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In the past few years, mobile phones have be-
come an increasingly attractive platform for 
augmented reality (AR; see Figure 1 for some 

examples). According to Gartner, 1.22 billion mo-
bile phones were sold in 2008.1 Some forecasts 
estimate that this number will rise to 1.8 billion 
units in 2012, of which 800 million are expected 
to be smartphones.2 Although not all these de-
vices are open for custom software development, 
the trend toward open software environments for 
mobile phones seems inevitable.

In 2003, we started an AR framework for mo-
bile phones (for a glimpse of other research on AR 
for mobile phones, see the sidebar). We intended 
its fi rst generation as primarily a proof of feasibil-
ity. The second generation was an attempt to port 
a fully featured PC-based AR framework, Studiers-
tube 4 (http://studierstube.org), to a phone plat-
form. You can port existing applications and make 
them run on mobile phones. However, as we had to 
painfully experience ourselves, this approach typi-
cally produces slow, bloated, and unstable software. 
Optimally using phones’ scarce resources requires 
different algorithms and architectural decisions 
than for PCs, leading to a complete reengineering 
of an existing solution.

So, for the third generation, Studierstube ES, 
we largely abandoned compatibility requirements 
and added new elements to the design, such as 
an asymmetric client-server technique, that are 
specifi c to mobile devices.3 In this fi rst install-
ment of our two-part tale of Studierstube ES and 
what we’ve learned along the way, we describe the 
mobile phone platform’s restrictions and how our 
software architecture allows fast development of 
mobile phone AR applications.

Software Architecture
A major difference between PCs and mobile devices 
is the amount and bandwidth of available memory. 
Mobile devices still can handle only a few mega-
bytes per application. Memory access is compara-
tively slow, and even the transfer of megabytes of 

application code over the air is costly in some cases. 
Consequently, software frameworks must be at least 
an order-of-magnitude slimmer than is common 
on PCs. This constrains many design decisions—for 
example, heavy use of templated C++ code results 
in a prohibitive increase in code size. For instance, 
Studierstube 4 has a modest 8 Mbytes of binary for 
a minimally useful set, and other AR frameworks 
are reportedly 5–10 times larger.

In contrast, the binary of Studierstube ES for 
Windows Mobile 5 is about 1 Mbyte, with all stan-
dard features enabled as shown in Figure 2. A posi-
tive side effect of such a lean approach is that the 
framework also runs very fast on a PC, which we 
use mainly for prototyping mobile applications.

Studierstube ES’s main duties are hardware and 
API abstraction as well as providing high-level ser-
vices to applications built on top of it. At its lower 
levels (Studierstube Core), it unifi es native APIs 
such as for window management, user input, and 
fi le or camera access, for all supported platforms. 
The complete software stack can be compiled to 
use either fi xed- or fl oating-point mathematics, to 
optimally support every possible device.

Studierstube ES applications typically generate 
graphical output by manipulating scene-graph ob-
jects, running on top of OpenGL ES (1.x and 2.x), 
OpenGL, or Direct3D Mobile. Although these APIs 
are quite different, they target the same hardware and 
can therefore be abstracted with a very thin layer.

Tracking pose with six degrees of freedom in real 
time is a fundamental requirement of any AR sys-
tem. Studierstube Tracker is a high-performance 
tracking library for mobile phones. We developed 
it from scratch to optimally support tracking with 
limited resources. It supports multiple types of 
artifi cial fi ducials and, recently, natural-feature 
tracking. There are no heap allocations at run-
time, and Tracker stores data in cache-friendly 
data structures. So, the average smart phone can 
analyze a typical image in approximately 10 milli-
seconds, which leaves enough memory for graphics-
intensive applications.
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To facilitate persistent location-based applica-
tions and multiuser collaboration, we designed a 
client-server system for multiuser applications. The 
server consists of a proprietary XML database com-
bined with a finite-state machine. We designed it 
to run in real time with hundreds of clients. The 
server manages communication among clients and 
stores transient and persistent client data. This ar-
chitecture both encourages data-driven designs and 
helps clients recover from network loss or crashes.

Component-based software design is a well-
acknowledged way to create large software pack-
ages. Partitioning large software projects into small 
modules (dynamic-link libraries) with clear APIs 
can effectively reduce complexity. Yet, an often-
forgotten disadvantage is that doing this usually 
increases the overall binary size, because a module 
always contains a component’s full implementa-
tion. On the other hand, static linking of libraries 
can strip implementation code that the applica-
tion doesn’t need. So, it’s worth carefully consider-
ing whether to use multiple modules, which makes 
software updates easier, or a single monolithic ap-
proach, which could lead to smaller applications.

Development and Debugging Strategies
Developers typically try to minimize effort by reus-
ing previously written code. Instead of developing 
from scratch, they combine existing solutions to 
form new ones. Although this approach efficiently 
reduces development time, it leads to nonoptimal 
prototypes because most often the reused compo-
nents were developed for different purposes. So, 
many research prototypes don’t achieve high per-
formance and compensate for this by using faster 
hardware.

On mobile phones, this approach isn’t feasible 
because even the fastest devices are still compara-
tively slow. Because the available battery capac-
ity (which increases approximately 10 percent 
per year) mostly drives development, no huge 

improvements are likely. In addition to raw per-
formance, OS limitations, such as memory man-
agement constraints, make straight code porting 
impossible or at least extremely inefficient. A 
well-written application runs about 5-10 times 

S ince we started our handheld augmented-reality framework 
in 2003, several other research projects have targeted similar 

applications. A group at Nokia research has developed a SURF 
(Speeded Up Robust Features) implementation that runs in real 
time on mobile phones.1 Michael Zöllner and his colleagues 
developed a tracking system that combines randomized trees 
for detection with KLT (the Kanade-Lucas-Tomasi feature tracker) 
for tracking.2 The system runs in real time on a PC and has been 
recently ported the iPhone, but not running in real time.
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Figure 1. Examples of mobile-phone-based augmented 
reality (AR): (a) a virtual avatar on a business card 
and (b) a virtual building on a satellite picture using 
natural-feature tracking. Both applications run in 
real time (20 frames per second overall) on a mobile 
phone.
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Figure 2. The software stack of the Studierstube handheld AR 
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provide the basic functionality that an AR system requires. Studierstube 
ES (Embedded System) and SG (Scene-Graph) combine these services in 
a high-level layer for the applications running on top of it.
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more slowly on a fast mobile phone than on an 
average PC.

So, a good practice is to rely only on software 
specifically developed for mobile phones. Because 
these libraries are usually developed by experts on 
the platform, they deliver high performance and 
robustness. Unfortunately, this forces developers 
to abandon existing standards and compatibility 
with legacy software. Often, development from 
scratch becomes necessary.

When no existing solution is available, develop-
ers must invest much effort into developing new 
solutions or porting existing ones. For example, 
the current version of Studierstube Tracker is 
about 100 times faster and uses only a fraction of 
memory compared to the first port of this software 
to mobile phones. On the down side, we had to 
invest about two person-years of work.

Whereas mobile devices’ basic working prin-
ciples are similar to those of PCs, APIs differ a 
lot in the details. The Windows Mobile APIs are 
mostly similar to their PC-based counterparts, 
but the Symbian APIs differ strongly. Abstracting 
APIs makes software more portable among differ-
ent target devices. It also lets you develop software 
mostly on the PC, running only final tests on the 
target platform.

All major mobile phone development kits come 
with emulators. However, these emulators aren’t 
very close to real hardware. Performance is usually 
much lower than on real devices, and many re-
strictions (such as introduced by ARM CPUs or the 
OS) often aren’t enforced. Specifically, emulators 
don’t include camera support, which renders them 
mostly useless for developing AR applications.

A better solution is to test phone AR applica-
tions as native PC applications first, using the un-
derlying hardware abstraction of Studierstube ES. 
Obviously, this approach doesn’t consider certain 
limiting characteristics of mobile phones. How-
ever, we can solve most algorithmic problems in a 
convenient desktop environment.

Explicit Parallel Execution
Even though mobile phone CPUs usually don’t 

have parallel-execution units, you can use multi-
threading or interleaving of actions to accelerate 
many operations, such as camera access or net-
work communication. This is because those two 
techniques are I/O rather than CPU bound.

An AR application generally consists of five ma-
jor tasks:

camera reading (image retrieval), ■

pose tracking, ■

network communication (for multiuser appli- ■

cations),
application overhead, and ■

rendering. ■

At first glance, these tasks form a chain of actions 
in which each step depends on the previous step’s 
outcome. Pose tracking requires a camera image, 
the application can’t work without tracking and 
networking, and rendering relies on tracking and 
application results. However, you can relax this chain 
so that many actions can execute in parallel—even 
if no CPU support is available for multithreading, 
such as hyperthreading or multicore.

Camera reading is often performed by a dedi-
cated CPU unit or directly by the camera chip. This 
is because the image must be scaled down from the 
native camera resolution, which is highly compu-
tationally expensive. Camera reading therefore re-
quires only minimal overhead, unless the software 
must perform custom pixel format conversion. At 
the OS level, management of camera reading is of-
ten implemented in a separate thread. At the cost 
of increased latency—using the available image, 
rather than waiting for a new one—we can reduce 
camera-reading overhead to almost zero.

On a system with hardware that supports 3D 
rendering, pose tracking is often the most CPU-
intensive task. It naturally depends on the latest 
camera image and is required for application logic 
and rendering.

Network communication can run asynchro-
nously or in a separate thread. Because the amount 
of data to receive and process is usually small on 
a mobile phone, most of the time is spent waiting 
for replies. By restricting the networking to work 
asynchronously, you can efficiently interleave it 
with all other tasks. So, Studierstube ES applica-
tions usually expect network replies one frame af-
ter Studierstube ES has sent out requests.

Our experiences indicate that typical applica-
tion logic’s overhead is minimal compared to the 
framework’s housekeeping, such as tracking and 
video rendering. We’ve therefore found it suffi-
cient to let application logic execute at two points 

Even though mobile phone CPUs usually 
don’t have parallel-execution units, you 

can use multithreading or interleaving to 
accelerate many operations.
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in the pipeline: directly before and directly after 
scene-graph rendering. Whereas the former lets 
applications modify the scene-graph, the latter 
targets custom 2D and 3D rendering.

Many of today’s high-end phones have dedicated 
3D acceleration for gaming, so we expect that a 3D 
accelerator will soon be an integral part of a stan-
dard phone CPU. Such 3D acceleration will reduce 
the rendering of optimized 3D content (fixed-point, 
vertex buffers) to mostly a background task.

To sum up, pose tracking, especially from natural 
features, presents the most CPU-intensive task. The 
other tasks either can run mostly in parallel (cam-
era reading, network communication, and render-
ing) or require little overhead (application logic).

In part 2, we’ll show how to maximize perfor-
mance by careful memory use and efficient fixed-

point mathematics. We’ll also dissect the timings 
of typical AR applications on mobile phones and 
predict the future of mobile phone AR. 
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