
Robust and Unobtrusive Marker Tracking on Mobile Phones

Daniel Wagner1, Tobias Langlotz2, Dieter Schmalstieg3

Graz University of Technology

ABSTRACT
Marker tracking has revolutionized Augmented Reality about a
decade ago. However, this revolution came at the expense of
visual clutter. In this paper, we propose several new marker
techniques, which are less obtrusive than the usual black and
white squares. Furthermore, we report methods that allow tracking
beyond the visibility of these markers further improving
robustness. All presented techniques are implemented in a single
tracking library, are highly efficient in their memory and CPU
usage and run at interactive frame rates on mobile phones.

KEYWORDS: marker tracking, pixel flow, mobile phones

INDEX TERMS: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems – Artificial, augmented, and
virtual realities; I.4.8 [Image Processing and Computer Vision]:
Scene Analysis – Tracking

1 INTRODUCTION
Although there has been much work on Augmented Reality (AR)
tracking from natural features, these techniques are commonly
less robust and require much more processing resources than
tracking from markers. In particular, when using mobile phones as
a platform for AR, computing power is an order of magnitude
smaller than on desktop computers making marker-based tracking
solutions the best trade-off between computational feasibility and
robustness. Moreover, markers containing digital barcode patterns
can not only be used for pose tracking, but also to uniquely
distinguish thousands of objects or even provide unique pointers
to online resources such as web pages or 3D content to be
displayed on the phone. Providing the equivalent capabilities from
purely natural features would require not only implementing a
pose tracking system, but also a reliable object detection system,
all under stringent real-time constraints.

We were therefore motivated to extend our previous work on
marker-based tracking for mobile phones [12] with new features
that are designed to overcome the most severe limitations of
previous approaches, without sacrificing the robustness and
overall low computational complexity. Specifically, we describe
three new marker designs that occupy significantly less space and
therefore reduce the amount of visual pollution in the augmented
area.

We also describe two computationally inexpensive techniques
based on feature following and pixel flow, which can be used for
incremental tracking in cases where the marker is partially
occluded or out of sight. Together, space-economic marker
designs and incremental tracking allow placing markers in
situations that were previously not really feasible, or at least very

cumbersome to instrument. All techniques have been
implemented to run in real time on current mobile phones and can
be combined to make the use of markers significantly more
flexible and less painful.

2 RELATED WORK
Probably the first marker tracker developed for AR was
Rekimoto’s Matrix Code [4]. It pioneered the use of square planar
shapes for pose estimation and embedded 2D barcode patterns for
distinguishing markers. Later Kato used a similar approach in
ARToolKit [2], which was released as open source and
consequently became enormously popular among AR researchers
and enthusiasts alike. Since then, many similar systems emerged,
of which Fiala’s ARTag [1] is most well known.

Compared to the vast number of marker tracking systems
available on desktop computers, only few solutions for mobile
phones have been reported in literature. In 2003 our group ported
ARToolKit to Windows CE and thus created the first self-
contained AR application [10] on an off-the-shelf embedded
device. This port later evolved into the ARToolKitPlus tracking
library [9]. In 2004, Möhring [3] created a tracking solution for
mobile phones that tracks color-coded 3D marker shapes. Around
the same time, Rohs created the VisualCodes system for
smartphones [5]. Both Möhring’s as well as Rohs’ techniques
provide only simple tracking of 2D position on the screen, 1D
rotation and a very coarse distance measure. In 2007, Rohs
created a software for Symbian phones that tracks maps, which
are outfitted with regular grids of dots, again tracked with 2.5
DOF [6]. The dot markers, presented in section 3.3 are similar,
but provide full 6DOF tracking.

3 UNOBTRUSIVE MARKER TRACKING
Albeit still popular, the techniques used in the original ARToolKit
[2] have become dated, as new, more efficient techniques are
being developed. We therefore stopped the work on
ARToolKitPlus [9] and started developing Studierstube Tracker, a
new marker tracking library developed from scratch to optimally
support mobile phones [12].

Studierstube Tracker currently supports 6 different marker
types (including those 3 described in this paper), 2 different pose
estimators and 3 different thresholding algorithms, that all have
their specific strengths and weaknesses. Memory requirements are
one order of magnitude lower than with ARToolKitPlus and are
typically in the range of 150Kbyte.

Studierstube Tracker supports digitally encoded ids with
forward error correction (Bose/Chaudhuri/Hocquenghem) in the
style of ARTag, but has more flexibility in the structure and
layout of the digital code. This allows to encode a large amount of
information – for this purpose, Studierstube Tracker supports the
DataMatrix barcode standard (ISO/IEC16022), which can store up
to 2KB of data. If the marker must encode only a few bits, it is
sensible to reduce the area covered by the marker, leaving a larger
portion of the interaction space untouched.

Three designs for such less obtrusive markers, frame markers,
split markers and dot markers are presented in this section, while

1e-mail: wagner@icg.tugraz.at
2e-mail: langlotz@icg.tugraz.at
3e-mail: schmalstieg@icg.tugraz.at

the next sections explain how tracking can be continued
incrementally if the marker is lost.

3.1 Frame markers
Robustness of marker tracking is largely owed to the high

contrast afforded by the black frame in a thresholded image. The
frame itself is not disturbing in many situations, if the interior can
be filled with application specific artwork, like a framed painting.
With frame markers we therefore take the approach of encoding a
digital id with error correction at the interior side of the frame,
making it appear like a frame decoration (see left image in Figure
1 and 1st picture in Figure 2). Frame markers do not require any
interior at all and can therefore be put around existing flat objects
such as pictures on a wall.

A 36 bit code including 27 bit redundancy is encoded alongside
each of the 4 sides of the frame, in the form of 9 individual black
or white squares encoding 1 bit each (9bit = 512 different
markers). The code is arranged in clockwise order, and is chosen
in a way so that only one of the 4 possible corners yields a valid
code without errors. This allows determining the code as well as
the correct orientation of the marker. For both the frame maker
and the split marker described later, the squares describing a bit
should have a size of at least 2 pixels to be clearly identified. This
is equivalent to existing marker based tracking techniques.

3.2 Split markers
While frame markers still contain a closed border that defines the
marker area, split markers are composed of two separate
barcodes, which further reduces the occupied area. We directly
track the two barcodes, which define the marker geometry as well
as its id. Compared to typical rectangular markers (such as frame
framers), split markers use a different rectangle fitting algorithm
and sample the marker area differently.

After employing the standard contour finder also used for
square markers, the dominant direction of the elongated candidate
contours is determined using perpendicular line regression. The
intersection of the contours with the line through the contour’s
centroid M in the direction of the perpendicular line regression
yield the left and right border points B1 and B2 of the barcode. The
4 outer corners are constructed out of this border points.

Once the corners are known, the barcode is sampled by setting
up a 2x13 regular sampling grid: The outer row of samples must
be all black. 2 samples each to the left and right hand side of the
inner row must be verified to be black. This design is necessary to
reliably detect the corner points in the previous step. The inner 9
samples (see middle picture in Figure 1) encode a 6 bit id plus a 2
bit checksum to improve robustness. The remaining bit out of the
inner 9 bits is used to store the orientation.
The algorithm searches for pairs of matching barcodes with
opposite orientation bits. If such a pair is found, the outer corner
points from both barcodes are used to construct a rectangle. The
camera pose relative to the marker is computed from the
homography of this rectangle. Since only two of the four sides of

the marker contain features required for tracking, one can
conveniently hold a marker in the hand with the thumb covering
part of the marker (see 2nd picture in Figure 2).

3.3 Dot markers
The previous two marker types are well suited for tracking of
small objects such as cards with minimum obtrusion, but are less
suitable for covering larger areas, due to the increased visual
clutter resulting from placing multiple markers in it.

Most often markers are deemed undesirable since they cover
underlying objects or images. It is therefore preferable to reduce
the area covered by artificial markings as much as possible, and
instead make use of the already existing natural features.

This hybrid approach of minimal markings, which make the
analysis of natural texture fast and robust, was taken with the dot
markers (see right picture in Figure 1 and 3th picture in Figure 2).
A dot marker consists of a two-dimensional grid of black circular
dots with white surrounding rings, superimposed on a textured flat
surface, similar to the design described in [6]. The original texture
enclosed by four dots is interpreted as a grid cell, and the
appearance of all these grid cells is precomputed out of the dotted
map to rapidly and reliably identify a particular grid cell. Thereby
the marker covers just 1% of the whole area.

At runtime, a low threshold value (typically at a 3% level in the
intensity histogram) is selected, and closed black contours with a
diameter of 3 pixels are extracted. The next step aims to identify
groups of 4 dots which form a grid cell. Since there is a large
number of possible combinations, including contours falsely
identified as dots, it is important to quickly reject incorrect
combinations using a variety of heuritics.

Grid cells that pass all conditions by identifying 4 dots forming
a grid cell are then tested using template matching. The matching
starts with the cell with the largest area, which is assumed to
provide the best matching result. The unwarped image patch is
then checked in all four 90° rotations against all patterns in the
precomputed database using normalized cross correlation. The
comparison starts with the 8x8 resolution and proceeds to the
more expensive test at 32x32 only if the matching at 8x8 exceeds
a threshold.

If a grid cell was successfully detected, its offset in the grid is
determined and used for estimating the 6DOF of the camera pose
relative to the grid. Nonlinear optimization of the camera pose is
performed using standard Gauss-Newton iteration.

4 INCREMENTAL TRACKING
Each of the marker technologies presented in the previous chapter
tries to minimize the visual clutter by reducing the size of
artificial features.
Yet, none of these approaches is able to track completely from
natural features without previous training. However, in practice
tracking at least temporarily from unknown environments is very
desirable since users can usually not be constrained to always

Figure 1. frame markers (left), split markers (middle), and map with dot markers (right)

point the camera straight to the marker or refrain from occluding
dots and other marker features.

In the following, we present two computationally inexpensive
approaches to support marker based global localization with
incremental tracking from untrained natural features. Both
techniques have been successfully implemented on cell phones at
interactive frame rates, and can extend the usability of markers
well beyond their original purpose: If markers are temporarily lost
or occluded, the incremental tracking fills in the gap until a
marker is reacquired.

4.1 Incremental tracking using feature following
In many applications markers are placed on a planar surface of
interest that shall be augmented by the AR application. Hence
there is usually texture around the marker that can be used for
natural feature tracking. We exploit this fact by combining marker
tracking with a feature following approach operating in a plane.
As long as the marker is visible, it is treated as ground truth, and
features around the marker are extracted, but not used. Since we
assume that features lie in the same plane as the marker, their 3D
location can directly be computed from the marker tracking. As
soon as the marker tracking fails, the tracker matches the features
of the current frame against those of the previous frame via
template matching, and begins tracking incrementally.

Candidate feature detection is performed using the FAST corner
detector [7], which turned out to deliver high performance rates
on phones (~8ms at 320x240 on a 400Mhz ARM CPU). For each
candidate, an 8x8 patch is extracted and blurred using a 3x3 Gauss
kernel. The blurring increases robustness against pixel offsets
introduced by inaccurate corner detection and small affine
transformations. To quickly match a candidate against a previous
frame, an active search in a 25x25 pixel search neighborhood is
used. All features from the previous frame are inserted into a 4x4
search grid of the 320x240 image that provides an almost linear
search time. Candidates for matching are tested using sum of
absolute differences (SAD) and ranked. If the highest ranked
match for a candidate exceeds a certain threshold, it is treated as
positive match (see 4th image in Figure 2).

From the matched n point pairs, 4 features are chosen to
combine an initial estimate of the homography from the last frame
to the current frame.

The selected homography is then refined by minimizing the
projection error of all inliers using a Gauss-Newton least-squares
fitting process. Finally, the camera pose estimate is updated via
homography chaining: The homography of the frame-to-frame
correspondence is applied on top of the homography from the
previous frame. The pose is then calculated from the updated
homography. A similar approach has been described by Simon et
al. [8].

Naturally, the approach only works as long as at least 4 suitable
points can be matched from one frame to the next. In practice,
many more points are required for accurate results. Measurement
errors inevitably accumulate, so the estimated pose drifts. In
practice acceptable tracking can be provided for about 3-10

seconds, depending on the amount of camera movement and error
to be tolerated. This is sufficient in many situations to continue
tracking when the marker is lost by an unintended movement of
the user. Obviously, the homography-based approach works only
for planar or nearly planar environments; in practice this covers
most table-top and wall-mounted environments.

4.2 Incremental tracking using pixel flow
Incremental tracking of orientation with inertial sensors has been
shown to be highly useful for AR applications to either improve
tracking robustness or as a fallback when no other tracking
approach is available. While most of today’s mobile phones do
not have inertial sensors, their built-in camera can be used in a
similar way using pixel flow detection [11].
Our pixel flow detector is intended for augmenting a panoramic
view of the environment. A marker is used for initially
determining the current global location and viewing direction.
Then the user is free to turn around observing the augmentations,
while remaining in the same location. We apply two different
approaches to pixel flow – a more accurate method is tried
initially for slow and medium camera movements. If it fails
because of fast camera movement, a second, more robust method
is used.

The accurate pixel flow tracker uses the same feature following
approach as described in section 4.1. All feature flow vectors are
inserted into a 2D histogram that encodes the image’s movement
in X- and Y-direction. The histogram has a size of 32x32 bins and
can therefore detect movements of up to ±15 pixels. To detect the
dominant pixel flow, the histogram is searched for local maxima.
The pixel flow in the overall image is finally estimated as a
weighted sum of the maximum and its neighboring values in the
histogram. If a second local maximum with a value of more than
60% of the absolute maximum is found, the algorithm assumes a
failure and repeats the step with a version of the image scaled
down by 50%. Downscaling suppresses noise and hence increases
robustness, but also doubles the effective range of the flow
detection.

If no pixel flow can be successfully determined within 3 levels
of the image pyramid, a second approach for estimating the pixel
flow is tried, which is yet more robust, but less accurate. This
approach is based on template matching over an image pyramid,
which is more commonly used for estimating the optical flow of
images [11]. Since a pure rotation model is assumed, a single
motion vector valid for the whole image is expected. Hence, the
estimated motion vectors from one image pyramid level are
averaged and forwarded to the next lower level of the image
pyramid as a starting point to limit the search area. In practice, the
corner tracking method turns out to be much more accurate than
the template matching. However, template matching is more
robust under fast camera movement, which often results in images
that are too blurred for corner detection. While in most cases, the
first method works fine, the second method provides a robust fall
back for extreme conditions.

Figure 2. 1st image: frame marker, 2nd image: split marker, 3rd image: dot markers, 4th image: flow vectors of features matched from the
previous frame (added for illustration only). Corners without a line could not be matched. The embedded marker (left bottom) is not

sufficiently visible for tracking anymore.

The 2D pixel flow is finally interpreted as rotational motion
based on the intrinsic camera parameters. Hence, this simple
approach cannot cope with rotations around the viewing direction
(“roll”), but “yaw” and “pitch” only. The accumulated rotational
offset is then applied on top of the last known absolute pose.

5 EVALUATION
We tested the described methods on an Asus M530W Windows
Mobile smartphone. This phone was selected for its CPU, which
is clocked at 400MHz (phones currently use CPUs clocked from
200-600MHz) and for its high quality camera, which delivers 25
frames per second.

Table 1 shows the timings of the three proposed marker
tracking methods. Naturally, thresholding is independent of the
applied marker mode. Shape detection of split markers is slightly
slower than for frame markers due to their more complex shape.
Split markers take more time for marker detection since each
marker consists of two parts and hence requires calculating 2
homographies for unprojection (plus another one for pose
estimation).

Dot markers require to spend much time in filtering out non-
circular structures at the shape detection stage. The marker
detection stage includes the detection of the dot-grid as well as
unprojecting candidates and matching them against the database
of templates. Altogether this makes dot markers about 2 times
slower than rectangular markers.

 Split

marker Frame marker Dot marker
Thresholding 0.9ms 0.9ms (0.9ms) 0.9ms (0.9ms)

Fiducial Detection 1.6ms 1.4ms (1.4ms) 3.9ms (2.8ms)
Marker Detection 3.1ms 1.8ms (0.0ms) 3.6ms (0.0ms)
Pose Estimation 0.9ms 0.7ms (0.7ms) 0.6ms (0.4ms)

Overall 6.5ms 4.8ms (3.0ms) 9.0ms (4.1ms)

Table 1. Benchmarks of the proposed marker tracking methods.
Values in parentheses are for slow camera movement.

Table 1 presents an overview of average timings obtained by
tracking the target for about 15 seconds (~400 frames). The values
in parentheses present timings for a slow moving camera (or
marker). In this case the tracker is able to redetect the marker
without executing the full pipeline.

The incremental tracker as described in section 4.1 runs in two
modes: When marker tracking succeeds, it only detects corners
and harvests patterns. As Table 2 shows, in this mode most of the
time is spent in the corner detector. As soon as the marker is lost,
the incremental tracker additionally matches the new patches
against those of the previous frame and estimates the homography
for chaining.

 Corner
Detection

Corner
Tracking

Homography
+ Pose Overall

Detected 8.1ms 1.6ms 0.0ms 9.7ms
Undetected 8.1ms 2.3ms 2.7ms 13.1ms

Table 2. Benchmarks for Incremental tracking using feature
following (as described in section 4.1)

While the speed of the methods mentioned above is mostly
independent of image properties, the speed of the incremental
tracker using pixel flow depends on many factors, including the
number of corners detected, the repeatability of the extracted
features, and especially on the speed of the camera movement,
which determines how many levels of the image pyramid have to
be created and checked. Our measurements show that the pixel
flow timings vary between 8 and 14 milliseconds.

6 DISCUSSION AND FUTURE WORK
We have presented a toolkit of new marker tracking techniques
running in real-time on off-the-shelf mobile phones. The marker
designs produce less image clutter than previous designs, and
more easily blend into typical AR environments. By using
incremental tracking based on planar feature following or
hierarchical pixel flow, situations with occlusions or rapid
movements that were difficult to accommodate with previous
marker tracking can now be handled with ease. The primary
advantages of marker based tracking, in particular its reliability
and the built-in object detection capability remain unchanged.

In future we plan to extend the incremental tracker based on
planar feature following with true localization and mapping,
creating a kind of a “Poor man’s SLAM”. Such an approach will
map the marker’s environment and therefore not suffer from drift.
However, this approach requires improved feature matching
method that can tolerate larger affine changes.

ACKNOWLEDGEMENTS
This project was funded in part by Austrian Science Fund FWF

under contracts Y193 and W1209-N15, as well as the European
project FP6-2004-IST-4-27571. We would like to thank Gerhard
Reitmayr for his valuable comments.

REFERENCES
[1] Fiala, M., ARTag, An Improved Marker System Based on

ARToolkit. NRC Canada, Publication Number: NRC: 47419, 2004
[2] Kato, H., Billinghurst, M., Marker Tracking and HMD Calibration

for a video-based Augmented Reality Conferencing System,
Proceedings of the 2nd International Workshop on Augmented
Reality (IWAR 99). pp. 85-94, 1999

[3] Möhring, M., Lessig, C., Bimber, C.. Video See-Through AR on
Consumer Cell Phones. Proceedings of International Symposium on
Augmented and Mixed Reality (ISMAR'04), pp. 252-253, 2004

[4] Rekimoto, J., Matrix: A Realtime Object Identification and
Registration Method for Augmented Reality. Proceedings of Asia
Pacific Computer-Human Interaction (APCHI), pp. 63-68, 1998

[5] Rohs, M., Gfeller, B., Using Camera-Equipped Mobile Phones for
Interacting with Real-World Objects. Advances in Pervasive
Computing, Austrian Computer Society (OCG), pp. 265-271, 2004

[6] Rohs, M, Schöning, J., Krüger, A., Hecht, B., Towards Real-Time
Markerless Tracking of Magic Lenses on Paper Maps, Adjunct
Proceedings of the 5th International Conference on Pervasive
Computing (Pervasive), Late Breaking Results, pp. 69-72, 2007

[7] Rosten, E., Drummond, T., Machine learning for high-speed corner
detection, Proceedings of 9th European Conference on Computer
Vision (ECCV 2006), pp. 430-443, 2006

[8] Simon, G., Fitzgibbon, A.W., Zisserman, A., Markerless Tracking
Using Planar Structures in the Scene, Proceedings of International
Symposium on Augmented Reality (ISAR 2000), pp. 120-128, 2000

[9] Wagner, D., Schmalstieg, D., ARToolKitPlus for Pose Tracking on
Mobile Devices, Proceedings of 12th Computer Vision Winter
Workshop (CVWW'07), pp. 139-146, 2007

[10] Wagner, D., Schmalstieg, D., First Steps Towards Handheld
Augmented Reality. Proceedings of the 7th International Conference
on Wearable Computers (ISWC 2003), pp. 127-135, 2003

[11] Wang, J., Zhai, S., Canny, J., Camera Phone Based Motion Sensing:
Interaction Techniques, Applications and Performance Study, In
Proceedings of ACM UIST 2006, pp. 101-110, 2006

[12] Schmalstieg, D., Wagner, D., Experiences with Handheld
Augmented Reality, The Sixth IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR'07), 2007

