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In part 1, we introduced a software environment 
for augmented reality (AR) on mobile phones, 
discussed development and debugging strate-

gies, and showed how to execute several tasks of a 
common AR system in parallel on a mobile device. 
Here, we discuss how to overcome the most severe 
limitations, such as memory, rendering speed, and 
computational power. We analyze in detail where 
an optimized mobile phone AR application spends 
most of its processing time and give an outlook on 
what to expect in the next few years.

Conservative Memory Bandwidth Usage
After the CPU’s processing capabilities, memory 
bandwidth is typically the next most limiting factor 
in computationally expensive phone applications. 
Today’s mobile phones use a unifi ed memory archi-
tecture: CPU, GPU, camera, and video share a sin-
gle pool of general-purpose memory, which makes 
memory bandwidth scarce. Unfortunately, owing to 
the execution units’ parallel nature, benchmarking 
memory-intensive code is often diffi cult.

To save battery life, memory is usually not only 
small but also slow. A cache miss is therefore even 
more expensive than on a PC. To make matters 
worse, misses in the comparably small caches (typi-
cally 32 Kbytes) are more likely if data isn’t care-
fully structured.

Explicitly limiting bandwidth usage is therefore 
essential for fast application performance. For ex-
ample, compact pixel formats such as RGB565 (16 
bits) are preferable to RGB888 (24 bits) or even 
RGBX8888 (32 bits). This is especially important 
for implementing video backgrounds, which re-
quire uploading a large texture every frame. On 
devices with very slow texture upload, downscal-
ing to half-size beforehand can produce consider-
ably faster overall performance.

When an application requires alpha support, 
RGBA5551 or RGBA4444 is preferable. You can 
save even more bandwidth by using compressed 
texture formats. Owing to the complex compres-
sion schemes used by today’s GPUs, this approach 

is viable only for static textures that can be com-
pressed offl ine.

Not only rendering but also computer vision 
tasks benefi t from representing images in compact 
pixel formats. Many mobile phone cameras provide 
images in YUV format, which can be converted to 
grayscale with minimal computation. Because most 
computer vision trackers use grayscale internally, 
YUV is preferable to RGB variants, which require 
more memory and internal format conversions.

To improve cache usage in the renderer’s ver-
tex stage, vertex data should be passed in an in-
terleaved format. For static meshes, using vertex 
buffer objects can increase speedup. Although the 
driver typically won’t be able to store vertex data 
in special memory owing to the unifi ed-memory 
approach, it can reorder and preprocess vertex data 
for optimal performance.

Scene-graph traversals should be kept to a mini-
mum. Ideally, a scene graph should be traversed 
only once per frame, because the graph’s structure 
(including nodes containing 3D mesh data) typi-
cally doesn’t fi t in the cache.

Rendering
The rendering step requires more device-specifi c 
optimization than any other step of the AR pipe-
line. PCs typically have only one confi guration: 
OpenGL or Direct3D abstracting the graphics 
card. On mobile phones, several more different 
APIs exist, of which usually only one is available 
or provides optimal performance. OpenGL ES 1.x 
(ES stands for “embedded systems”) supports only 
a fi xed-function pipeline and can be programmed 
in fi xed-point and fl oating-point data formats. 
OpenGL ES 2.x doesn’t support the fi xed-point 
data format or a fi xed-function pipeline; instead, 
everything must be done using shaders.

Additionally, OpenGL ES 1.x can run in soft-
ware or on accelerated hardware. Exploiting each 
confi guration is crucial for optimal performance. 
Hardware rendering doesn’t permit direct frame 
buffer access. So, the application must draw the 
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video background using texturing. Software render-
ing is especially slow in texturing but allows direct 
frame buffer access. Hence, it’s important to render 
the video background by directly copying it into the 
frame buffer to achieve meaningful performance.

Another topic to consider is a floating-point ver-
sus a fixed-point data format for geometry. De-
pending on the device-specific implementation, 
either one can lead to better performance. Using 
vertex buffer objects is usually preferable because 
it allows converting static data into whatever for-
mat the renderer prefers internally.

Fixed-Point Mathematics
Many numerical algorithms for computer vision 
or graphics intensively use floating-point opera-
tions. PC CPUs have dedicated floating-point units 
and can even interleave floating-point and integer 
operations so that algorithms can execute faster 
when using both floating-point and integer units 
than when using integers only.

In contrast, most mobile phone CPUs don’t have 
floating-point units. Instead, the compiler must in-
sert floating-point emulation code where required. 
Consequently, floating-point calculations are typi-
cally approximately 40 times slower than their in-
teger variants. Avoiding floating-point operations 
is therefore essential to achieve high performance. 
Unfortunately, this often means rewriting critical 
code sections. This implies that careful dynamic 
code profiling is necessary to determine an algo-
rithm’s most time-critical sections and concen-
trating optimization efforts there.

As a quick first improvement, replacing double-
precision floating-point types with single-precision 
types alleviates arithmetic units and preserves 
memory bandwidth. However, major speedup will 
occur only if you replace floating-point code with 
integer or fixed-point variants. ARM CPUs can 
perform barrel (bit) shifting as an integral part of 
most operands, which means that fixed-point and 
integer math perform almost identically.

Two general problems with fixed-point usage are 
reduced precision and numeric range. Development 
of fast, high-precision basic functions such as sines, 
cosines, or square roots can require much effort. It’s 
usually more efficient to determine the precision 
requirements and then implement trigonometric 
and other basic functions using lookup tables and 
possibly interpolation. You can implement scalar 
inversion (1/x) and inverse square roots (and hence 
also regular square roots) using Newton-Raphson 
iteration. Although these primitives are often part 
of open source packages for embedded platforms, 
advanced primitives such as SVD (singular value 

decomposition) or Cholesky factorization (both 
required for 3D computer vision) typically aren’t 
available in fixed-point format.

Although fixed-point programming is tedious, 
it’s currently a key factor in achieving fast perfor-
mance of typical research applications on mobile 
phones. A fixed-point implementation alone might 
be less attractive on a fully featured CPU with a 
floating-point unit. However, we’ve found that 
fixed-point algorithms tend to be generally more 
optimized with respect to cache coherence and 
memory bandwidth, and are therefore often faster 
than their conventional counterparts.

Sporadic, Low-Bandwidth Networking
The low processing capabilities of mobile phones 
and similar embedded platforms naturally raise the 
idea of outsourcing computationally intensive tasks 
to a powerful server. However, with mobile comput-
ing, connectivity can change over time. In contrast 
to stationary computing, for mobile phones, loss of 

connection isn’t an exception but a rule. For exam-
ple, a user might deliberately turn off networking 
support or enter an area without connectivity. So, 
you should treat networking as an option to enable 
special features or boost performance.

Past research tried thin-client approaches to 
outsource tasks such as image processing and ren-
dering to wirelessly connected servers. With these 
approaches, bandwidth quickly becomes the limit-
ing factor. Data compression can’t overcome this 
problem because it consumes too much processing 
power or—for lossy image compression—degrades 
quality too severely. One of our early experiments 
in phone tracking involved sending thresholded, 
run-length compressed images (typically 2 Kbytes) 
to a server for image analysis. Although bandwidth 
didn’t pose a serious problem, the network round-
trip time induced so much latency that we instead 
used faster local image processing on the phone.

Another networking challenge arises from mas-
sive multiuser applications. Theoretically, peer-to-
peer architectures scale better with the number of 
users, but this assumes continuous connectivity for 
keeping replicated data in sync. In a client-server 

Although fixed-point programming is 
tedious, it’s currently a key factor in 
achieving fast performance of typical 
research applications on mobile phones.
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architecture, setting up server operation takes ad-
ditional effort, but you can compensate for this by 
storing important state at the server and letting 
sporadically connected clients synchronize with 
the server-side state. The server can perform house-
keeping operations for application-specific simula-
tion without relying on clients. Moreover, you can 
use the server to provide static data such as textures 
or sound files on demand.

Testing AR Performance on Current Phones
To estimate how each stage of an AR pipeline for 

mobile phones affects performance in practical 
terms, we performed three benchmarks on five low- 
to high-end smartphones (see Table 1). The bench-
marks (see Figure 1) were

a textured cube, which represented a minimal  ■

workload application;
a textured model of the Venus of Willendorf  ■

model, which had 2,625 triangles and repre-
sented a typical high-quality 3D model; and
an (untextured) CAD model of a car, which had  ■

25,652 triangles.

Although the third model is clearly too big for most 
phones, we used it to estimate next-generation de-
vices’ performance.

We ran the benchmarks in seven configurations, 
each successively adding more steps of the AR 
pipeline and increasing the overall workload. Each 
new step depends on the previous steps’ outcomes 
and slightly influences the following steps’ per-
formance owing to different cache and memory 
loads. So, we decided to not treat each step inde-
pendently but to evaluate each new step together 
with its pipeline predecessors.

Figure 2 shows the results for all seven configura-
tions. Test configuration 1 ran an empty main loop, 
which rendered an empty (black) rectangle on the 
screen. All the phones performed extremely well with 
the empty main loop. They had enough processing 
power to blit the screen at 150 frames per second 
or more. (A blit copies the screen content into video 

Table 1. Smartphones used in the benchmark tests.

Smartphone CPU MHz GPU

HTC Tornado TI OMAP850 200 None

HTC Excalibur TI OMAP850 200 None

Palm Treo700W Intel XScale 312/520* None

Motorola Q Intel XScale 312 None

Motorola Q9 TI OMAP2420 330 On the CPU

* We overclocked the CPU to 520 MHz to compare the clock rate’s influence.

(a) (b) (c)

Figure 1. Test models rendered for benchmarking: (a) a textured cube, 
(b) a Venus of Willendorf model, and (c) a model of a car. The cube 
represents a minimal workload, the Venus represents a typical workload, 
and the car represents a maximal workload.

1

8

64

512

Empty
main loop

Video
capturing

Video
background
rendering

Tracking Cube Venus Car

HTC Tornado

Motorola Q

HTC Excalibur

Motorola Q9 SW

Treo700W @ 312

Motorola Q9 HW

Treo700W @ 520

Figure 2. 
Benchmark 
results in 
logarithmic 
scale. Each 
successive test 
increased the 
workload on 
the mobile 
phones.



 IEEE Computer Graphics and Applications 9

memory, making it visible.) So, this step no longer 
posed a noticeable bottleneck. The AR framework’s 
overhead is negligible: even on the slowest phones, 
it added up to less than 7 milliseconds.

Test 2 added video capturing, which introduced 
a highly different workload on the various devices 
we used in our tests. Although the Q9 hardly lost 
any performance, all other devices suffered enor-
mously. The main reason is that the Q9 delivers 
images in RGB565 directly, whereas the other 
devices must convert YUV12 to RGB565, which 
demands much processing power. Although our 
software contains optimized code for this con-
version, it still slowed down overall performance 
considerably. Yet some phones such as the Excali-
bur lost more performance than others, possibly 
because of memory bandwidth limitations.

Test 3 added video background rendering. This 
test produced results inverse to those of image cap-
ture: the Q9 lost the most performance. In partic-
ular, the hardware-accelerated version performed 
worse than the version using software rendering. 
This performance loss is no surprise because the 
Q9 must upload the video into a texture and ren-
der that texture. The other devices, running soft-
ware rendering only, can directly copy the camera 
image into the frame buffer instead. So, the Treo 
outperformed the Q9, even when not overclocked.

Test 4 included tracking, therefore forming a 
complete AR pipeline except for 3D rendering. 
Adding tracking affected all phones similarly. Nev-
ertheless, the Q9 and Treo performed far above 
the rest. Yet even the Excalibur still performed at 
17.7 frames per second. Taking the difference in 
timing between this and the previous test, we esti-
mate that tracking takes 22.3 milliseconds on the 
slow Excalibur and only 9.8 milliseconds on the 
overclocked Treo. As we’ve previously pointed out, 
tracking scales almost linearly with the CPU’s clock 
rate, independent of the CPU manufacturer.1

Tests 5 through 7 also rendered the three objects 
in Figure 1, thereby putting different workloads on 
the rendering subsystem. On these tests, all phones 
performed similarly on the cube and the Venus, de-
spite the latter’s considerably larger polygon count. 
Obviously the 870 vertices, grouped efficiently in a 
single triangle strip, created no big bottleneck for 
the software-implemented vertex stage.

However, the car model created a noticeable burden 
on all phones, including the hardware-accelerated  
Q9. Whereas the Excalibur and Tornado ran at 
frame rates below what can be considered real 
time in AR, the other devices maintained interac-
tive rates. Only the Q9 ran at 15 frames per sec-
ond, its maximum frame rate.

In this article’s two parts, we’ve presented guide-
lines and best practices gained from developing 

AR applications on mobile phones over six years. 
We strongly believe that owing to fundamentally 
different design goals, mobile phones will remain 
a device class separate from desktop and notebook 
computers in the foreseeable future. So, many of 
the general restrictions we’ve discussed will remain 
valid. Unless an unexpected major breakthrough 
occurs in embedded-circuit or battery research, mo-
bile phone hardware will remain an order of mag-
nitude less capable than PCs. Instead, small form 
factors and optimized battery usage will probably 
continue to drive mobile phone design. This implies 
that techniques for real-time processing on mobile 
devices will remain different from PCs despite ad-
vances on both platforms.

Today, only few high-end phones have built-in 
hardware floating-point units. In a few years, most 
mobile phones will likely ship with hardware sup-
port for OpenGL ES 2.0. Unlike OpenGL ES 1.x, 
it doesn’t support fixed-point operations, which 
makes floating-point units mandatory for mean-
ingful operation on all mobile devices and might 
significantly accelerate many algorithms.

However, the processing power of the mobile 
phones’ main CPU core probably won’t increase 
dramatically, owing to power limitations. It seems 
more likely that CPUs will acquire more special-
purpose units, such as for graphics, video process-
ing, and digital signal processing. The introduction 
of cross-platform standard APIs such as Open-
KODE (www.khronos.org/openkode) or OpenCL 
(www.khronos.org/opencl) will allow simplified 
access to these features. 
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