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ABSTRACT 
In this paper we present two techniques for natural feature 
tracking in real-time on mobile phones. We achieve interactive 
frame rates of up to 20Hz for natural feature tracking from 
textured planar targets on current-generation phones. We use an 
approach based on heavily modified state-of-the-art feature 
descriptors, namely SIFT and Ferns. While SIFT is known to be a 
strong, but computationally expensive feature descriptor, Ferns 
classification is fast, but requires large amounts of memory. This 
renders both original designs unsuitable for mobile phones. We 
give detailed descriptions on how we modified both approaches to 
make them suitable for mobile phones. We present evaluations on 
robustness and performance on various devices and finally discuss 
their appropriateness for Augmented Reality applications. 
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1 INTRODUCTION 
Tracking from natural features is a complex problem and usually 
demands high computational power. It is therefore difficult to use 
natural feature tracking in mobile applications of Augmented 
Reality (AR), which must run with limited computational 
resources, such as on Tablet PCs. 

Mobile phones are very inexpensive, attractive targets for AR, 
but have even more limited performance than the aforementioned 
Tablet PCs. Phones are embedded systems with severe limitations 
in both the computational facilities (low throughput, no floating 
point support) and memory bandwidth (limited storage, slow 
memory, tiny caches). Therefore, natural feature tracking on 
phones has largely been considered prohibitive and has not been 
successfully demonstrated to date. 

In this paper, we present the first fully self-contained natural 
feature tracking system capable of tracking full six degrees of 
freedom (6DOF) at real-time frame rates (20Hz) from natural 
features using solely the built-in camera of the phone.  

To exploit the nature of typical AR applications, our tracking 
techniques use only textured planar targets, which are known 
beforehand and can be used to create a training data set. 
Otherwise the system is completely general and can perform 
initialization as well as incremental tracking fully automatically. 

We have achieved this by examining two leading approaches in 
feature descriptors, namely SIFT and Ferns. In their original 

published form, both approaches are unsuitable for low-end 
embedded platforms such as phones. Some aspects of these 
techniques are computationally infeasible on current generation 
phones and must be replaced by different approaches, while other 
aspects can be simplified to run at the desired level of speed, 
quality and resource consumption. 

The resulting tracking techniques show interesting aspects of 
convergence, where aspects of SIFT, Ferns and other approaches 
are combined into a very efficient tracking system. The resulting 
tracker is 1-2 orders of magnitude faster than naïve approaches 
towards natural feature tracking and therefore also very suitable 
for more capable computer platforms such as PCs. We back up 
our claims by a detailed evaluation of the trackers’ properties and 
limitations that should be instructive for developers of computer 
vision based tracking systems, irrespective of the target platform. 

2 RELATED WORK 
To our best knowledge, there have been no reports so far 
describing a real-time 6DOF natural feature tracking system on 
mobile phones. Instead, previous work can be categorized into 
three main areas: General natural feature tracking on PCs, natural 
feature tracking on phone outsourcing the actual tracking task to a 
PC, and marker tracking on phones. 

Natural feature tracking approaches differ mostly by the image 
features that are associated between the video image and a model 
of the object or environment to be tracked. The dominant trade-off 
is between the reliability of relocating the features and the 
computational work required to do so.  

Point-based approaches use interest point detectors and 
matching schemes to associate 2D locations in the video image 
with 3D locations. The location invariance afforded by interest 
point detectors is attractive for localization without prior 
knowledge and wide-base line matching. However, computation 
of descriptors that are invariant across large view changes is 
usually expensive. Skrypnyk and Lowe [23] describe a classic 
system based on the SIFT descriptor [15] for object localization in 
the context of AR. Features can also be selected online from a 
model [2] or mapped from the environment at runtime [5][12]. 
Lepetit et. al [13] recast matching as a classification problem 
using a decision tree and trade increased memory usage with 
avoiding expensive computation of descriptors at runtime. A later 
improvement described by Ozuysal et. al [18] improves the 
classification rates while further reducing necessary 
computational work.  Our work investigates the applicability of 
descriptor-based approaches like SIFT and classification like 
Ferns for use on mobile devices which are typically limited in 
both computation and memory. Other, potentially more efficient, 
descriptors such as SURF [1] have been evaluated in the context 
of mobile devices [4], but also have not attained real-time 
performance yet. One good survey of local feature descriptors can 
be found in [16]. 

To reduce the computational load of searching the whole image 
for point correspondences, edge-based approaches use prior 
information about the pose and conduct a local search around the 
estimated location. To detect an edge, 1-D searches from sample 
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points along the line are sufficient to establish measurements for 
pose updates [6]. Various improvements to this scheme were 
proposed to improve the matching of lines, including statistical 
appearance models [26] or model-based appearances [19]. Other 
work combines edge tracking with other sensors in hybrid systems 
[10][11]. However, edge-based systems cannot stand alone, 
because the indistinct appearance of edges makes initialization 
infeasible. 

One approach to overcome the resource constraints of mobile 
devices is to outsource tracking to PCs connected via a wireless 
connection. All of these approaches suffer from low performance 
due to restricted bandwidth as well as the imposed infrastructure 
dependency, which limits scalability in the number of client 
devices. The AR-PDA project [7] used digital image streaming 
from and to an application server, outsourcing all processing tasks 
of the AR application reducing the client device to a pure display 
plus camera. Shibata's work [22] could adapt how much work it 
outsourced. The project aimed at load balancing between client 
and server - the weaker the client, the more tasks are outsourced 
to a server. Hile reports a SIFT based indoor navigation system 
[9], which relies on a server to do all computer vision work. The 
server-based approaches are not real-time; typical response times 
are reported to be ~10 seconds for processing a single frame. 

Naturally, first inroads in tracking on mobile devices 
themselves focused into fiducial marker tracking. Nevertheless, 
only few solutions for mobile phones have been reported in 
literature. In 2003 Wagner et. al ported ARToolKit to Windows 
CE and thus created the first self-contained AR application [28] 
on an off-the-shelf embedded device. This port later evolved into 
the ARToolKitPlus tracking library [27]. In 2005 Henrysson [8] 
created a Symbian port of ARToolKit, partially based on the 
ARToolKitPlus source code. In 2004 Möhring [17] created a 
tracking solution for mobile phones that tracks color-coded 3D 
marker shapes. Around the same time Rohs created the 
VisualCodes system for smartphones [20]. Both techniques 
provide only simple tracking of 2D position on the screen, 1D 
rotation and a very coarse distance measure. Similarly, 
TinyMotion [29] tracks in real-time using optical flow, but does 
not deliver any kind of pose estimation. Takacs et al. recently 
implemented the SURF algorithm for mobile phones [24]. They 
do not target real-time 6DOF pose estimation, but maximum 
detection quality. Hence, their approach is two orders of 
magnitude slower than the work presented here. 

3 NATURAL FEATURE MATCHING 

3.1 Scale invariant feature tracking 
The SIFT approach is composed of three main steps: keypoint 
localization, feature description and feature matching. Although 
SIFT is often associated only with the second step, Lowe’s 
approach specifically combines all three. 

 
Figure 1. SIFT descriptor layout for 3x3 sub-regions. 

The SIFT descriptor itself is actually neither rotation nor scale 
invariant. To overcome this both parameters are provided by the 
keypoint detector. In the first step, keypoint localization, Lowe 

suggests smoothing the input image with Gaussian filters at 
various scales and then calculating the Difference of Gaussians 
(DoG), which presents a fast approximation of the Laplacian 
operator. Keypoints are finally located by searching for scale-
space extrema (minima and maxima in the DoG pyramid). 
Naturally the creation of the Gauss convolved image scales plus 
the min/max search is computationally very expensive. 

While the keypoint localization step already provides a scale 
estimate for making the descriptor scale invariant (by increasing 
the kernel correspondingly), the feature’s rotation has to be 
estimated separately. Lowe suggests calculating gradient 
orientations and magnitudes around the keypoint, which then form 
a histogram of orientations. Searching for peaks in the histogram 
finally assigns one or more orientations to the keypoint. 

The actual descriptor is again based on gradients. The region 
around the keypoint is split into sub-regions that define parts of 
the describing feature vector (see Figure 1). The gradients are 
weighted by distance from the center of the patch (indicated by 
the large circle in Figure 1) as well as by the distance from the 
center of the corresponding sub-region (indicated by the 9 small 
circles in Figure 1). The length of the descriptor depends on the 
quantization of orientations (usually 4 or 8) as well as the number 
of sub-regions (usually 3x3 or 4x4). Although Lowe describes and 
analyzes several combinations of these parameters, most SIFT 
implementations use 8 orientations and 4x4 sub-regions, which 
provide best results, but create a rather large feature vector of a 
size of 128 dimensions. 

3.2 Ferns: Tracking by classification 
Contrary to descriptor-based matching as described in the last 
section, feature classification for tracking [18] works by learning 
the distribution of some features F of a set of classes C 
corresponding to model points mC in a model image.  At runtime, 
interest points are detected using some interest point detector, the 
value of feature F for an interest point is computed and the point  
is classified by maximizing the probability of observing the 
feature value F 
 

C = argmax P(Ci | F) over Ci. 
 

The model point mC corresponding to the class C of an interest 
point is then used as the 3D correspondence for subsequent pose 
estimation. Different to feature matching approaches, the 
classification scheme is not based on a distance measure, but 
trained to optimize recognition of the feature points in the original 
model image. The classification scheme can be less 
computationally intensive, depending on the basic features used. 

The Ferns [18] classification uses binary features that compare 
image intensities I(p) in the neighborhood of interest points p. A 
binary feature F is a function F(p) parameterized by a pair of 
offsets (l,r) such that 

 

F(p) = 1   if I(p + l) < I(p + r) 
    0        otherwise. 

 

For a set of N features Fi the probability of observing class C 
can be computed using Bayes theorem as 

 

P(C | { Fi }) = P({Fi}|C) P(C) / P({Fi}). 
 

The denominator is only a scaling constant, and the prior P(C) 
is assumed to be uniform. The probability P({Fi}|C) is learned in a 
training phase by counting the occurrence of {Fi} for many 
different examples of the same model point and thus 
corresponding class C. 

Example views are created by applying changes in scale, 
rotation and affine warps and added pixel noise. These 



modifications provide a local approximation to the appearance 
changes that are created by different view points of the model 
feature. The different results of computing F1,F2,...,FN are counted 
in a 2N sized histogram describing an empirical distribution of 
P({Fi}|C) (see Figure 2). 

To classify an interest point p as a class C corresponding to 
model feature mC, we evaluate the probability of observing the 
features {F1,F2,...,FN} given class C by computing the result string 
of 0 and 1s, combining it into an index number and using the 
index to lookup the probabilities in the empirical distribution. The 
class C yielding the highest probability is then the resulting 
classification. Both training and classification operate on images 
smoothed with a Gaussian filter. 

 
Figure 2. Learning distribution of features F from several 

examples and storing the occurrence of outcomes. 

For practical numbers of N, the size of the full joint distribution 
is too large to be fully represented. Instead it is approximated by 
subsets of features, so called Ferns, for which the full distribution 
is stored. For a fixed Ferns size S, M = N/S such Ferns FS are 
created. The probability P({Fi}|C) is then approximated as 

 

P({Fi}|C) = Π P(FS | C). 
 

In practice, probability values are computed as log probabilities 
and the product in the last equation is replaced with a sum. 

4 MAKING NATURAL FEATURE TRACKING FEASIBLE ON 
PHONES 

In the following we describe our modified approaches of the SIFT 
and Ferns techniques. Since the previous section already gave an 
overview on the original design, we concentrate on changes that 
made them suitable for mobile phones.  
 

 
Figure 3. Overview of the SIFT and Ferns pipelines. 

Four major steps make up the pipeline of a feature based pose 
tracking system (see Figure 3): (1) Feature detection (and 
tracking), (2) Feature description and matching, (3) Outlier 
removal and (4) Pose estimation. 

Our implementations of the SIFT and Ferns techniques share 
the first and last steps: Both use the FAST [21] corner detector to 
detect feature points in the camera image, as well as Gauss-
Newton iteration to refine the pose originally estimated from a 
homography. 

4.1 Modified SIFT for phones 
In the following we describe in detail how we modified the SIFT 
algorithm to achieve real-time performance on mobile phones. We 
begin with describing all steps of the run-time pipeline and finish 
with the offline target data acquisition, since it relies on the same 
techniques as used at runtime. 

4.1.1 Feature detection 
The original SIFT algorithm uses Difference-of-Gaussians (DoG) 
to perform a scale-space search that not only detects features but 
also estimates their scale. Although several faster implementations 
of Lowe’s approach have been proposed, the approach is 
inherently resource intensive and therefore not suitable for real-
time execution on mobile phones. We therefore replaced the DoG 
with the FAST corner detector with non-maximum suppression 
that is known to be one of the fastest corner detectors, but still 
provides a high repeatability. 

Since our approach does not estimate a feature’s scale anymore, 
the resulting descriptor is not scale invariant in the sense of the 
original SIFT implementation. To reintroduce scale estimation, 
the descriptor database contains features from all meaningful 
scales (see more details in section 4.1.6). Consequently, we trade 
memory for speed: at the cost of potentially describing the same 
feature multiple times over various scales we can avoid the CPU 
intensive scale-space search. Due to the low memory 
requirements per SIFT descriptor, this approach turns out to be 
reasonable. 

By varying the threshold of the FAST corner detector we can 
dynamically adjust the number of corners found. Optimizing for 
~150 features per frame turns out to be good balance between 
finding enough features for matching and processing speed. 

4.1.2 Feature tracking 
After new features have been detected, they can optionally be 
tracked by cross correlation. While feature tracking is not 
mandatory since the match step is independent of frame-to-frame 
coherence, it provides two benefits: Most obviously, tracking of 
features gives a speed up, since features that were tracked reliably 
don’t have to be described and matched against the SIFT 
database. At the same time feature tracking also improves the 
overall robustness since features that passed all outlier tests are 
forwarded with highest confidence values into the next frame, 
which improves outlier removal. 

Our feature tracker follows both “good” and “bad” features 
from frame to frame. Good features passed all tests and finally 
contributed to the pose estimation in the previous frame. Hence, 
they provide a good basis for the next camera frame. Bad features 
could either not be matched or were filtered out by the outlier 
removal step. Since a bad feature is likely to be re-detected in the 
next frame, much processing time can be saved by forwarding this 
information to the next frame. Forwarding both good and bad 
features removes the need to describe and match them, resulting 
in a considerable speedup. 

To track features we extract patches of a size of 8x8 pixels that 
are blurred using a 3x3 Gaussian kernel. The blurring step makes 
the features more robust against any kind of affine transformation 
and slightly incorrect feature coordinates. A Sum of Absolute 
Difference (SAD) measure is used to estimate patch similarity. 



We allow an average difference of up to 8% (empirically 
determined) per pixel to treat a feature as correctly matched.  

Features are only tracked in a search radius of 25 pixels. To 
speed-up the search for neighboring features, all new coordinates 
are entered into a 2D grid that provides almost constant search 
time per feature. 

4.1.3 Descriptor creation 
Although Lowe describes several versions of his SIFT descriptor 
[15], most people associate SIFT only with its most complex 
variant, which is built from 4x4 sub-regions with 8 gradient bins 
each, resulting in a 128 dimensional vector. For performance and 
memory reasons we decided to use a variant using only 3x3 sub-
regions with 4 bins each (resulting in a 36 dimensional vector). As 
Lowe outlines, this variant performs only ~10 percent worse than 
the best variant. 

 
Figure 4. Extraction of SIFT features. 

Since our approach is not based on interest points providing 
scale information, the SIFT kernel is always 15 pixels wide (3 
sub-regions with a size of 5 pixels each, see Figure 1). To gain 
more robustness, we again blur the patch with a 3x3 Gaussian 
kernel (see Figure 4). Like in the original implementation we first 
estimate the main orientations from the patch’s gradients: for all 
pixels of the kernel, we calculate the gradient direction and 
magnitude. The gradient direction is quantized to [0..35] to select 
the corresponding target bin. The gradient magnitude is weighted 
using a distance measure and is added to the respective bin. The 
resulting histogram is then searched for peaks. If more than 3 
peaks are found, the feature is discarded. 

For each detected orientation, the patch is rotated using sub-
pixel accuracy to compensate that orientation. Based on the 
rotated patches, descriptor vectors are created: Gradient 
magnitudes and orientations are estimated again and weighted by 
their distance to the patch center as well as to the sub-region 
center. The weighted magnitudes are then written into the 4 bins 
corresponding to the sub-region. 

Using gradients makes the approach invariant to constant 
brightness changes. Furthermore the vector is normalized to 
compensate for linear brightness changes. Finally any entries that 
are longer than 25% of the overall length are cropped to reduce 
too strong influence of single values. 

4.1.4 Descriptor matching 
After the descriptors for all features detected in the new camera 
image (except for those tracked from the previous frame) have 
been created, they are matched against the descriptors in the 
database. Brute force matching is not an option, since for each 
frame ~50-100 features have to be matched against ~5000 features 
in the database. Since each feature is described by a 36 
dimensional vector this would result in multiplying and summing 
up 18 million vector entries, which is infeasible to perform in real-
time due to computational constraints as well as memory 

throughput limits. The original SIFT implementation uses a k-d 
Tree together with a Best-Bin-First strategy. Yet, our tests showed 
that even with this approach far too many vectors have to be 
compared for real-time performance on mobile phones. 

Looking in more detail into why the k-d tree is ineffective for 
our purposes, we discovered that some (usually 1-3) entries of the 
36 dimensional vectors vary strongly from their respective vectors 
in the database. These errors increase the required tolerance for 
searching in the tree tremendously. Hence, we decided to use a 
different approach. A Spill Tree [14] is a variant of a k-d Tree that 
uses an overlapping splitting area. Values that are within a certain 
threshold are dropped into both branches. With an increasing 
threshold, a Spill Tree is capable of tolerating more and more 
error at the cost of growing larger. Unfortunately errors of 
arbitrary amount can show up in our SIFT vectors, which renders 
even a Spill Tree unsuitable. 

 
Figure 5. Spill forest memory requirements as function of number 

of trees and spill tree overlap percentage. 

While a single Spill Tree turns out to be insufficient, we 
discovered that multiple trees with randomized dimensions for 
pivoting allow for a highly robust voting process, similar to the 
idea of randomized trees [13]: instead of using a single tree, we 
combine a number of Spill Trees into a Spill Forest. Each Spill 
Tree is built up to such a size, that it holds ~50-80 entries in each 
leaf. While trees with more levels reduce search time, more levels 
also increase the chance of testing a faulty dimension. Since only 
a few values of a vector are expected to be wrong, a vector has a 
high probability of showing up in the “best” leaf of each tree. We 
therefore only visit a single leaf in each tree and merge the 
resulting candidates. Descriptors that show up in only one leaf are 
discarded. All others are matched using Sum of Squared 
Difference (SSD). 

Naturally, using multiple trees increases the memory 
requirements. Figure 5 shows the memory footprint of various 
Spill Forest sizes for a typical dataset, ranging from 2-8 trees and 
8%-20% threshold (overlap). Our tests (see section 5.4.1) have 
shown that this approach finds the correct descriptor in more than 
95% with reasonable memory usage while the processing time is 
reduced such that descriptor matching is not a bottleneck. 

4.1.5 Outlier removal 
Although SIFT is known to be a very strong descriptor, it still 
produces outliers that have to be removed before doing pose 
estimation. Our version of SIFT does not estimate the scale of 
features, so we experimented with verifying features on two 
successive scale levels. This approach removes nearly all outliers, 
but also many inliers, and it is very computationally intensive. 

The outlier removal that was finally adopted therefore operates 
on a single-scale and works in three steps. The first step uses the 
orientations that have already been estimated for the descriptor 



creation (see section 4.1.3). The relative orientations of all 
matched features are corrected to absolute rotation using the 
feature orientations stored in the database. Since the tracker is 
limited to planar targets, all features should have a similar 
orientation. Entering all orientations into a histogram and 
searching for a peak, a main orientation is quickly estimated and 
used to filter out those features which do not support this 
hypothesis. Since the feature orientations are already available, 
this step is very fast; at the same time it is very efficient in 
removing most of the outliers. 

The second outlier removal step uses simple geometric tests. 
All features are sorted in linear time by their matching confidence 
using distribution sort. Then, starting with the most confident 
candidates, lines are estimated from two features. All other 
features are then tested to lie on the same side of the line in 
camera as well as object space. If too many features (>50%) fail 
the test for a single line, the test is canceled, since one of the two 
reference features is probably faulty. Up to 30 lines are tested. 
Features which fail line tests are removed. 

The third outlier removal step creates homographies to remove 
final outliers. Features that passed the previous two tests 
obviously have a correct orientation and coarsely lie at the right 
spot in the camera image. Hence, only few outliers remain. Since 
a homography must be computed for the initial pose anyway, it 
can be used for strong final test without introducing overhead. A 
main problem with creating homographies is that features must 
not only be correct but also well-placed to be suitable: Features 
must not be co-linear, and their convex hull should cover a large 
region of the camera image. 

To find good candidates, we first estimate the main direction of 
the point cloud using perpendicular regression. We then select 
features that lie at extremal positions in both directions of the line, 
as well as furthest perpendicular to the line. For higher robustness, 
we select two candidates for each direction. These 8 features are 
then combined into sets of 4 (one from each direction) and used to 
calculate 24=16 candidate homographies from object into camera 
space. All homographies are then used to test the projection of the 
features. The homography with the smallest number of outliers 
and all respective inliers are finally selected for pose refinement. 

4.1.6 Target data acquisition 
The SIFT tracker uses a model-based approach and hence requires 
a feature database that has to be prepared beforehand. Since the 
tracker is currently limited to planar targets, a single orthographic 
image of the tracking target is sufficient. Data acquisition starts by 
building an image pyramid. Successive pyramid levels are created 
by scaling down with a factor of 1/sqrt(2) from the previous level. 
Features will later be detected at similar scales as available in the 
image pyramid. Hence the range from largest to smallest pyramid 
level defines the range of scales that can be detected at runtime. In 
practice we usually create 7-8 scale levels sized from ~1MPixel 
down to 80KPixel. This approach varies from the one described 
by Lowe in that we have clearly quantized steps rather than 
estimating an exact scale per keypoint. 

After the image pyramid has been created, we run the FAST 
corner detector to search for features at all scales. To restrict the 
creation of feature descriptors to the most stable features, we 
require corners to show up at two successive scales. For features 
passing this test, descriptors are created. Again, features with 
more than three main orientations are discarded. All feature 
coordinates plus descriptors are then stored in a feature set file. 

The discretization of scale-space in this way leads to a multi-
scale feature description similar to that described by Chekhlov et 
al. [3]. However, we compute descriptors only from scales where 

an interest point was found to avoid descriptors that cannot be 
detected. 

4.2 Modified Ferns for phones 
This section describes the modifications to the original Ferns [18] 
tracking work to operate on mobile phone devices.  

4.2.1 Feature detection 
The original Ferns implementation uses an extrema of Laplacian 
operator to detect interest points in the input image. This was 
replaced by the FAST detector [21] as described in section 4. 
Interest points are computed on 2 octaves of the image and 
subjected to non maximum suppression. These interest points are 
then classified using the Ferns classifier to yield matches with the 
points from the model. 

4.2.2 Feature classification 
The implementation of the runtime classification is 
straightforward and the original authors provide a simple code 
template to highlight this fact. Given an interest point p, the 
features Fi for each Fern FS are computed and used as indexes into 
the histograms. The histograms store the log of the probabilities 
and a summation over all Ferns yields the final log of probability 
for each class.  

The original work used Fern sizes S = 10-14 and M = 20-30 
Ferns, requiring storage of more than 3·105 entries per model 
feature. Even if a single log probability is stored as a byte, 
realistic databases of at least 100 model features grow to 32Mb, 
exceeding by far available application memory on mobile phones. 

The selection of M and S for fixed N provides a convenient 
way of trading off memory use and classification performance. 

The overall memory usage is given by M2S, so that reducing S 
yields more significant memory savings. For a fixed number of 
questions N = SM, Figure 6 shows the memory usage as a function 
of S. We experimented with S between 6 - 12 and a total N of 200 
which yielded elements numbers of around between 2000 and 
64000. In total, the number of entries of all histograms for 100 
features then varies between 2·105 and 6.4·106. 

 
Figure 6. Memory requirements per model point. 

The original work stored log probabilities as floating point 
values using 4 bytes per element. We found that representing the 
log probabilities as 8-bit bytes yields enough numerical precision 
to avoid any degradation in performance. A linear transformation 
between the range of the original log probabilities and the range 
[0..255] for unsigned 8-bit numbers is used, because it preserves 
the order of the resulting scores. 

However, reducing the block size S of the FERNs empirical 
distribution severely impacts the classification and matching 
performance. Therefore we found it necessary to improve the 
distinctiveness of the classifier by actively making it rotation 
invariant. Thus, for every interest point p, we compute a dominant 
orientation by evaluating the gradient of the blurred image 
centered on the interest point. The orientation is then quantized 



into [0..15] and a set of pre-rotated questions associated with each 
bin is used to calculate the answer sets. The same procedure is 
also applied in the training phase, for training the empirical 
distributions to compensate inaccuracy in the rotation estimation, 
quantization noise from the rotation quantization, and the 
alignment of rotated questions to pixels. 

Figure 7 compares the classification performance of the 
different schemes using a fixed number of 200 questions. We 
compared using different block sizes with a fixed block size and 
different number of rotation bins. The graph shows both 
classification rate, defined as correct classification of a model 
point given its location, and match rate, defined as the rate at 
which the top log probability interest point is within a fixed small 
neighborhood of the true model point. Both rates were computed 
for artificially warped and transformed images to have ground 
truth. The block size was varied as S = 6, 8, 10, 12 and the 
rotation bins as 1, 4, 8, 16 with a fixed size S = 8. 

 
Figure 7. Classification rate (top two lines) and match rate 

(bottom two lines) for different Fern sizes S without rotation 
(dashed line) and for S = 8 with different rotation bins (solid line). 

Notably, while the classification rate does not suffer much from 
less complex Ferns, the match rate deteriorates dramatically and is 
as low as 25% for the S = 6 case. Similarly the S = 8 case without 
rotation is just below 40% but improves to over 60% percent for 
16 rotations. This is a higher rate than for the S = 12 case without 
rotation, while its memory requirements are only a fraction of the 
latter. Moreover, the match rate is the crucial parameter for 
successful outlier removal using RANSAC, as it determines the 
number of trials necessary to obtain a robust estimate. 

Robust classification also requires smoothing of the input 
images with Gaussian blur to reduce the influence of noise and to 
make the differences more stable. To improve the speed of this 
rather expensive operation, the kernel size was chosen to be 5 
pixels only and the coefficients were modified to match powers of 
2 to make use of specific strengths (free barrel shifting) of the 
ARM processors. The resulting smoothing is not a true Gaussian 
blur anymore, but its use in both training and runtime results only 
in little degradation of the classification performance. 

4.2.3 Training 
FAST typically shows multiple responses for interest points 
detected with more sophisticated methods. It also does not allow 
for sub-pixel accurate or scale-space localization. These 
deficiencies are counteracted by modifying the training scheme to 
use all FAST responses within the 8-neighborhood of the model 
point as training examples. 

Testing the resulting feature classification also allows for 

pruning the classification database to improve the matching 
performance. We remove all model points that have a matching 
rate below 50% to improve the overall matching rate.  

4.2.4 Active search 
Feature classification does not require any prior knowledge about 
camera pose and allows full localization at every frame. However, 
using information about the expected location of model points in 
the frame can reduce the required computational effort to establish 
matches and improve the inlier rate. 

Using a motion model, the camera pose is predicted for the next 
frame. All model points are projected into the current image. For 
all detected interest points, the model points within a certain 
search radius are selected and the classification is restricted to 
these model points only. To speed up the search for nearby model 
points, a 2D grid is used, reducing the search overhead to be 
almost linear. 

The restricted classification is more efficient as it needs to 
compute the probabilities only for a subset of all classes. 
Furthermore, as each class is matched against fewer points, the 
likelihood of a false match is reduced, assuming the true match is 
in the set of detected interest points. Finally, model points that do 
not project into the current view are also excluded from matching, 
avoiding spurious matches against invisible model points. 

4.2.5 Outlier rejection 
The match set returned by the classification still contains a 
significant fraction of outliers. Therefore a robust estimation step 
is required to compute the correct pose. In a first outlier removal 
step, we use the orientation estimated for each interest point and 
compute the difference to the stored orientation of the matched 
model point. Differences are binned in a histogram and the peaks 
in the histogram are detected. As differences should agree across 
inlier matches, we remove all matches in bins with less matches 
then a fraction of the peaks. We use 66% as threshold, chosen 
experimentally by evaluating the distributions of differences. 

The remaining matches are used in an MLESAC [25] scheme to 
estimate a homography between the model points of the planar 
target and the input image. The final homography is estimated 
from the inlier set and used as starting point in a 3D pose 
refinement scheme described below. 

4.3 Pose Refinement 
Pose refinement estimates a 6DOF camera pose from the 2D-3D 
point correspondences between observed feature points and 
original model points using a Gauss-Newton iteration scheme to 
minimize the re-projection error under a standard camera model.  
Given a camera pose C as a rigid transformation from a world co-
ordinate system into the camera coordinate system, a point x = 
(x,y,z,1) is projected into the view to the point p = (u,v) with the 
following observation function 

 
The function proj(.) models the projection from camera frame 

to image coordinates as 

 
The term r’  compensates for radial lens distortion and the 

parameters fu, fv, cu, cv, α  and β  model the intrinsic camera 



parameters, which are determined in an off-line camera 
calibration step. 

For a set of N observations pi of model points xi, the observation 
error e(C) is the sum of the individual errors di squared 

 
Minimizing e(C) with respect to C provides the least-squared 

error estimate of the camera pose. We parameterize C by applying 
a small motion M to it as C+ = MC. The motion M is 
parameterized by the six-vector μ corresponding to the 
exponential map parameterization of the Lie group SE(3). 
Minimizing the error e(MC) with respect to μ requires solving the 
over determined system of linear equations J μ = d where J is the 
Jacobian of (1) with respect to μ for every observation i 

 
Then the following equation gives the minimizing parameter 

vector μ 

 
The Cholesky decomposition is used to efficiently compute the 

pseudo inverse (JT J)-1 JT. 
Most mobile phones today don’t have floating-point units, 

which requires relying on fixed-point numerics. Most fixed-point 
algorithms tend to become unstable if too much data is involved 
due to the limited numerical stability. We therefore limit the pose 
refinement step to a maximum of 20 features. These features are 
selected to cover a large area of the camera image. For 
performance reasons we use another 2D grid for this purpose. 

5 EVALUATION 
To create comparable results for tracking quality as well as 

tracking speed over various datasets (see Figure 10), tracking 
approaches and devices, we implemented a frame server that loads 
uncompressed raw images from the file system rather than from a 
live camera view. The frame server and both tracking approaches 
were ported to Windows CE and Symbian and tested in a large 
number of combinations, resulting in more than 1 million 
recorded measurements. 

5.1 Ferns parameters 
To explore the performance of the Ferns classification approach 
under different Fern sizes, we trained a set of Ferns on three data 
sets and compared robustness, defined to be the number of frames 
tracked successfully, and speed. The total number of binary 

features was fixed to N = 200 and the size of Ferns was varied 
between S = 6-12. The corresponding number of blocks was taken 
as M = [N/S]. The number of model points was also varied 
between C = 50 - 300 in steps of 50. 

Figure 8 shows the robustness and speed for different values of 
S and C for the Cars data set. To compare the behavior of the 
Ferns approach to the SIFT implementation, we ran the SIFT with 
optimized parameters on the same data sets. The resulting SIFT 
performance is given as black dashed line in the graphs of Figure 
8. The runtime performance seems best for the middle 
configurations, while small S appears to suffer from the larger 
value of M, while for large S the bad cache coherence of large 
histogram tables seems to impact performance. The lower 
robustness values for the mid S configurations is due to a less 
optimized match threshold derived by linear interpolation from 
thresholds for the border values. Additionally, Table 1 shows the 
relative memory usage of the different Fern sets versus the SIFT 
database. 

 Optimizing the Fern parameters requires both achieving similar 
speed and robustness as the SIFT method while not using 
substantially more memory. As final parameters for further 
evaluation we selected S = 8 and M = 25 with C = 150 classes. 
 
    Number of model points 

    50  100  150  200  250  300 

6  9%  17%  26%  35%  44%  52% 

7  15%  30%  44%  59%  74%  89% 

8  26%  53%  79%  106%  132%  158% 

9  46%  93%  139%  186%  232%  279% 

10  84%  169%  253%  338%  422%  507% 

11  152%  304%  456%  608%  760%  912% FE
RN

 b
lo
ck
 s
iz
e 
S 

12  270%  541%  811%  1081%  1351%  1622% 

Table 1. Fern memory usage relative to SIFT (for Cars dataset).  
The black line indicates configurations with similar memory usage. 

5.2 Robustness 
The optimized configurations for both SIFT and Ferns from the 
last section were used to test robustness on different targets. We 
defined a pose to be found successfully, if the number of inliers is 
8 or greater. This definition of robustness is used for all tests in 
the paper. Furthermore we also compared the pure localization at 
every frame with the corner tracking and active search option of 
the two systems. 
As can be seen in the middle chart of Figure 9, the Book and 

   
Figure 8: FERN runtime per frame (left) and robustness (right) for varying block size and number of model points. 

Dashed black lines represent SIFT reference. The N = 50 line for robustness (right) is around 50% and far below the shown range. 



Advertisement datasets (first two pictures in Figure 10) performed 
worst. Compared to the other datasets, both targets consist of 
large, untextured areas that provide only few trackable features. In 
both cases active search and corner tracking where able to 
improve tracking robustness considerably, while at the same time 
improving tracking speed by 30-100%. Analyzing the reason for 
tracking failure we noticed that tracking failed a few times over 
longer sequences of frames, when the camera image showed 
mostly untextured areas. 

The Pano, Photo and Vienna datasets work noticeably better, 
since theses images are uniformly covered with features including 
many different brightness levels. The Cars and Map datasets 
perform in medium quality for different reasons: while the Cars 
poster is covered with many highly detectable features in the 
middle area, its top and bottom areas are very weak in contrast 
and hence only few corners are detected there. The Map dataset 
on the other hand has many perfectly distributed features, but of 
low average quality of being tracked: there are many small areas 
on the map, that are uniformly colored at similar gray levels, a 
condition that is equally unsuitable for SIFT and Ferns. 

On average, both approaches performed very similar: Both 
were able to track the targets in ~96% of all frames without active 
search or corner tracker and performed ~1-2% better with. Also 
the timings (on the PC) were similar at 3ms with active search and 
corner tracking, and 5ms without. 

5.3 Performance 
Finally, the overarching challenge of natural feature tracking on 
mobile phones is speed. To explore the operational speed of the 
two approaches, we evaluated the Ad, Cars and Vienna sequences 
from section 5.2 on the following list of devices: 

 Notebook with a 2GHz Intel Core Duo (Windows XP) 
 HP iPAQ 614c with a 624MHz Intel XScale PXA270 

(Windows Mobile) 
 Nokia N95 with a 330MHz TI OMAP 2420 (Symbian) 
 Motorola Q9 with a 330MHz TI OMAP 2420  

(Windows Mobile) 

Both the Motorola Q9 (Windows Mobile) and the Nokia N95 
(Symbian) use the same CPU, hence we expected similar 
benchmarking results. Although most of our code is integer or 
fixed-point based, we also benchmarked the N95 (who’s OMAP 
2420 CPU has a hardware floating point unit) with hardware 
floating point enabled (replacing all fixed-point code with 

floating-point variants). The IPAQ 614c (Windows Mobile) runs 
an XScale CPU with 624MHz and was therefore expected to 
clearly outperform the other phones. For reference, we ran all test 
series on a notebook with a 2GHz Core Duo. Since the code is 
optimized for phones it does not take advantage of the PC’s 2nd 
CPU core. 

Three different test series were run on all devices: 
Advertisement (bad tracking quality), the Cars poster (medium 
tracking quality) and the Vienna satellite image (best tracking 
quality). 

In general, the timings (see Figure 9) show that we could 
achieve our goal of natural feature tracking on mobile phones 
operating at interactive speeds. The average runtime per frame is 
around 60ms for the slowest devices, resulting in a potential frame 
rate of 15 fps. After adding typical overheads of acquiring frames 
and rendering output, we can still expect to build AR systems 
operating at 10 fps on mobile phones. 

However, our measurements did not fully reflect our 
expectations because the Ferns code performed much slower (~2x 
slower than it should) on the Windows Mobile devices, whereas it 
works as expected on the Symbian platform it was originally 
written for. The slow-down is specific to the log probability 
summation code which is a simple memory lookup and 
summation routine. Nevertheless, we were not able to identify the 
reason for the slow down. 

Ignoring this misbehavior we notice that both Ferns and SIFT 
run at reasonable speed on all tested devices. The SIFT 
implementation, which was developed on the Windows CE 
platform is able to take full advantage of the 624MHz and runs at 
~30 milliseconds on all test sets. Due to the problems mentioned 
above, the Ferns code is not able to run at full speed on this 
device. 

On the N95 the Ferns implementation performs very similar to 
the SIFT tracker: both algorithms run at 50-70 milliseconds for all 
test sequences. Timings with fixed-point and floating-point are 
very similar due to the low usage of these data types across the 
tracking pipelines of both algorithms. As expected, the SIFT 
tracker runs at almost identical speed on the Motorola Q9 as on 
the Nokia N95, whereas the Ferns tracker again performs at only 
half the speed it should. 

Compared to all benchmarked phones, the PC executed both 
approaches about 15-20 times faster. Even though its clock rate is 
only 3.2 times higher than the clockrate of the XScale, its much 
larger caches and multiple ALUs provide a clear advantage. 

 
Figure 10: The 7 test sets (from left to right): book cover, advertisement, movie poster, printed map, panorama picture, photo, satellite image. 

 
 

       
                     

Figure 9: Left: timings of SIFT and Ferns on all 7 datasets on a PC with 2GHz. Middle: corresponding tracking robustness.  
Right: Timings on 5 different platforms and 3 datasets; grouped by platform and algorithm. 

 



5.3.1 Detailed speed analysis for SIFT 
Looking in more detail into what SIFT spends its computation 
time for (see Figure 11) shows that the most time consuming 
single action is corner detection, requiring ~23% of the overall 
time. This is not surprising since the corner detector has to look at 
almost all 76800 (320x240) pixels (except for those pixel close to 
the image border, where features can not be described). 

Feature describing and matching together requires 50% of the 
overall time. It starts with describing the features, which includes 
blurring a patch, estimating its orientation, rotating to compensate 
orientation and finally creating the description vector. Together 
these 4 steps require ~21% of the overall time. 

 
Figure 11. Relative timings of the SIFT tracker. 

Matching of descriptors starts by dropping down the trees to the 
very first leaves, which is fast, but consecutively requires merging 
the lists of results. Although this merge operation requires only 
linear time (the candidate lists are presorted) the pure number of 
200-400 candidates makes this an expensive operation. 
Calculating sum of squared difference (SSD) for the resulting best 
candidates then takes only ~11% of the overall time. 

Descriptor creation and matching is computationally expensive, 
but is supported by corner tracking, which helps reducing the 
number of descriptors to create, while at the same time 
introducing only a small additional cost. 

Outlier removal costs ~7% of the overall time per image. Most 
of the time is spent for creating and testing homographies for the 
last inlier test. Finally, pose refinement takes ~4% frame time. 

5.3.2 Detailed speed analysis for Ferns 
The Ferns algorithm is simpler then the SIFT algorithm and 
consequently consists of only a few blocks (see Figure 12). A set 
of operations is performed on the whole image consisting of 
corner detection, down sampling to create a second octave and 
blurring the input octave images. The remaining time is spent in 
the classification which is linear both in number of interest points 
and classes, and finally, outlier detection. 

 
Figure 12. Relative timings of the Ferns component, normalized 

to the full localization mode. 

The impact of active search can be observed both in the 
reduction of time spent in classification as fewer classes are 
visited, as well as in the dramatically reduced time spent in the 
RANSAC outlier detection stage. Here, the increased inlier rate 
pays off as a large set of inliers can be established quickly. 

5.4 Memory tradeoffs 
Both SIFT and Ferns have to trade memory for speed and/or 
robustness. Due to the limits of today’s mobile phones, both 
approaches have to run with much less memory than originally 

designed for. In this section we discuss where most of the memory 
is spent and how reducing the overall memory footprint influences 
tracking behavior. 

5.4.1 Memory for SIFT matching 
SIFT descriptor datasets as tested in this paper are typically in a 
size from 50-100KB, which is highly suitable for mobile phones, 
as long as only a small number of targets shall be tracked at a 
time. Since brute force matching is too slow, we developed Spill 
Forests as described in section 4.1.4. Due to their highly 
redundant nature, Spill Forests can easily require several 
megabytes of memory for the aforementioned datasets. 

 
Figure 13. Robustness for SIFT descriptor searching as function 

of number of Spill trees and Spill tree overlap. 

We experimented with various Spill Forest sizes in terms of 
memory usage (see Figure 5) and robustness (see Figure 13). 
Memory requirements increase linear with the number of trees 
and more than linear with overlap (threshold). Our tests show that 
using only 2 Spill trees, combined with a low threshold (<14%), 
does not yield robust matching. As can be seen in Figure 13, the 
first combination (sorted from lowest to highest memory usage) 
that allows tracking of more than 96% of all frames, uses 4 trees 
and a threshold of 14% and was therefore used for all tests in this 
publication. 

5.4.2 Memory for Ferns datasets 
Memory requirements for Ferns were already extensively 
discussed in section 4.2.2 and 5.1. The exponential dependency on 
the block size favors the use of more classes, but smaller blocks to 
achieve a desired level of robustness. As Figure 8 shows, the 
robustness does not depend greatly on the Ferns block size, but 
rather on the number of classes trained. Thus, at the expense of 
some computational overhead, smaller block sizes may be chosen 
to reduce memory footprint. 

6 CONCLUSIONS AND FUTURE WORK 
We have presented two approaches for natural feature trackers 
that allow robust pose estimation from planar targets in real time 
on mobile phones.  

The two original techniques, SIFT and Ferns, are very different 
in their approach – while SIFT is engineered around a highly 
sophisticated feature descriptor, Ferns recasts detection as 
classification, and relies on Bayesian statistics of large quantities 
of simple binary tests. 

We originally assumed that the simplicity of Ferns would let it 
outperform the more complex SIFT on a constrained platform 
such as a phone. However, it turned out that in order to deliver a 
high level of quality Ferns requires significant amounts of 
memory (for a phone) and computational bandwidth to use the 
consumed memory. Moreover, the very simple structure of Ferns 



descriptors requires more sophisticated outlier management, 
which consumes further computational resources. 

The approach finally adopted for both shows interesting aspects 
of convergence: In both approaches, Laplacian/Gaussian feature 
detection was replaced by simple FAST detector at the expense of 
losing scale independence. Ferns adopted a regularization using 
the dominant orientation from SIFT, while SIFT adopted a search 
forest approach from Ferns. Two of the three steps of outlier 
management, namely orientation check and homography check, 
are shared by both approaches. A major weakness of both 
approaches is the rather limited tilt angle they can tolerate. While 
artificial fiducial markers can be detected close to 90° tilt, both 
SIFT and Ferns do usually not permit more than 40-50° of tilt. 

The final performance of both techniques is very comparable 
given an equal amount of CPU performance and memory. At the 
lower end, SIFT may be more stable than Ferns, while Ferns may 
be able to outperform SIFT given an increased amount of memory 
and CPU bandwidth currently not afforded by phones. 

The SIFT descriptor database can be limited to as little as 50K, 
but the Spill Forest created at runtime can require several 
megabytes. The Ferns datasets are much larger and have to be 
downloaded to the phone and stored in advance. Yet, in order to 
track larger or many targets concurrently, memory requirements 
of both approaches have to be reduced. 

We observe that the level of CPU performance on phones has 
not increased very much in the last three years, probably because 
of a certain market saturation and the very tight power budget 
afforded by cell phone batteries. Instead, it is very likely that 
programmable GPUs will be embedded in multi-core phone CPUs 
very soon. This may enable more expensive per-pixel processing, 
allowing to re-introduce operations such as Laplacian/Gaussian 
transforms again. Depending on whether CPU or GPU 
enhancements become available, the choice of next generation of 
tracking technique may be different. 

A natural future step is to extend the presented work in order to 
support 3D tracking targets. In the case of 3D targets, estimating a 
homography would not suffice anymore. Furthermore, it would be 
necessary to cope with self-occlusions of the tracking target. 
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