
12 May/June 2009 Published by the IEEE Computer Society 0272-1716/09/$25.00 © 2009 IEEE

Projects in VR Editor: Lawrence Rosenblum
and Simon Julier

Making Augmented Reality Practical
on Mobile Phones, Part 1

Daniel
Wagner
and Dieter
Schmalstieg,
Graz
University of
Technology

In the past few years, mobile phones have be-
come an increasingly attractive platform for
augmented reality (AR; see Figure 1 for some

examples). According to Gartner, 1.22 billion mo-
bile phones were sold in 2008.1 Some forecasts
estimate that this number will rise to 1.8 billion
units in 2012, of which 800 million are expected
to be smartphones.2 Although not all these de-
vices are open for custom software development,
the trend toward open software environments for
mobile phones seems inevitable.

In 2003, we started an AR framework for mo-
bile phones (for a glimpse of other research on AR
for mobile phones, see the sidebar). We intended
its fi rst generation as primarily a proof of feasibil-
ity. The second generation was an attempt to port
a fully featured PC-based AR framework, Studiers-
tube 4 (http://studierstube.org), to a phone plat-
form. You can port existing applications and make
them run on mobile phones. However, as we had to
painfully experience ourselves, this approach typi-
cally produces slow, bloated, and unstable software.
Optimally using phones’ scarce resources requires
different algorithms and architectural decisions
than for PCs, leading to a complete reengineering
of an existing solution.

So, for the third generation, Studierstube ES,
we largely abandoned compatibility requirements
and added new elements to the design, such as
an asymmetric client-server technique, that are
specifi c to mobile devices.3 In this fi rst install-
ment of our two-part tale of Studierstube ES and
what we’ve learned along the way, we describe the
mobile phone platform’s restrictions and how our
software architecture allows fast development of
mobile phone AR applications.

Software Architecture
A major difference between PCs and mobile devices
is the amount and bandwidth of available memory.
Mobile devices still can handle only a few mega-
bytes per application. Memory access is compara-
tively slow, and even the transfer of megabytes of

application code over the air is costly in some cases.
Consequently, software frameworks must be at least
an order-of-magnitude slimmer than is common
on PCs. This constrains many design decisions—for
example, heavy use of templated C++ code results
in a prohibitive increase in code size. For instance,
Studierstube 4 has a modest 8 Mbytes of binary for
a minimally useful set, and other AR frameworks
are reportedly 5–10 times larger.

In contrast, the binary of Studierstube ES for
Windows Mobile 5 is about 1 Mbyte, with all stan-
dard features enabled as shown in Figure 2. A posi-
tive side effect of such a lean approach is that the
framework also runs very fast on a PC, which we
use mainly for prototyping mobile applications.

Studierstube ES’s main duties are hardware and
API abstraction as well as providing high-level ser-
vices to applications built on top of it. At its lower
levels (Studierstube Core), it unifi es native APIs
such as for window management, user input, and
fi le or camera access, for all supported platforms.
The complete software stack can be compiled to
use either fi xed- or fl oating-point mathematics, to
optimally support every possible device.

Studierstube ES applications typically generate
graphical output by manipulating scene-graph ob-
jects, running on top of OpenGL ES (1.x and 2.x),
OpenGL, or Direct3D Mobile. Although these APIs
are quite different, they target the same hardware and
can therefore be abstracted with a very thin layer.

Tracking pose with six degrees of freedom in real
time is a fundamental requirement of any AR sys-
tem. Studierstube Tracker is a high-performance
tracking library for mobile phones. We developed
it from scratch to optimally support tracking with
limited resources. It supports multiple types of
artifi cial fi ducials and, recently, natural-feature
tracking. There are no heap allocations at run-
time, and Tracker stores data in cache-friendly
data structures. So, the average smart phone can
analyze a typical image in approximately 10 milli-
seconds, which leaves enough memory for graphics-
intensive applications.

 IEEE Computer Graphics and Applications 13

To facilitate persistent location-based applica-
tions and multiuser collaboration, we designed a
client-server system for multiuser applications. The
server consists of a proprietary XML database com-
bined with a finite-state machine. We designed it
to run in real time with hundreds of clients. The
server manages communication among clients and
stores transient and persistent client data. This ar-
chitecture both encourages data-driven designs and
helps clients recover from network loss or crashes.

Component-based software design is a well-
acknowledged way to create large software pack-
ages. Partitioning large software projects into small
modules (dynamic-link libraries) with clear APIs
can effectively reduce complexity. Yet, an often-
forgotten disadvantage is that doing this usually
increases the overall binary size, because a module
always contains a component’s full implementa-
tion. On the other hand, static linking of libraries
can strip implementation code that the applica-
tion doesn’t need. So, it’s worth carefully consider-
ing whether to use multiple modules, which makes
software updates easier, or a single monolithic ap-
proach, which could lead to smaller applications.

Development and Debugging Strategies
Developers typically try to minimize effort by reus-
ing previously written code. Instead of developing
from scratch, they combine existing solutions to
form new ones. Although this approach efficiently
reduces development time, it leads to nonoptimal
prototypes because most often the reused compo-
nents were developed for different purposes. So,
many research prototypes don’t achieve high per-
formance and compensate for this by using faster
hardware.

On mobile phones, this approach isn’t feasible
because even the fastest devices are still compara-
tively slow. Because the available battery capac-
ity (which increases approximately 10 percent
per year) mostly drives development, no huge

improvements are likely. In addition to raw per-
formance, OS limitations, such as memory man-
agement constraints, make straight code porting
impossible or at least extremely inefficient. A
well-written application runs about 5-10 times

S ince we started our handheld augmented-reality framework
in 2003, several other research projects have targeted similar

applications. A group at Nokia research has developed a SURF
(Speeded Up Robust Features) implementation that runs in real
time on mobile phones.1 Michael Zöllner and his colleagues
developed a tracking system that combines randomized trees
for detection with KLT (the Kanade-Lucas-Tomasi feature tracker)
for tracking.2 The system runs in real time on a PC and has been
recently ported the iPhone, but not running in real time.

References
 1. T.H.D. Nguyen et al., “SURFTrac: Efficient Tracking and Continuous

Object Recognition Using Local Feature Descriptors,” to be pub-

lished in Proc. Conf. Computer Vision and Pattern Recognition (CVPR

09), IEEE CS Press, 2009.

 2. M. Zoellner et al., “Reality Filtering: A Visual Time Machine in AR,”

Proc. 9th Int’l Symp. Virtual Reality, Archaeology, and Intelligent Cultural

Heritage (VAST 08), Eurographics Assoc., 2008, pp. 71–77.

Related Work on Augmented Reality for
Mobile Phones

(a) (b)

Figure 1. Examples of mobile-phone-based augmented
reality (AR): (a) a virtual avatar on a business card
and (b) a virtual building on a satellite picture using
natural-feature tracking. Both applications run in
real time (20 frames per second overall) on a mobile
phone.

A
pplications

Studierstube softw
are stack

Platform

Studierstube ES
application

Studierstube ES
(Embedded System)

Studierstube ES
application

Studierstube ES
application

Studierstube
SG

Muddleware

Studierstube IO

Studierstube Core Studierstube Math

Operating systems
Windows, Windows Mobile,

Symbian, MacOS, Linux

Hardware
(CPU, GPU, FPU, display, touch screen, buttons, audio, camera, WiFi, Bluetooth)

APIs
DirectShow, Symbian Camera, OpenMAX, Direct3D,

OpenGL ES (1.x, 2.x), OpenGL, Winsock, etc.

Studierstube Tracker

Figure 2. The software stack of the Studierstube handheld AR
framework. The lower levels (Core, Math, IO, Tracker, and Muddleware)
provide the basic functionality that an AR system requires. Studierstube
ES (Embedded System) and SG (Scene-Graph) combine these services in
a high-level layer for the applications running on top of it.

14 May/June 2009

Projects in VR

more slowly on a fast mobile phone than on an
average PC.

So, a good practice is to rely only on software
specifically developed for mobile phones. Because
these libraries are usually developed by experts on
the platform, they deliver high performance and
robustness. Unfortunately, this forces developers
to abandon existing standards and compatibility
with legacy software. Often, development from
scratch becomes necessary.

When no existing solution is available, develop-
ers must invest much effort into developing new
solutions or porting existing ones. For example,
the current version of Studierstube Tracker is
about 100 times faster and uses only a fraction of
memory compared to the first port of this software
to mobile phones. On the down side, we had to
invest about two person-years of work.

Whereas mobile devices’ basic working prin-
ciples are similar to those of PCs, APIs differ a
lot in the details. The Windows Mobile APIs are
mostly similar to their PC-based counterparts,
but the Symbian APIs differ strongly. Abstracting
APIs makes software more portable among differ-
ent target devices. It also lets you develop software
mostly on the PC, running only final tests on the
target platform.

All major mobile phone development kits come
with emulators. However, these emulators aren’t
very close to real hardware. Performance is usually
much lower than on real devices, and many re-
strictions (such as introduced by ARM CPUs or the
OS) often aren’t enforced. Specifically, emulators
don’t include camera support, which renders them
mostly useless for developing AR applications.

A better solution is to test phone AR applica-
tions as native PC applications first, using the un-
derlying hardware abstraction of Studierstube ES.
Obviously, this approach doesn’t consider certain
limiting characteristics of mobile phones. How-
ever, we can solve most algorithmic problems in a
convenient desktop environment.

Explicit Parallel Execution
Even though mobile phone CPUs usually don’t

have parallel-execution units, you can use multi-
threading or interleaving of actions to accelerate
many operations, such as camera access or net-
work communication. This is because those two
techniques are I/O rather than CPU bound.

An AR application generally consists of five ma-
jor tasks:

camera reading (image retrieval), ■

pose tracking, ■

network communication (for multiuser appli- ■

cations),
application overhead, and ■

rendering. ■

At first glance, these tasks form a chain of actions
in which each step depends on the previous step’s
outcome. Pose tracking requires a camera image,
the application can’t work without tracking and
networking, and rendering relies on tracking and
application results. However, you can relax this chain
so that many actions can execute in parallel—even
if no CPU support is available for multithreading,
such as hyperthreading or multicore.

Camera reading is often performed by a dedi-
cated CPU unit or directly by the camera chip. This
is because the image must be scaled down from the
native camera resolution, which is highly compu-
tationally expensive. Camera reading therefore re-
quires only minimal overhead, unless the software
must perform custom pixel format conversion. At
the OS level, management of camera reading is of-
ten implemented in a separate thread. At the cost
of increased latency—using the available image,
rather than waiting for a new one—we can reduce
camera-reading overhead to almost zero.

On a system with hardware that supports 3D
rendering, pose tracking is often the most CPU-
intensive task. It naturally depends on the latest
camera image and is required for application logic
and rendering.

Network communication can run asynchro-
nously or in a separate thread. Because the amount
of data to receive and process is usually small on
a mobile phone, most of the time is spent waiting
for replies. By restricting the networking to work
asynchronously, you can efficiently interleave it
with all other tasks. So, Studierstube ES applica-
tions usually expect network replies one frame af-
ter Studierstube ES has sent out requests.

Our experiences indicate that typical applica-
tion logic’s overhead is minimal compared to the
framework’s housekeeping, such as tracking and
video rendering. We’ve therefore found it suffi-
cient to let application logic execute at two points

Even though mobile phone CPUs usually
don’t have parallel-execution units, you

can use multithreading or interleaving to
accelerate many operations.

 IEEE Computer Graphics and Applications 15

in the pipeline: directly before and directly after
scene-graph rendering. Whereas the former lets
applications modify the scene-graph, the latter
targets custom 2D and 3D rendering.

Many of today’s high-end phones have dedicated
3D acceleration for gaming, so we expect that a 3D
accelerator will soon be an integral part of a stan-
dard phone CPU. Such 3D acceleration will reduce
the rendering of optimized 3D content (fixed-point,
vertex buffers) to mostly a background task.

To sum up, pose tracking, especially from natural
features, presents the most CPU-intensive task. The
other tasks either can run mostly in parallel (cam-
era reading, network communication, and render-
ing) or require little overhead (application logic).

In part 2, we’ll show how to maximize perfor-
mance by careful memory use and efficient fixed-

point mathematics. We’ll also dissect the timings
of typical AR applications on mobile phones and
predict the future of mobile phone AR.

References
 1. “Mobile Phone Sales Up Six Pct in 2008, 4th Qtr

Weak,” 3 Mar. 2009, Physorg.com; www.physorg.
com/news155308101.html.

 2. “Mobile Phones,” Imagination Technology, 2009;
www.imgtec.com/markets/mobile-multimedia.asp.

 3. D. Schmalstieg and D. Wagner, “Experiences with
Handheld Augmented Reality,” Proc. 6th IEEE/ACM
Int’l Symp. Mixed and Augmented Reality (ISMAR 07),
IEEE CS Press, 2007, pp. 1–13.

Daniel Wagner is a postdoctoral researcher at the
Graz University of Technology and deputy director
of the Christian Doppler Laboratory for Handheld
Augmented Reality. Contact him at wagner@icg.
tugraz.at.

Dieter Schmalstieg is a professor of virtual real-
ity and computer graphics at the Graz University
of Technology, where he directs the Studierstube re-
search project on augmented reality. Contact him at
schmalstieg@icg.tugraz.at.

