
© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

IEEE Computer Graphics and Applications
www.computer.org/cga

Making Augmented Reality Practical on Mobile
Phones, Part 2

Daniel Wagner and Dieter Schmalstieg

Vol. 29, No. 4

July/Aug. 2009

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

6 July/August 2009 Published by the IEEE Computer Society 0272-1716/09/$25.00 © 2009 IEEE

Projects in VR Editor: Lawrence Rosenblum
and Simon Julier

Making Augmented Reality Practical
on Mobile Phones, Part 2

Daniel
Wagner
and Dieter
Schmalstieg,
Graz
University of
Technology

In part 1, we introduced a software environment
for augmented reality (AR) on mobile phones,
discussed development and debugging strate-

gies, and showed how to execute several tasks of a
common AR system in parallel on a mobile device.
Here, we discuss how to overcome the most severe
limitations, such as memory, rendering speed, and
computational power. We analyze in detail where
an optimized mobile phone AR application spends
most of its processing time and give an outlook on
what to expect in the next few years.

Conservative Memory Bandwidth Usage
After the CPU’s processing capabilities, memory
bandwidth is typically the next most limiting factor
in computationally expensive phone applications.
Today’s mobile phones use a unifi ed memory archi-
tecture: CPU, GPU, camera, and video share a sin-
gle pool of general-purpose memory, which makes
memory bandwidth scarce. Unfortunately, owing to
the execution units’ parallel nature, benchmarking
memory-intensive code is often diffi cult.

To save battery life, memory is usually not only
small but also slow. A cache miss is therefore even
more expensive than on a PC. To make matters
worse, misses in the comparably small caches (typi-
cally 32 Kbytes) are more likely if data isn’t care-
fully structured.

Explicitly limiting bandwidth usage is therefore
essential for fast application performance. For ex-
ample, compact pixel formats such as RGB565 (16
bits) are preferable to RGB888 (24 bits) or even
RGBX8888 (32 bits). This is especially important
for implementing video backgrounds, which re-
quire uploading a large texture every frame. On
devices with very slow texture upload, downscal-
ing to half-size beforehand can produce consider-
ably faster overall performance.

When an application requires alpha support,
RGBA5551 or RGBA4444 is preferable. You can
save even more bandwidth by using compressed
texture formats. Owing to the complex compres-
sion schemes used by today’s GPUs, this approach

is viable only for static textures that can be com-
pressed offl ine.

Not only rendering but also computer vision
tasks benefi t from representing images in compact
pixel formats. Many mobile phone cameras provide
images in YUV format, which can be converted to
grayscale with minimal computation. Because most
computer vision trackers use grayscale internally,
YUV is preferable to RGB variants, which require
more memory and internal format conversions.

To improve cache usage in the renderer’s ver-
tex stage, vertex data should be passed in an in-
terleaved format. For static meshes, using vertex
buffer objects can increase speedup. Although the
driver typically won’t be able to store vertex data
in special memory owing to the unifi ed-memory
approach, it can reorder and preprocess vertex data
for optimal performance.

Scene-graph traversals should be kept to a mini-
mum. Ideally, a scene graph should be traversed
only once per frame, because the graph’s structure
(including nodes containing 3D mesh data) typi-
cally doesn’t fi t in the cache.

Rendering
The rendering step requires more device-specifi c
optimization than any other step of the AR pipe-
line. PCs typically have only one confi guration:
OpenGL or Direct3D abstracting the graphics
card. On mobile phones, several more different
APIs exist, of which usually only one is available
or provides optimal performance. OpenGL ES 1.x
(ES stands for “embedded systems”) supports only
a fi xed-function pipeline and can be programmed
in fi xed-point and fl oating-point data formats.
OpenGL ES 2.x doesn’t support the fi xed-point
data format or a fi xed-function pipeline; instead,
everything must be done using shaders.

Additionally, OpenGL ES 1.x can run in soft-
ware or on accelerated hardware. Exploiting each
confi guration is crucial for optimal performance.
Hardware rendering doesn’t permit direct frame
buffer access. So, the application must draw the

 IEEE Computer Graphics and Applications 7

video background using texturing. Software render-
ing is especially slow in texturing but allows direct
frame buffer access. Hence, it’s important to render
the video background by directly copying it into the
frame buffer to achieve meaningful performance.

Another topic to consider is a floating-point ver-
sus a fixed-point data format for geometry. De-
pending on the device-specific implementation,
either one can lead to better performance. Using
vertex buffer objects is usually preferable because
it allows converting static data into whatever for-
mat the renderer prefers internally.

Fixed-Point Mathematics
Many numerical algorithms for computer vision
or graphics intensively use floating-point opera-
tions. PC CPUs have dedicated floating-point units
and can even interleave floating-point and integer
operations so that algorithms can execute faster
when using both floating-point and integer units
than when using integers only.

In contrast, most mobile phone CPUs don’t have
floating-point units. Instead, the compiler must in-
sert floating-point emulation code where required.
Consequently, floating-point calculations are typi-
cally approximately 40 times slower than their in-
teger variants. Avoiding floating-point operations
is therefore essential to achieve high performance.
Unfortunately, this often means rewriting critical
code sections. This implies that careful dynamic
code profiling is necessary to determine an algo-
rithm’s most time-critical sections and concen-
trating optimization efforts there.

As a quick first improvement, replacing double-
precision floating-point types with single-precision
types alleviates arithmetic units and preserves
memory bandwidth. However, major speedup will
occur only if you replace floating-point code with
integer or fixed-point variants. ARM CPUs can
perform barrel (bit) shifting as an integral part of
most operands, which means that fixed-point and
integer math perform almost identically.

Two general problems with fixed-point usage are
reduced precision and numeric range. Development
of fast, high-precision basic functions such as sines,
cosines, or square roots can require much effort. It’s
usually more efficient to determine the precision
requirements and then implement trigonometric
and other basic functions using lookup tables and
possibly interpolation. You can implement scalar
inversion (1/x) and inverse square roots (and hence
also regular square roots) using Newton-Raphson
iteration. Although these primitives are often part
of open source packages for embedded platforms,
advanced primitives such as SVD (singular value

decomposition) or Cholesky factorization (both
required for 3D computer vision) typically aren’t
available in fixed-point format.

Although fixed-point programming is tedious,
it’s currently a key factor in achieving fast perfor-
mance of typical research applications on mobile
phones. A fixed-point implementation alone might
be less attractive on a fully featured CPU with a
floating-point unit. However, we’ve found that
fixed-point algorithms tend to be generally more
optimized with respect to cache coherence and
memory bandwidth, and are therefore often faster
than their conventional counterparts.

Sporadic, Low-Bandwidth Networking
The low processing capabilities of mobile phones
and similar embedded platforms naturally raise the
idea of outsourcing computationally intensive tasks
to a powerful server. However, with mobile comput-
ing, connectivity can change over time. In contrast
to stationary computing, for mobile phones, loss of

connection isn’t an exception but a rule. For exam-
ple, a user might deliberately turn off networking
support or enter an area without connectivity. So,
you should treat networking as an option to enable
special features or boost performance.

Past research tried thin-client approaches to
outsource tasks such as image processing and ren-
dering to wirelessly connected servers. With these
approaches, bandwidth quickly becomes the limit-
ing factor. Data compression can’t overcome this
problem because it consumes too much processing
power or—for lossy image compression—degrades
quality too severely. One of our early experiments
in phone tracking involved sending thresholded,
run-length compressed images (typically 2 Kbytes)
to a server for image analysis. Although bandwidth
didn’t pose a serious problem, the network round-
trip time induced so much latency that we instead
used faster local image processing on the phone.

Another networking challenge arises from mas-
sive multiuser applications. Theoretically, peer-to-
peer architectures scale better with the number of
users, but this assumes continuous connectivity for
keeping replicated data in sync. In a client-server

Although fixed-point programming is
tedious, it’s currently a key factor in
achieving fast performance of typical
research applications on mobile phones.

8 July/August 2009

Projects in VR

architecture, setting up server operation takes ad-
ditional effort, but you can compensate for this by
storing important state at the server and letting
sporadically connected clients synchronize with
the server-side state. The server can perform house-
keeping operations for application-specific simula-
tion without relying on clients. Moreover, you can
use the server to provide static data such as textures
or sound files on demand.

Testing AR Performance on Current Phones
To estimate how each stage of an AR pipeline for

mobile phones affects performance in practical
terms, we performed three benchmarks on five low-
to high-end smartphones (see Table 1). The bench-
marks (see Figure 1) were

a textured cube, which represented a minimal ■

workload application;
a textured model of the Venus of Willendorf ■

model, which had 2,625 triangles and repre-
sented a typical high-quality 3D model; and
an (untextured) CAD model of a car, which had ■

25,652 triangles.

Although the third model is clearly too big for most
phones, we used it to estimate next-generation de-
vices’ performance.

We ran the benchmarks in seven configurations,
each successively adding more steps of the AR
pipeline and increasing the overall workload. Each
new step depends on the previous steps’ outcomes
and slightly influences the following steps’ per-
formance owing to different cache and memory
loads. So, we decided to not treat each step inde-
pendently but to evaluate each new step together
with its pipeline predecessors.

Figure 2 shows the results for all seven configura-
tions. Test configuration 1 ran an empty main loop,
which rendered an empty (black) rectangle on the
screen. All the phones performed extremely well with
the empty main loop. They had enough processing
power to blit the screen at 150 frames per second
or more. (A blit copies the screen content into video

Table 1. Smartphones used in the benchmark tests.

Smartphone CPU MHz GPU

HTC Tornado TI OMAP850 200 None

HTC Excalibur TI OMAP850 200 None

Palm Treo700W Intel XScale 312/520* None

Motorola Q Intel XScale 312 None

Motorola Q9 TI OMAP2420 330 On the CPU

* We overclocked the CPU to 520 MHz to compare the clock rate’s influence.

(a) (b) (c)

Figure 1. Test models rendered for benchmarking: (a) a textured cube,
(b) a Venus of Willendorf model, and (c) a model of a car. The cube
represents a minimal workload, the Venus represents a typical workload,
and the car represents a maximal workload.

1

8

64

512

Empty
main loop

Video
capturing

Video
background
rendering

Tracking Cube Venus Car

HTC Tornado

Motorola Q

HTC Excalibur

Motorola Q9 SW

Treo700W @ 312

Motorola Q9 HW

Treo700W @ 520

Figure 2.
Benchmark
results in
logarithmic
scale. Each
successive test
increased the
workload on
the mobile
phones.

 IEEE Computer Graphics and Applications 9

memory, making it visible.) So, this step no longer
posed a noticeable bottleneck. The AR framework’s
overhead is negligible: even on the slowest phones,
it added up to less than 7 milliseconds.

Test 2 added video capturing, which introduced
a highly different workload on the various devices
we used in our tests. Although the Q9 hardly lost
any performance, all other devices suffered enor-
mously. The main reason is that the Q9 delivers
images in RGB565 directly, whereas the other
devices must convert YUV12 to RGB565, which
demands much processing power. Although our
software contains optimized code for this con-
version, it still slowed down overall performance
considerably. Yet some phones such as the Excali-
bur lost more performance than others, possibly
because of memory bandwidth limitations.

Test 3 added video background rendering. This
test produced results inverse to those of image cap-
ture: the Q9 lost the most performance. In partic-
ular, the hardware-accelerated version performed
worse than the version using software rendering.
This performance loss is no surprise because the
Q9 must upload the video into a texture and ren-
der that texture. The other devices, running soft-
ware rendering only, can directly copy the camera
image into the frame buffer instead. So, the Treo
outperformed the Q9, even when not overclocked.

Test 4 included tracking, therefore forming a
complete AR pipeline except for 3D rendering.
Adding tracking affected all phones similarly. Nev-
ertheless, the Q9 and Treo performed far above
the rest. Yet even the Excalibur still performed at
17.7 frames per second. Taking the difference in
timing between this and the previous test, we esti-
mate that tracking takes 22.3 milliseconds on the
slow Excalibur and only 9.8 milliseconds on the
overclocked Treo. As we’ve previously pointed out,
tracking scales almost linearly with the CPU’s clock
rate, independent of the CPU manufacturer.1

Tests 5 through 7 also rendered the three objects
in Figure 1, thereby putting different workloads on
the rendering subsystem. On these tests, all phones
performed similarly on the cube and the Venus, de-
spite the latter’s considerably larger polygon count.
Obviously the 870 vertices, grouped efficiently in a
single triangle strip, created no big bottleneck for
the software-implemented vertex stage.

However, the car model created a noticeable burden
on all phones, including the hardware-accelerated
Q9. Whereas the Excalibur and Tornado ran at
frame rates below what can be considered real
time in AR, the other devices maintained interac-
tive rates. Only the Q9 ran at 15 frames per sec-
ond, its maximum frame rate.

In this article’s two parts, we’ve presented guide-
lines and best practices gained from developing

AR applications on mobile phones over six years.
We strongly believe that owing to fundamentally
different design goals, mobile phones will remain
a device class separate from desktop and notebook
computers in the foreseeable future. So, many of
the general restrictions we’ve discussed will remain
valid. Unless an unexpected major breakthrough
occurs in embedded-circuit or battery research, mo-
bile phone hardware will remain an order of mag-
nitude less capable than PCs. Instead, small form
factors and optimized battery usage will probably
continue to drive mobile phone design. This implies
that techniques for real-time processing on mobile
devices will remain different from PCs despite ad-
vances on both platforms.

Today, only few high-end phones have built-in
hardware floating-point units. In a few years, most
mobile phones will likely ship with hardware sup-
port for OpenGL ES 2.0. Unlike OpenGL ES 1.x,
it doesn’t support fixed-point operations, which
makes floating-point units mandatory for mean-
ingful operation on all mobile devices and might
significantly accelerate many algorithms.

However, the processing power of the mobile
phones’ main CPU core probably won’t increase
dramatically, owing to power limitations. It seems
more likely that CPUs will acquire more special-
purpose units, such as for graphics, video process-
ing, and digital signal processing. The introduction
of cross-platform standard APIs such as Open-
KODE (www.khronos.org/openkode) or OpenCL
(www.khronos.org/opencl) will allow simplified
access to these features.

Reference
 1. D. Wagner and D. Schmalstieg, “ARToolKitPlus for Pose

Tracking on Mobile Devices,” Proc. 12th Computer
Vision Winter Workshop (CVWW 07), Verlag der
Technischen Universität Graz, 2007, pp. 139–146;
www.icg.tu-graz.ac.at/Members/daniel/Publications/
ARToolKitPlus.

Daniel Wagner is a postdoctoral researcher at the
Graz University of Technology and deputy director of
the Christian Doppler Laboratory for Handheld Aug-
mented Reality. Contact him at wagner@icg.tugraz.at.

Dieter Schmalstieg is a professor of virtual real-
ity and computer graphics at the Graz University
of Technology, where he directs the Studierstube re-
search project on augmented reality. Contact him at
schmalstieg@icg.tugraz.at.

