION USING MULTI-SENOR FUSION 

The overall tracking framework uses Kalman filtering with a 
constant velocity model for fusion of DGPS/RTK with barometric 
heights and uses an IMU with gyroscopes, magnetometers and 
accelerometers to improve the transient oscillation. In the 
following, this approach is described in more detail. For 
compensation of environmental electro-magnetic influences, we 
additionally apply a drift-free visual tracker. By online mapping 
of the unknown environment, this tracker allows for detecting and 
correcting the deviation of the 3-axis compass, which increases 
the robustness and accuracy of the pose estimates.Figure 3 shows 
the multi-sensor fusion system architecture. Since the considered 
application domain shows only little kinematic motion, using GPS 
for supporting the orientation estimates is not useful. Considering 
this, position and attitude is optimized in two separate Kalman 
filters. A dedicated Kalman filter component for position 
estimation is complemented with an Attitude Kalman filter for 
orientation estimation. To allow for correction of both deviation 
and bias the visual panorama tracker is combined with the 
Attitude Kalman filter using a Finite State Machine. To fulfill the 
high requirements of the application scenario concerning 
positional accuracy, a DGPS/RTK receiver is employed using 
differential corrections from the Austrian Positioning Service 
(APOS). The correction data from the reference station is 
delivered to the handheld device in RTCM 2.3 format and thereby 
reduce influences such as ionospheric or tropospheric effects. This 
way the accuracy of the position estimation can be improved 
significantly [20]. 

Data transmission is done via a 3G modem connection. A 
special software module was developed handling the dial-in 
procedure, the data routing, the data conversion and the data 
transfer to the GPS receiver. If the 3G connection is lost, the 
software module reconnects automatically. 

 
 

Figure 3: Multi-sensor fusion system architecture. 

Moreover, lever-Arm correction is performed, the data is prepared 
and the GPS receiver uses this data for calculating a DGPS/RTK 
position estimate. Next, the Position Kalman filter fuses the 
position estimate with the barometric height for the final position 
estimate, which is transformed into Universal Transverse 
Mercator (UTM) format. 

Raw data of the accelerometers, gyroscopes and magnetometers 
are preprocessed and converted. Then the Attitude Kalman filter 
fuses the delivered data resulting in roll, pitch and yaw as output. 
Two effects occur in combination with the attitude. First, the 
magnetic yaw is afflicted with a deviation. Second, the angular 
velocities of the gyroscopes show a bias, which results in a drift of 
the angles. The bias of the gyroscopes is considered and corrected 
by Kalman filter estimation.  

The magnetic yaw is deducted from the 3-axis magnetometer 
and refers to compass north. While the variation can be corrected, 
the deviation effect represents an unknown location-dependent 
term. Magnetic yaw and the angular rate of yaw of the gyroscope 
should support each other. Both have a variable term namely 
deviation and bias. Consequently, the simultaneous estimation of 
the deviation and bias of yaw cannot be determined within the 
Attitude Kalman filter. 

Only an additional input for yaw, which is without drift and 
without bias, would allow solving this problem. To solve this 
problem and achieve to also estimate the deviation of the 
magnetometer yaw, we introduce and apply a visual panorama 
tracker as additional input. By online tracking natural features and 
simultaneously mapping the environment, the visual tracker 
delivers drift-free and unbiased orientation estimates. At the 
beginning, the visual panorama tracker is initialized with the pitch 
of the inertial tracker, so that the user does not need to hold the 
AR device horizontally at startup. Furthermore, the visual 
panorama tracker is able to use the motion model of the inertial 
sensor to provide more accurate priors under fast motions. 
Classically, inertial sensors are better suited for measuring high-
frequency and rapid motion while the slower vision sensor 
performs best with low frequency motion and provides absolute 
references to reset the error. This multi-sensor fusion approach 
allows for detection and correction of both drift and bias of the 
inertial sensor. 

 

4.1       Position Kalman filtering approach 

To obtain the required position accuracy in real-time, GPS has to 
be used either in differential positioning mode (DGPS) or in 
relative positioning mode (RTK). Due to the measurement 



principle, the vertical GPS-accuracy (heights) is in general two 
times worse than the horizontal GPS-accuracy. After initializing 
the barometer (using GPS-heights as reference), the barometric 
height is more stable than GPS heights especially in the kinematic 
mode. Additional position information helps in overcoming GPS 
shadowing in urban regions. Therefore the Position Kalman filter 
performs a sensor fusion between GPS and barometer. The GPS 
height and the barometric height are combined in the filter with 
respect to their accuracies. Accurate measurements get higher 
weights. During the initialization step, the barometric height gets 
a small weight in such a way that the filtered height is exclusively 
affected by the GPS height. The equations of the Kalman filter are 
well-known and are therefore not repeated here [10]. The filter 
input consists of: 

• GPS position (geographical coordinates) 
• Barometric height (offset corrected) 

 
The observation vector z  and the state vector x  are defined as 
followed. 
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The barometric height is used as absolute height after correcting 
for the barometric offset. The barometric offset is estimated at the 
beginning. During the offset estimation the barometric height is 
not integrated in the filtering. 

 
The observation equations are linear and stated below. 
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The application which is covered in this paper implicates little 
dynamics. Therefore it is sufficient to consider a uniform motion 
for the dynamic model. In addition to the geographical 
coordinates itself, also their velocities have to be estimated in 
order to perform prediction. The dynamic model simply updates 
the position through integrating the velocities. 

 

4.2       Attitude Kalman filtering approach 

The Attitude Kalman filter performs a sensor fusion of 
gyroscopes, accelerometers and magnetometer. Pre-processed 
quantities of these sensors form the filter input and are described 
in detail later on: 

• Roll and pitch derived from triaxial accelerometers 
• Magnetic yaw 
• Gyroscopic angular rates of roll, pitch and yaw 

 
The observation vector z  and the state vector x  are defined in 
the following way. 
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Gyroscopic angular rates have biases which are estimated in this 
filter to avoid a temporal drift of the attitude angles. The linear 
observation equations are the following. 
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For a sufficiently small time interval in accordance with the 
measurement update rate (here 25 Hz), the biases are assumed to 
be constant. A uniform angular acceleration of the attitude angles 
is assumed for the dynamic model. Therefore, the angular rates 
and the angular accelerations of the attitude angles have to be 
estimated within the Kalman filter. The filtered magnetic yaw is 
still affected by magnetic deviation and magnetic declination. 

 
Gyroscope measurement model 

A triaxial gyroscope measures raw angular rates along the input 
axis in the body frame (BF). 
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These measurements can be converted into angular rates of roll, 
pitch and yaw. The angular rate of roll corresponds directly to the 
measured angular rate along the x-axis. 
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The angular rate of pitch is not only a function of measured 
angular rates along the y- and z-axis but also a function of the roll 
angle. It can be derived as followed. 
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The angular rate of yaw is a function of all the raw angular rates 
of the tripod and the leveling angles roll and pitch. 
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Magnetometer measurement model 

A triaxial magnetometer is needed to derive heading information. 
Thereby magnetic field strengths along three input axis in the 
body frame are measured. 
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In this context, the heading information derived from the 
magnetometer is called magnetic yaw (MY). The magnetic yaw 
does not equal the true yaw (TY). Due to the fact that a 
magnetometer corresponds to compass north, we prefer to stay 
with the predicate ‘magnetic’. The magnetic yaw is infected by 
magnetic variation (VAR) as well as magnetic deviation (DEV). 
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The magnetic yaw can be derived, if the leveling angles roll and 
pitch are known according to Caruso [3]. 
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Accelerometer measurement model 

The principle to obtain roll and pitch from a triaxial accelerometer 
according to Groves [8] is called leveling. This method implies 
that the observed accelerations along the input axis in the body 
frame are exclusively due to the gravitational acceleration. 
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The sensor must not be affected by additional accelerations. That 
accounts static measurements. With regard to this application the 
condition for using this method will be partly fulfilled. In case of 
sensor movement, the derived leveling angles get lower weight 
for the filtering. The leveling equations are stated below. 
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4.3       Visual tracking approach 

This subsection describes the implementation of the visual 
panorama tracker. For compensation of the deviation of the 
inertial sensor, which is induced by electro-magnetic influences, 
we additionally apply this visual tracker for detecting and 
correcting the deviation of the 3-axis magnetic compass. This 
visual tracker improves both accuracy and robustness of the 
rotation estimation. 

The visual panorama tracker assumes a purely rotational 
motion, ignoring any translational movement. A pure rotation 
does not create a parallax effect and hence the environment can be 
mapped onto a closed two-dimensional surface, such as a cube, 
sphere or cylinder. This technique is well known in computer 
graphics under the names environment mapping, reflection 
mapping or sky-box. Our visual tracker maps the environment 
onto a cylinder with a height of Π/2 relative to the radius, and can 
therefore map ~76.3 degrees vertically. Conceptually, the radius 
does not matter, so for convenience we set it to 1. 

Starting with a predefined initial direction, the tracker maps the 
environment on the fly, while the camera is moving. A similar 
technique has been presented by DiVerdi [5]. However, our 
mapping and tracking technique is much more efficient: 
DiVerdi’s approach requires intensive GPU processing to run in 
real-time, whereas our approach runs in real-time with minimal 
memory and CPU resources only. This is a significant 
characteristic, since makerless systems generally suffer from high 
computational costs. Compared to high-end PCs, small handheld 

devices, such as UMPCs have slow CPUs and GPUs. Hence, an 
efficient solution is mandatory. Our tests showed that the visual 
tracker requires between 1.5ms and 2.5ms per frame on a 
notebook with a 2.5GHz CPU and between 4.0ms and 6.5ms per 
frame on the handheld device. The speed depends on the number 
of new pixels that are drawn into the map. For a completed map 
the tracker therefore runs in ~4.0ms per frame on the UMPC, 
leaving enough processing power for other tasks. 

Even though its technical details are entirely different from 
traditional approaches of simultaneous localization and mapping 
(SLAM), the basic approach is similar: For each frame, the 
tracker first estimates a new pose from the camera image and then 
enters new features into the map. A major difference to classic 
SLAM systems is that our approach creates a dense map, but 
entries are not updated, once they are mapped. This is viable, 
because under a pure rotational motion the whole 2D state of a 
map feature is directly observable and the motion is sufficiently 
constrained.The orientation update step uses 2D-2D point 
correspondences between the environment map and the camera 
image. The point correspondences are matched using normalized 
cross correlation (NCC) on warped 8x8 pixel patches. The 
locations of the interest points are selected in the map using the 
FAST [18] corner detector in areas of the map that have already 
been finished. These keypoint locations are then projected into the 
camera image and searched in the close proximity to yield sub-
pixel accuracy. It is important to notice that we do not apply a 
keypoint detector, such as FAST on the whole camera image, 
which is one reason for the high speed of our approach. 

Once enough correspondences have been found (usually the 
tracker finds at least a several hundred), the tracker updates the 
rotation using Gauss-Newton iteration: We basically perform the 
same optimization as for a full camera pose, but ignore the 
position and calculate the Jacobians only for the three rotation 
parameters. An M-estimator is used to deal with re-projection 
errors. The final 3x3 system is then solved using Cholesky 
decomposition to yield the update vector for the rotation. Since 
the starting point is already close to the final solution only few (3-
5) iterations are required. 

After the rotation has been updated to match the current camera 
image, we project the camera image into the environment map. 
We use run-length encoded pixel spans to keep track of which 
parts of the map have already been mapped and which haven’t. 
Hence, every pixel of the map is filled only once. When a pixel in 
the map has been selected to be filled, we intersect its 3D cylinder 
position with the camera image, undistort the image coordinate, 
use bilinear filtering to extract the pixel intensity and finally 
correct for vignetting using a simple radial falloff model. 

The visual tracker works at a camera resolution of 320x240 
pixels. The map is created at a resolution of 2048x512 pixels. For 
a typical camera field of view of 60 degrees, the camera’s 
resolution is therefore close to the map’s resolution: 320 pixels / 
60 · 360 = 1920 ≈ 2048 pixels. The angular resolution of the map 
is therefore 360 degrees / 2048 pixels = 0.176 degrees per pixel 
with an average error of ~0.002 degrees per pixel (see Section 
5.3). This is much more accurate than a gyroscope sensor can 
deliver. Although errors accumulate over the map, the tracker is 
inherently free of drift.The visual tracker can perform loop 
closing to remove the accumulated error. The tracker therefore 
uses a map that is larger than 360 degrees horizontally (e.g. 405 
degrees) in order to create overlapping regions. Once enough 
overlap is available, the tracker uses template matching on the 
keypoints in the map to identify the exact overlap. Since no error 
model is available, we simply scale and shear the map to close the 
gap.  



4.4       Fusion of attitude with visual tracking 

We have implemented the integration of the inertial sensors 
attitude with the visual tracker orientation output using a state 
machine. This state machine is denoted as SM (Σ, S, S0, δ) and 
shown in Figure 4. Σ describes the five input conditions, S is the 
set of four states, S0 is the  initial state, an element of S, δ is the 
state-transition function: SSx →Σ:δ . Table 1 lists the 
combinations of states and transition conditions. ΔP (delta pose) 
denotes the difference between the orientations of visual and 
inertial tracker. 

The state machine starts in state S0, in which both the inertial 
and the visual tracker are valid. Despite a fix offset between the 
orientations of both trackers, the deviation is zero. The visual 
tracker uses the motion model of the inertial tracker to provide 
more accurate priors under fast motions. The final orientation is 
calculated by fusing the orientation of the visual tracker with the 
orientation of the inertial tracker. We use timestamps for assuring 
a correct synchronization of both trackers.  

A threshold set on ΔP  is responsible for deciding whether the 
two trackers are diverging or not. This threshold is empirically 
determined and is less than a few degrees. A second threshold, 
tracking the number of detected features in the image (20 in our 
experiments), is used for assessing the validity of the visual 
tracker. If more features than the threshold have been found in the 
image, the visual tracker can be trusted. 
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Figure 4: State machine SM {Σ, S0, S1, S2, S3, S4, δ}. 

 
In case magnetic deviation occurs, the orientation of the inertial 
tracker will change in respect to the orientation of the visual 
tracker. As long as the deviation varies, the visual tracker, which 
is now using its constant velocity motion model, is trusted more 
and its tracking results are taken as final orientation result (S1). In 
case the deviation decreases back towards zero, the transition is 
made to S0 (e.g. if a transient deviation occurs such as a large 
vehicle driving by). In case the introduced deviation stays 
constant and bigger than zero, the state machine changes to state 
S2. In this state also the visual tracker is trusted, since the inertial 
tracker is precise,  but not accurate now (e.g.  a constant deviation  

 
 
 

Table 1: State transition table 

 Current State (S) 
 
Condition (δ) 

 
S0 

 
S1 

 
S2 

 
S3 

 
S4 

ΔP varies S1 S1 S1 - - 
ΔP const = 0 S0 S0 - - - 
ΔP const > 0 - S2 S2 - - 
Visual tracker 
failed 

 
S3 

 
S4 

 
S3 

 
S4 

 
S4 

Visual tracker valid 
(re-initialized) 

 
- 

 
- 

 
- 

 
S1 

 
S1 

 
can be induced if the user moves into an area with different 
magnetic fields or if a magnetic field is introduced around a static 
user, for example, by switching on electric circuits).Also in state 
S2 the motion model of the inertial tracker is used for vision 
tracking. 

If the visual tracker fails, which can happen in states S0, S1 and 
S2, a transition to state S3 or S4 is performed, in which the 
inertial tracker must be assumed valid, since else no further 
tracking would be possible until the visual tracker re-initializes. 
The only difference between the state S3 and S4 is that in the 
latter state the previous known deviation is taken into account 
with the inertial measurements. Reasons for the failing of the 
visual tracker can be an abrupt or very fast rotational motion of 
the AR device. While the video stream of the camera delivers 
blurred images, the visual tracker will not find meaningful 
features. After the rotational motion decreases, the visual 
panorama tracker cannot be used again until it is re-initialized. 
Note, that during operation, the visual tracker builds a map of the 
environment on the fly. In case the part of the environment the 
camera is facing has already been mapped, the tracker is able to 
re-initialize immediately to the correct pose. If the current 
environment is new to the tracker, the orientation values of the 
inertial tracker need to be considered for re-initialization. 

5 RESULTS 

We have conducted extensive experiments to test the single 
tracking solutions separately as well as the overall multi-sensor 
fusion approach. We tested our system on live video using the 
hardware presented in section 3. Our application domain is the 
visualization of underground infrastructures, such as water mains 
and electricity lines [21]. Outdoor field workers are seeking to 
locate buried underground assets. The field worker equipped with 
the AR device walks to the location of interest, which needs to be 
determined with sub-meter accuracy (not much kinematic 
movement happens when the user arrives at the location). From 
this static location, the field worker inspects the underground 
infrastructure around him by scanning his surroundings with the 
handheld AR device, resulting in a circular motion. 

We have chosen a test site near our campus. For this 
experiment at the test site we semi-automatically generated an 
urban 3D model from data from geospatial databases delivered by 
the local utility company as described in [19]. The urban 3D 
model (see Figure 5) includes digital elevation model (DEM) of 
the test site, extruded building footprints, water and electricity 
lines, pavement border lines, street middle axis as well as 
surveyed reference points that can act as ground truth data. 



 
 

Figure 5: 3D model of the test site. The model includes a DEM, 
extruded building footprints and underground water and electricity 
lines. 
 

5.1       Position Kalman filter 

This test series uses the Position Kalman filter, which integrates 
the GPS and barometer sensor. A first test assessed the positional 
accuracy and precision of the GPS receiver and the APOS service 
in a static scenario. The comparison in Figure 6 shows the GPS 
C/A Code solution and the DGPS solution. Qualitatively it is 
visible that a more stable position can be calculated by using 
correction signals. Table 2 lists the measurements according to the 
plots in Figure 6. 
 

 
 
Figure 6: GPS C/A code solution (left), DGPS solution (right).
  

Table 2: Comparison of GPS and DGPS measurement solutions. 

 GPS C/A code  DGPS  
 
 

Mean Std 
dev 

Mean Std 
dev 

X 1.058  2.600 0.800 1.848 
Y 0.617 1.296 0.765 1.553 

   
Furthermore, a test of the Position Kalman filter was performed in 
a dynamic scenario, in which the user moves along a path and 
passes over known reference points, which are drawn in red color 
(see Figure 7). The test shows that the filtered DGPS position (in 
blue color) satisfies the accuracy requirements. After one minute, 
instead of the C/A Code solution, a DGPS position solution with 
higher accuracy is calculated by the receiver. After five minutes, 
positions estimates with sub-meter accuracy are calculated by the 
static receiver. Then, the known reference points were passed over 
with sub-meter accuracy. It can be observed, that when the user 
changes the direction of movement, a short post-pulse oscillation 
appears (see grey ellipsoids). 

 
 
 
 
 
 
 
 

Figure 7: Position estimates along a path using the Position Kalman 
filter. Gray ellipsoids depict post-pulse oscillation of the filter. Inlay:  
view of the cadastral map of the test site (compare to 3D model of 
Figure 5). Blue lines are vector map features of streets and 
pavements. Violet lines show building footprints with reference 
points at their corners. 

 

5.2      Attitude Kalman filter 

Moreover, we performed a series of tests to assess the accuracy of 
the inertial sensor as well as the stability and behavior over time 
of the Attitude Kalman filter, which is described in section 4.2. 
One test was conducted to observe the attitude during a test of the 
relative angular accuracy. During this experiment the inertial 
sensor was fixed on mount that was rotated in steps of 90 degrees 
between the five measurements of yaw. The duration of one 
measurement was 15 minutes. Table 3 shows that the relative 
accuracy of yaw is better than one degree under ideal conditions. 

 
Table 3: Attitude during test of relative angular accuracy. 

  Magnetic yaw 
[deg] 

Deg Mean Std 
dev 

Measured 
rotation of 
magnetic  
yaw [deg] 

180 178.44 0.12 0 
270 269.12 0.09 90.68 
360 359.29 0.07 90.17 
90 89.08 0.04 89.79 

180 178.52 0.17 89.44 
  

Next, we present a selection of interesting results from a series of 
measurements comparing the output of the inertial sensor with the 
Kalman filtered output. In the following scenario a user is 
observed under realistic conditions. In situation (a), the user holds 
the handheld AR device in her hands while taking the 
measurements. The following figures show a dataset in which the 
sensor was experiencing small vibrations from holding it in the 
hands. Additionally, at a later time the user turned the AR device 
by 90 degrees. No drift occurs during the test shown in dataset of 
Figure 8. In the diagrams the drift is marked by green dots. The 
results of situation (b) in which transient drift occurs, are shown 
in Figure 9. 

Figure 10 depicts the measurements of situation (c) in which 
permanent drift appears. The accuracy of the filtered yaw stays 
better than 10 degrees in all 3 situations. 
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Figure 8: Attitude during situation (a): Rotation of user, no drift (left: inertial sensor, right: Kalman filter attitude). 

 

Figure 9: Attitude during situation (b): Rotation of user, transient drift (left: inertial sensor, right: Kalman filter attitude). 

 

Figure 10: Attitude during situation (c): Rotation of user, permanent drift (left: inertial sensor, right: Kalman filter attitude). 

The experiments showed that the accuracy of yaw can be 
significantly increased because transient and permanent drift can 
be detected and their influence on yaw can be reduced. 

Figure 11 depicts roll, pitch and yaw of the inertial sensor that 
was assessed in a practical test, which used identical data for the 
comparison. Again, the AR platform was held in the user’s hands 
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and shivery motions affect the inertial sensor. In this practical test, 
the AR platform was rotated by 90 degrees in yaw direction.  

Results show that the Kalman filter attitude is more stable than 
the inertial sensor attitude. Especially, at the beginning a large 
difference between the attitudes occurs due to a slow transient 
oscillation. According to the manufacturer a lead time of 15 
minutes is suggested. Using the Kalman filtered approach, no lead 
time is necessary and the attitude can be used immediately. 
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Figure 11: Comparison of attitude (ACC - is derived from 

accelerometers, MAG is derived from magnetometer) 

 

5.3        Visual tracking 

Table 4  lists results from experiments assessing the accuracy of 
the visual tracker after having calibrated the camera. During the 
test, the camera, which is using a 4.2mm wide-angle lens, is fixed 
on a mount and rotated in steps of 30 and 90 degrees to the left 
and right starting at 0 degrees. At each step the orientation 
delivered by the tracker was measured for 15 minutes.  

 
Table 4: Yaw measurements of visual tracker. 

 Yaw of  
Visual tracker 

[deg] 
Deg Mean Std dev 

Measured  
Yaw of  
Visual 

tracker [deg] 
-120 -118.68 0.11 0 
-90 -89.20 0.07 29.48 

0 0.002 0.008 89.202 
90 88.96 0.32 88.94 

120 118.05 0.17 29.09 
 
A small bias towards underestimating the rotation is present in 

the visual tracking. This is corrected as soon as a loop-closure 
happens in the panorama. 

 

5.4        Combination of attitude with visual tracking 

This section presents results from applying the multi-sensor 
fusion system at the outdoor test site with disruptions from 
electro-magnetic fields. In this scenario, the user went on-site to a 
location, held the AR platform in her hands and was performing 
orientation movements. The user’s orientation was tracked using 
the state machine (described in section 4.4), which combines the 
orientation estimates of both the Kalman filtered inertial sensor 
and the visual panorama tracker.  

 
(a) 

 
(b) 

Figure 12: Map of the outdoor environment created by the visual 
panorama tracker.  (a) first image used for mapping the test site 
and calculating the features. (b) after rotational movements the 

tracker has mapped a larger area of the environment.   

Nearly 180 degrees of the horizontal panorama was mapped, since 
the full length of the image in Figure 12 represents 360 degrees. 
Simultaneously, the Attitude Kalman filter delivers improved 
orientation estimates. Figure 13 shows results from the multi-
sensor fusion approach, plotting the orientation values from both 
visual tracking and inertial tracking, together with the state of the 
fusion state machine. 

At the beginning, both trackers are valid and combined for 
calculating the final orientation. Within frames #25 to #75, the 
user rotates the handheld device. Both trackers continue to deliver 
accurate estimates. During frames #120 to about #210 the inertial 
tracker experiences transient deviation, caused by electro-
magnetic influences. Now, the visual tracker provides the final 
orientation. After the deviation disappeared, both trackers are 
combined again. At sample #345 the user performs fast, abrupt 
rotations. Hence, the video camera delivers blurred images, which 
causes the visual tracker to fail. Now, the inertial orientation is 
taken as final orientation. The user rotates the handheld device 
back again and near sample #460 the visual tracker re-initializes 
and continues tracking. Switching states depends on thresholds 
and exhibits some noise, but overall performs well.  

 

 
Figure 13: Comparison of yaw of the Kalman filtered inertial sensor 
with yaw of the visual panorama tracker under various conditions.
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Figure 14: Screenshot taken on AR platform showing underground 
assets (water mains are blue, electricity lines are in red colour) as 

well as wire frames of buildings. 

 
The bars underneath the diagram in Figure 13 indicate which 
tracker is used for calculating the final orientation, which is used 
for the augmentation. The green bar indicates that both trackers 
are used. The orange bar stands for visual tracking (V) and the 
blue bar stands for Kalman filtered inertial tracking (I). Figure 14  
gives an example screenshot taken of the application on the AR 
platform that shows superimposed models of buries assets and 
wire frame buildings supporting the user in locating these assets. 

6 CONCLUSION AND FUTURE WORK 

We presented a multi-sensor fusion system with integrated inertial 
and vision tracking technologies for registration of three-
dimensional overlays on the real environment. While providing 
sub-meter accuracy position estimates using differential GPS, the 
orientation estimates are significantly more robust and accurate.  

Inertial tracking has the advantages of range, and a system that 
is passive and self-contained. Its major disadvantage is its lack of 
accuracy and drift over time. The first effect of time-depended 
drift of the accelerometers angular rates is corrected by the 
Attitude Kalman filter. The second effect of location-depended 
deviations of yaw can be detected and corrected by using the 
visual panorama tracker. No model of the environment is needed 
for the visual tracker. This improves both the accuracy and the 
robustness of the tracking system and supports well aligned visual 
overlays to the user.Next steps will include performing a tight 
GPS/IMU coupling. Future work will also consider the extension 
of the visual tracker by taking kinematic movements into account. 
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