
Pose Tracking from Natural Features on Mobile Phones

Daniel Wagner1, Gerhard Reitmayr2, Alessandro Mulloni3, Tom Drummond4, Dieter Schmalstieg5

1 3 5 Graz University of Technology 2 4 University of Cambridge

ABSTRACT
In this paper we present two techniques for natural feature
tracking in real-time on mobile phones. We achieve interactive
frame rates of up to 20Hz for natural feature tracking from
textured planar targets on current-generation phones. We use an
approach based on heavily modified state-of-the-art feature
descriptors, namely SIFT and Ferns. While SIFT is known to be a
strong, but computationally expensive feature descriptor, Ferns
classification is fast, but requires large amounts of memory. This
renders both original designs unsuitable for mobile phones. We
give detailed descriptions on how we modified both approaches to
make them suitable for mobile phones. We present evaluations on
robustness and performance on various devices and finally discuss
their appropriateness for Augmented Reality applications.

KEYWORDS: pose tracking, natural features, mobile phones

INDEX TERMS: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems – Artificial, augmented, and
virtual realities; I.4.8 [Image Processing and Computer Vision]:
Scene Analysis – Tracking

1 INTRODUCTION
Tracking from natural features is a complex problem and usually
demands high computational power. It is therefore difficult to use
natural feature tracking in mobile applications of Augmented
Reality (AR), which must run with limited computational
resources, such as on Tablet PCs.

Mobile phones are very inexpensive, attractive targets for AR,
but have even more limited performance than the aforementioned
Tablet PCs. Phones are embedded systems with severe limitations
in both the computational facilities (low throughput, no floating
point support) and memory bandwidth (limited storage, slow
memory, tiny caches). Therefore, natural feature tracking on
phones has largely been considered prohibitive and has not been
successfully demonstrated to date.

In this paper, we present the first fully self-contained natural
feature tracking system capable of tracking full six degrees of
freedom (6DOF) at real-time frame rates (20Hz) from natural
features using solely the built-in camera of the phone.

To exploit the nature of typical AR applications, our tracking
techniques use only textured planar targets, which are known
beforehand and can be used to create a training data set.
Otherwise the system is completely general and can perform
initialization as well as incremental tracking fully automatically.

We have achieved this by examining two leading approaches in
feature descriptors, namely SIFT and Ferns. In their original

published form, both approaches are unsuitable for low-end
embedded platforms such as phones. Some aspects of these
techniques are computationally infeasible on current generation
phones and must be replaced by different approaches, while other
aspects can be simplified to run at the desired level of speed,
quality and resource consumption.

The resulting tracking techniques show interesting aspects of
convergence, where aspects of SIFT, Ferns and other approaches
are combined into a very efficient tracking system. The resulting
tracker is 1-2 orders of magnitude faster than naïve approaches
towards natural feature tracking and therefore also very suitable
for more capable computer platforms such as PCs. We back up
our claims by a detailed evaluation of the trackers’ properties and
limitations that should be instructive for developers of computer
vision based tracking systems, irrespective of the target platform.

2 RELATED WORK
To our best knowledge, there have been no reports so far
describing a real-time 6DOF natural feature tracking system on
mobile phones. Instead, previous work can be categorized into
three main areas: General natural feature tracking on PCs, natural
feature tracking on phone outsourcing the actual tracking task to a
PC, and marker tracking on phones.

Natural feature tracking approaches differ mostly by the image
features that are associated between the video image and a model
of the object or environment to be tracked. The dominant trade-off
is between the reliability of relocating the features and the
computational work required to do so.

Point-based approaches use interest point detectors and
matching schemes to associate 2D locations in the video image
with 3D locations. The location invariance afforded by interest
point detectors is attractive for localization without prior
knowledge and wide-base line matching. However, computation
of descriptors that are invariant across large view changes is
usually expensive. Skrypnyk and Lowe [23] describe a classic
system based on the SIFT descriptor [15] for object localization in
the context of AR. Features can also be selected online from a
model [2] or mapped from the environment at runtime [5][12].
Lepetit et. al [13] recast matching as a classification problem
using a decision tree and trade increased memory usage with
avoiding expensive computation of descriptors at runtime. A later
improvement described by Ozuysal et. al [18] improves the
classification rates while further reducing necessary
computational work. Our work investigates the applicability of
descriptor-based approaches like SIFT and classification like
Ferns for use on mobile devices which are typically limited in
both computation and memory. Other, potentially more efficient,
descriptors such as SURF [1] have been evaluated in the context
of mobile devices [4], but also have not attained real-time
performance yet. One good survey of local feature descriptors can
be found in [16].

To reduce the computational load of searching the whole image
for point correspondences, edge-based approaches use prior
information about the pose and conduct a local search around the
estimated location. To detect an edge, 1-D searches from sample

1e-mail: wagner@icg.tugraz.at
2e-mail: gr281@cam.ac.uk
3e-mail: mulloni@icg.tugraz.at
4e-mail: twd20@cam.ac.uk
5e-mail: schmalstieg@icg.tugraz.at

points along the line are sufficient to establish measurements for
pose updates [6]. Various improvements to this scheme were
proposed to improve the matching of lines, including statistical
appearance models [26] or model-based appearances [19]. Other
work combines edge tracking with other sensors in hybrid systems
[10][11]. However, edge-based systems cannot stand alone,
because the indistinct appearance of edges makes initialization
infeasible.

One approach to overcome the resource constraints of mobile
devices is to outsource tracking to PCs connected via a wireless
connection. All of these approaches suffer from low performance
due to restricted bandwidth as well as the imposed infrastructure
dependency, which limits scalability in the number of client
devices. The AR-PDA project [7] used digital image streaming
from and to an application server, outsourcing all processing tasks
of the AR application reducing the client device to a pure display
plus camera. Shibata's work [22] could adapt how much work it
outsourced. The project aimed at load balancing between client
and server - the weaker the client, the more tasks are outsourced
to a server. Hile reports a SIFT based indoor navigation system
[9], which relies on a server to do all computer vision work. The
server-based approaches are not real-time; typical response times
are reported to be ~10 seconds for processing a single frame.

Naturally, first inroads in tracking on mobile devices
themselves focused into fiducial marker tracking. Nevertheless,
only few solutions for mobile phones have been reported in
literature. In 2003 Wagner et. al ported ARToolKit to Windows
CE and thus created the first self-contained AR application [28]
on an off-the-shelf embedded device. This port later evolved into
the ARToolKitPlus tracking library [27]. In 2005 Henrysson [8]
created a Symbian port of ARToolKit, partially based on the
ARToolKitPlus source code. In 2004 Möhring [17] created a
tracking solution for mobile phones that tracks color-coded 3D
marker shapes. Around the same time Rohs created the
VisualCodes system for smartphones [20]. Both techniques
provide only simple tracking of 2D position on the screen, 1D
rotation and a very coarse distance measure. Similarly,
TinyMotion [29] tracks in real-time using optical flow, but does
not deliver any kind of pose estimation. Takacs et al. recently
implemented the SURF algorithm for mobile phones [24]. They
do not target real-time 6DOF pose estimation, but maximum
detection quality. Hence, their approach is two orders of
magnitude slower than the work presented here.

3 NATURAL FEATURE MATCHING

3.1 Scale invariant feature tracking
The SIFT approach is composed of three main steps: keypoint
localization, feature description and feature matching. Although
SIFT is often associated only with the second step, Lowe’s
approach specifically combines all three.

Figure 1. SIFT descriptor layout for 3x3 sub-regions.

The SIFT descriptor itself is actually neither rotation nor scale
invariant. To overcome this both parameters are provided by the
keypoint detector. In the first step, keypoint localization, Lowe

suggests smoothing the input image with Gaussian filters at
various scales and then calculating the Difference of Gaussians
(DoG), which presents a fast approximation of the Laplacian
operator. Keypoints are finally located by searching for scale-
space extrema (minima and maxima in the DoG pyramid).
Naturally the creation of the Gauss convolved image scales plus
the min/max search is computationally very expensive.

While the keypoint localization step already provides a scale
estimate for making the descriptor scale invariant (by increasing
the kernel correspondingly), the feature’s rotation has to be
estimated separately. Lowe suggests calculating gradient
orientations and magnitudes around the keypoint, which then form
a histogram of orientations. Searching for peaks in the histogram
finally assigns one or more orientations to the keypoint.

The actual descriptor is again based on gradients. The region
around the keypoint is split into sub-regions that define parts of
the describing feature vector (see Figure 1). The gradients are
weighted by distance from the center of the patch (indicated by
the large circle in Figure 1) as well as by the distance from the
center of the corresponding sub-region (indicated by the 9 small
circles in Figure 1). The length of the descriptor depends on the
quantization of orientations (usually 4 or 8) as well as the number
of sub-regions (usually 3x3 or 4x4). Although Lowe describes and
analyzes several combinations of these parameters, most SIFT
implementations use 8 orientations and 4x4 sub-regions, which
provide best results, but create a rather large feature vector of a
size of 128 dimensions.

3.2 Ferns: Tracking by classification
Contrary to descriptor-based matching as described in the last
section, feature classification for tracking [18] works by learning
the distribution of some features F of a set of classes C
corresponding to model points mC in a model image. At runtime,
interest points are detected using some interest point detector, the
value of feature F for an interest point is computed and the point
is classified by maximizing the probability of observing the
feature value F

C = argmax P(Ci | F) over Ci.

The model point mC corresponding to the class C of an interest
point is then used as the 3D correspondence for subsequent pose
estimation. Different to feature matching approaches, the
classification scheme is not based on a distance measure, but
trained to optimize recognition of the feature points in the original
model image. The classification scheme can be less
computationally intensive, depending on the basic features used.

The Ferns [18] classification uses binary features that compare
image intensities I(p) in the neighborhood of interest points p. A
binary feature F is a function F(p) parameterized by a pair of
offsets (l,r) such that

F(p) = 1 if I(p + l) < I(p + r)
 0 otherwise.

For a set of N features Fi the probability of observing class C
can be computed using Bayes theorem as

P(C | { Fi }) = P({Fi}|C) P(C) / P({Fi}).

The denominator is only a scaling constant, and the prior P(C)
is assumed to be uniform. The probability P({Fi}|C) is learned in a
training phase by counting the occurrence of {Fi} for many
different examples of the same model point and thus
corresponding class C.

Example views are created by applying changes in scale,
rotation and affine warps and added pixel noise. These

modifications provide a local approximation to the appearance
changes that are created by different view points of the model
feature. The different results of computing F1,F2,...,FN are counted
in a 2N sized histogram describing an empirical distribution of
P({Fi}|C) (see Figure 2).

To classify an interest point p as a class C corresponding to
model feature mC, we evaluate the probability of observing the
features {F1,F2,...,FN} given class C by computing the result string
of 0 and 1s, combining it into an index number and using the
index to lookup the probabilities in the empirical distribution. The
class C yielding the highest probability is then the resulting
classification. Both training and classification operate on images
smoothed with a Gaussian filter.

Figure 2. Learning distribution of features F from several

examples and storing the occurrence of outcomes.

For practical numbers of N, the size of the full joint distribution
is too large to be fully represented. Instead it is approximated by
subsets of features, so called Ferns, for which the full distribution
is stored. For a fixed Ferns size S, M = N/S such Ferns FS are
created. The probability P({Fi}|C) is then approximated as

P({Fi}|C) = Π P(FS | C).

In practice, probability values are computed as log probabilities
and the product in the last equation is replaced with a sum.

4 MAKING NATURAL FEATURE TRACKING FEASIBLE ON
PHONES

In the following we describe our modified approaches of the SIFT
and Ferns techniques. Since the previous section already gave an
overview on the original design, we concentrate on changes that
made them suitable for mobile phones.

Figure 3. Overview of the SIFT and Ferns pipelines.

Four major steps make up the pipeline of a feature based pose
tracking system (see Figure 3): (1) Feature detection (and
tracking), (2) Feature description and matching, (3) Outlier
removal and (4) Pose estimation.

Our implementations of the SIFT and Ferns techniques share
the first and last steps: Both use the FAST [21] corner detector to
detect feature points in the camera image, as well as Gauss-
Newton iteration to refine the pose originally estimated from a
homography.

4.1 Modified SIFT for phones
In the following we describe in detail how we modified the SIFT
algorithm to achieve real-time performance on mobile phones. We
begin with describing all steps of the run-time pipeline and finish
with the offline target data acquisition, since it relies on the same
techniques as used at runtime.

4.1.1 Feature detection
The original SIFT algorithm uses Difference-of-Gaussians (DoG)
to perform a scale-space search that not only detects features but
also estimates their scale. Although several faster implementations
of Lowe’s approach have been proposed, the approach is
inherently resource intensive and therefore not suitable for real-
time execution on mobile phones. We therefore replaced the DoG
with the FAST corner detector with non-maximum suppression
that is known to be one of the fastest corner detectors, but still
provides a high repeatability.

Since our approach does not estimate a feature’s scale anymore,
the resulting descriptor is not scale invariant in the sense of the
original SIFT implementation. To reintroduce scale estimation,
the descriptor database contains features from all meaningful
scales (see more details in section 4.1.6). Consequently, we trade
memory for speed: at the cost of potentially describing the same
feature multiple times over various scales we can avoid the CPU
intensive scale-space search. Due to the low memory
requirements per SIFT descriptor, this approach turns out to be
reasonable.

By varying the threshold of the FAST corner detector we can
dynamically adjust the number of corners found. Optimizing for
~150 features per frame turns out to be good balance between
finding enough features for matching and processing speed.

4.1.2 Feature tracking
After new features have been detected, they can optionally be
tracked by cross correlation. While feature tracking is not
mandatory since the match step is independent of frame-to-frame
coherence, it provides two benefits: Most obviously, tracking of
features gives a speed up, since features that were tracked reliably
don’t have to be described and matched against the SIFT
database. At the same time feature tracking also improves the
overall robustness since features that passed all outlier tests are
forwarded with highest confidence values into the next frame,
which improves outlier removal.

Our feature tracker follows both “good” and “bad” features
from frame to frame. Good features passed all tests and finally
contributed to the pose estimation in the previous frame. Hence,
they provide a good basis for the next camera frame. Bad features
could either not be matched or were filtered out by the outlier
removal step. Since a bad feature is likely to be re-detected in the
next frame, much processing time can be saved by forwarding this
information to the next frame. Forwarding both good and bad
features removes the need to describe and match them, resulting
in a considerable speedup.

To track features we extract patches of a size of 8x8 pixels that
are blurred using a 3x3 Gaussian kernel. The blurring step makes
the features more robust against any kind of affine transformation
and slightly incorrect feature coordinates. A Sum of Absolute
Difference (SAD) measure is used to estimate patch similarity.

We allow an average difference of up to 8% (empirically
determined) per pixel to treat a feature as correctly matched.

Features are only tracked in a search radius of 25 pixels. To
speed-up the search for neighboring features, all new coordinates
are entered into a 2D grid that provides almost constant search
time per feature.

4.1.3 Descriptor creation
Although Lowe describes several versions of his SIFT descriptor
[15], most people associate SIFT only with its most complex
variant, which is built from 4x4 sub-regions with 8 gradient bins
each, resulting in a 128 dimensional vector. For performance and
memory reasons we decided to use a variant using only 3x3 sub-
regions with 4 bins each (resulting in a 36 dimensional vector). As
Lowe outlines, this variant performs only ~10 percent worse than
the best variant.

Figure 4. Extraction of SIFT features.

Since our approach is not based on interest points providing
scale information, the SIFT kernel is always 15 pixels wide (3
sub-regions with a size of 5 pixels each, see Figure 1). To gain
more robustness, we again blur the patch with a 3x3 Gaussian
kernel (see Figure 4). Like in the original implementation we first
estimate the main orientations from the patch’s gradients: for all
pixels of the kernel, we calculate the gradient direction and
magnitude. The gradient direction is quantized to [0..35] to select
the corresponding target bin. The gradient magnitude is weighted
using a distance measure and is added to the respective bin. The
resulting histogram is then searched for peaks. If more than 3
peaks are found, the feature is discarded.

For each detected orientation, the patch is rotated using sub-
pixel accuracy to compensate that orientation. Based on the
rotated patches, descriptor vectors are created: Gradient
magnitudes and orientations are estimated again and weighted by
their distance to the patch center as well as to the sub-region
center. The weighted magnitudes are then written into the 4 bins
corresponding to the sub-region.

Using gradients makes the approach invariant to constant
brightness changes. Furthermore the vector is normalized to
compensate for linear brightness changes. Finally any entries that
are longer than 25% of the overall length are cropped to reduce
too strong influence of single values.

4.1.4 Descriptor matching
After the descriptors for all features detected in the new camera
image (except for those tracked from the previous frame) have
been created, they are matched against the descriptors in the
database. Brute force matching is not an option, since for each
frame ~50-100 features have to be matched against ~5000 features
in the database. Since each feature is described by a 36
dimensional vector this would result in multiplying and summing
up 18 million vector entries, which is infeasible to perform in real-
time due to computational constraints as well as memory

throughput limits. The original SIFT implementation uses a k-d
Tree together with a Best-Bin-First strategy. Yet, our tests showed
that even with this approach far too many vectors have to be
compared for real-time performance on mobile phones.

Looking in more detail into why the k-d tree is ineffective for
our purposes, we discovered that some (usually 1-3) entries of the
36 dimensional vectors vary strongly from their respective vectors
in the database. These errors increase the required tolerance for
searching in the tree tremendously. Hence, we decided to use a
different approach. A Spill Tree [14] is a variant of a k-d Tree that
uses an overlapping splitting area. Values that are within a certain
threshold are dropped into both branches. With an increasing
threshold, a Spill Tree is capable of tolerating more and more
error at the cost of growing larger. Unfortunately errors of
arbitrary amount can show up in our SIFT vectors, which renders
even a Spill Tree unsuitable.

Figure 5. Spill forest memory requirements as function of number

of trees and spill tree overlap percentage.

While a single Spill Tree turns out to be insufficient, we
discovered that multiple trees with randomized dimensions for
pivoting allow for a highly robust voting process, similar to the
idea of randomized trees [13]: instead of using a single tree, we
combine a number of Spill Trees into a Spill Forest. Each Spill
Tree is built up to such a size, that it holds ~50-80 entries in each
leaf. While trees with more levels reduce search time, more levels
also increase the chance of testing a faulty dimension. Since only
a few values of a vector are expected to be wrong, a vector has a
high probability of showing up in the “best” leaf of each tree. We
therefore only visit a single leaf in each tree and merge the
resulting candidates. Descriptors that show up in only one leaf are
discarded. All others are matched using Sum of Squared
Difference (SSD).

Naturally, using multiple trees increases the memory
requirements. Figure 5 shows the memory footprint of various
Spill Forest sizes for a typical dataset, ranging from 2-8 trees and
8%-20% threshold (overlap). Our tests (see section 5.4.1) have
shown that this approach finds the correct descriptor in more than
95% with reasonable memory usage while the processing time is
reduced such that descriptor matching is not a bottleneck.

4.1.5 Outlier removal
Although SIFT is known to be a very strong descriptor, it still
produces outliers that have to be removed before doing pose
estimation. Our version of SIFT does not estimate the scale of
features, so we experimented with verifying features on two
successive scale levels. This approach removes nearly all outliers,
but also many inliers, and it is very computationally intensive.

The outlier removal that was finally adopted therefore operates
on a single-scale and works in three steps. The first step uses the
orientations that have already been estimated for the descriptor

creation (see section 4.1.3). The relative orientations of all
matched features are corrected to absolute rotation using the
feature orientations stored in the database. Since the tracker is
limited to planar targets, all features should have a similar
orientation. Entering all orientations into a histogram and
searching for a peak, a main orientation is quickly estimated and
used to filter out those features which do not support this
hypothesis. Since the feature orientations are already available,
this step is very fast; at the same time it is very efficient in
removing most of the outliers.

The second outlier removal step uses simple geometric tests.
All features are sorted in linear time by their matching confidence
using distribution sort. Then, starting with the most confident
candidates, lines are estimated from two features. All other
features are then tested to lie on the same side of the line in
camera as well as object space. If too many features (>50%) fail
the test for a single line, the test is canceled, since one of the two
reference features is probably faulty. Up to 30 lines are tested.
Features which fail line tests are removed.

The third outlier removal step creates homographies to remove
final outliers. Features that passed the previous two tests
obviously have a correct orientation and coarsely lie at the right
spot in the camera image. Hence, only few outliers remain. Since
a homography must be computed for the initial pose anyway, it
can be used for strong final test without introducing overhead. A
main problem with creating homographies is that features must
not only be correct but also well-placed to be suitable: Features
must not be co-linear, and their convex hull should cover a large
region of the camera image.

To find good candidates, we first estimate the main direction of
the point cloud using perpendicular regression. We then select
features that lie at extremal positions in both directions of the line,
as well as furthest perpendicular to the line. For higher robustness,
we select two candidates for each direction. These 8 features are
then combined into sets of 4 (one from each direction) and used to
calculate 24=16 candidate homographies from object into camera
space. All homographies are then used to test the projection of the
features. The homography with the smallest number of outliers
and all respective inliers are finally selected for pose refinement.

4.1.6 Target data acquisition
The SIFT tracker uses a model-based approach and hence requires
a feature database that has to be prepared beforehand. Since the
tracker is currently limited to planar targets, a single orthographic
image of the tracking target is sufficient. Data acquisition starts by
building an image pyramid. Successive pyramid levels are created
by scaling down with a factor of 1/sqrt(2) from the previous level.
Features will later be detected at similar scales as available in the
image pyramid. Hence the range from largest to smallest pyramid
level defines the range of scales that can be detected at runtime. In
practice we usually create 7-8 scale levels sized from ~1MPixel
down to 80KPixel. This approach varies from the one described
by Lowe in that we have clearly quantized steps rather than
estimating an exact scale per keypoint.

After the image pyramid has been created, we run the FAST
corner detector to search for features at all scales. To restrict the
creation of feature descriptors to the most stable features, we
require corners to show up at two successive scales. For features
passing this test, descriptors are created. Again, features with
more than three main orientations are discarded. All feature
coordinates plus descriptors are then stored in a feature set file.

The discretization of scale-space in this way leads to a multi-
scale feature description similar to that described by Chekhlov et
al. [3]. However, we compute descriptors only from scales where

an interest point was found to avoid descriptors that cannot be
detected.

4.2 Modified Ferns for phones
This section describes the modifications to the original Ferns [18]
tracking work to operate on mobile phone devices.

4.2.1 Feature detection
The original Ferns implementation uses an extrema of Laplacian
operator to detect interest points in the input image. This was
replaced by the FAST detector [21] as described in section 4.
Interest points are computed on 2 octaves of the image and
subjected to non maximum suppression. These interest points are
then classified using the Ferns classifier to yield matches with the
points from the model.

4.2.2 Feature classification
The implementation of the runtime classification is
straightforward and the original authors provide a simple code
template to highlight this fact. Given an interest point p, the
features Fi for each Fern FS are computed and used as indexes into
the histograms. The histograms store the log of the probabilities
and a summation over all Ferns yields the final log of probability
for each class.

The original work used Fern sizes S = 10-14 and M = 20-30
Ferns, requiring storage of more than 3·105 entries per model
feature. Even if a single log probability is stored as a byte,
realistic databases of at least 100 model features grow to 32Mb,
exceeding by far available application memory on mobile phones.

The selection of M and S for fixed N provides a convenient
way of trading off memory use and classification performance.

The overall memory usage is given by M2S, so that reducing S
yields more significant memory savings. For a fixed number of
questions N = SM, Figure 6 shows the memory usage as a function
of S. We experimented with S between 6 - 12 and a total N of 200
which yielded elements numbers of around between 2000 and
64000. In total, the number of entries of all histograms for 100
features then varies between 2·105 and 6.4·106.

Figure 6. Memory requirements per model point.

The original work stored log probabilities as floating point
values using 4 bytes per element. We found that representing the
log probabilities as 8-bit bytes yields enough numerical precision
to avoid any degradation in performance. A linear transformation
between the range of the original log probabilities and the range
[0..255] for unsigned 8-bit numbers is used, because it preserves
the order of the resulting scores.

However, reducing the block size S of the FERNs empirical
distribution severely impacts the classification and matching
performance. Therefore we found it necessary to improve the
distinctiveness of the classifier by actively making it rotation
invariant. Thus, for every interest point p, we compute a dominant
orientation by evaluating the gradient of the blurred image
centered on the interest point. The orientation is then quantized

into [0..15] and a set of pre-rotated questions associated with each
bin is used to calculate the answer sets. The same procedure is
also applied in the training phase, for training the empirical
distributions to compensate inaccuracy in the rotation estimation,
quantization noise from the rotation quantization, and the
alignment of rotated questions to pixels.

Figure 7 compares the classification performance of the
different schemes using a fixed number of 200 questions. We
compared using different block sizes with a fixed block size and
different number of rotation bins. The graph shows both
classification rate, defined as correct classification of a model
point given its location, and match rate, defined as the rate at
which the top log probability interest point is within a fixed small
neighborhood of the true model point. Both rates were computed
for artificially warped and transformed images to have ground
truth. The block size was varied as S = 6, 8, 10, 12 and the
rotation bins as 1, 4, 8, 16 with a fixed size S = 8.

Figure 7. Classification rate (top two lines) and match rate

(bottom two lines) for different Fern sizes S without rotation
(dashed line) and for S = 8 with different rotation bins (solid line).

Notably, while the classification rate does not suffer much from
less complex Ferns, the match rate deteriorates dramatically and is
as low as 25% for the S = 6 case. Similarly the S = 8 case without
rotation is just below 40% but improves to over 60% percent for
16 rotations. This is a higher rate than for the S = 12 case without
rotation, while its memory requirements are only a fraction of the
latter. Moreover, the match rate is the crucial parameter for
successful outlier removal using RANSAC, as it determines the
number of trials necessary to obtain a robust estimate.

Robust classification also requires smoothing of the input
images with Gaussian blur to reduce the influence of noise and to
make the differences more stable. To improve the speed of this
rather expensive operation, the kernel size was chosen to be 5
pixels only and the coefficients were modified to match powers of
2 to make use of specific strengths (free barrel shifting) of the
ARM processors. The resulting smoothing is not a true Gaussian
blur anymore, but its use in both training and runtime results only
in little degradation of the classification performance.

4.2.3 Training
FAST typically shows multiple responses for interest points
detected with more sophisticated methods. It also does not allow
for sub-pixel accurate or scale-space localization. These
deficiencies are counteracted by modifying the training scheme to
use all FAST responses within the 8-neighborhood of the model
point as training examples.

Testing the resulting feature classification also allows for

pruning the classification database to improve the matching
performance. We remove all model points that have a matching
rate below 50% to improve the overall matching rate.

4.2.4 Active search
Feature classification does not require any prior knowledge about
camera pose and allows full localization at every frame. However,
using information about the expected location of model points in
the frame can reduce the required computational effort to establish
matches and improve the inlier rate.

Using a motion model, the camera pose is predicted for the next
frame. All model points are projected into the current image. For
all detected interest points, the model points within a certain
search radius are selected and the classification is restricted to
these model points only. To speed up the search for nearby model
points, a 2D grid is used, reducing the search overhead to be
almost linear.

The restricted classification is more efficient as it needs to
compute the probabilities only for a subset of all classes.
Furthermore, as each class is matched against fewer points, the
likelihood of a false match is reduced, assuming the true match is
in the set of detected interest points. Finally, model points that do
not project into the current view are also excluded from matching,
avoiding spurious matches against invisible model points.

4.2.5 Outlier rejection
The match set returned by the classification still contains a
significant fraction of outliers. Therefore a robust estimation step
is required to compute the correct pose. In a first outlier removal
step, we use the orientation estimated for each interest point and
compute the difference to the stored orientation of the matched
model point. Differences are binned in a histogram and the peaks
in the histogram are detected. As differences should agree across
inlier matches, we remove all matches in bins with less matches
then a fraction of the peaks. We use 66% as threshold, chosen
experimentally by evaluating the distributions of differences.

The remaining matches are used in an MLESAC [25] scheme to
estimate a homography between the model points of the planar
target and the input image. The final homography is estimated
from the inlier set and used as starting point in a 3D pose
refinement scheme described below.

4.3 Pose Refinement
Pose refinement estimates a 6DOF camera pose from the 2D-3D
point correspondences between observed feature points and
original model points using a Gauss-Newton iteration scheme to
minimize the re-projection error under a standard camera model.
Given a camera pose C as a rigid transformation from a world co-
ordinate system into the camera coordinate system, a point x =
(x,y,z,1) is projected into the view to the point p = (u,v) with the
following observation function

The function proj(.) models the projection from camera frame

to image coordinates as

The term r’ compensates for radial lens distortion and the

parameters fu, fv, cu, cv, α and β model the intrinsic camera

parameters, which are determined in an off-line camera
calibration step.

For a set of N observations pi of model points xi, the observation
error e(C) is the sum of the individual errors di squared

Minimizing e(C) with respect to C provides the least-squared

error estimate of the camera pose. We parameterize C by applying
a small motion M to it as C+ = MC. The motion M is
parameterized by the six-vector μ corresponding to the
exponential map parameterization of the Lie group SE(3).
Minimizing the error e(MC) with respect to μ requires solving the
over determined system of linear equations J μ = d where J is the
Jacobian of (1) with respect to μ for every observation i

Then the following equation gives the minimizing parameter

vector μ

The Cholesky decomposition is used to efficiently compute the

pseudo inverse (JT J)-1 JT.
Most mobile phones today don’t have floating-point units,

which requires relying on fixed-point numerics. Most fixed-point
algorithms tend to become unstable if too much data is involved
due to the limited numerical stability. We therefore limit the pose
refinement step to a maximum of 20 features. These features are
selected to cover a large area of the camera image. For
performance reasons we use another 2D grid for this purpose.

5 EVALUATION
To create comparable results for tracking quality as well as

tracking speed over various datasets (see Figure 10), tracking
approaches and devices, we implemented a frame server that loads
uncompressed raw images from the file system rather than from a
live camera view. The frame server and both tracking approaches
were ported to Windows CE and Symbian and tested in a large
number of combinations, resulting in more than 1 million
recorded measurements.

5.1 Ferns parameters
To explore the performance of the Ferns classification approach
under different Fern sizes, we trained a set of Ferns on three data
sets and compared robustness, defined to be the number of frames
tracked successfully, and speed. The total number of binary

features was fixed to N = 200 and the size of Ferns was varied
between S = 6-12. The corresponding number of blocks was taken
as M = [N/S]. The number of model points was also varied
between C = 50 - 300 in steps of 50.

Figure 8 shows the robustness and speed for different values of
S and C for the Cars data set. To compare the behavior of the
Ferns approach to the SIFT implementation, we ran the SIFT with
optimized parameters on the same data sets. The resulting SIFT
performance is given as black dashed line in the graphs of Figure
8. The runtime performance seems best for the middle
configurations, while small S appears to suffer from the larger
value of M, while for large S the bad cache coherence of large
histogram tables seems to impact performance. The lower
robustness values for the mid S configurations is due to a less
optimized match threshold derived by linear interpolation from
thresholds for the border values. Additionally, Table 1 shows the
relative memory usage of the different Fern sets versus the SIFT
database.

 Optimizing the Fern parameters requires both achieving similar
speed and robustness as the SIFT method while not using
substantially more memory. As final parameters for further
evaluation we selected S = 8 and M = 25 with C = 150 classes.

 Number of model points

 50 100 150 200 250 300

6 9% 17% 26% 35% 44% 52%

7 15% 30% 44% 59% 74% 89%

8 26% 53% 79% 106% 132% 158%

9 46% 93% 139% 186% 232% 279%

10 84% 169% 253% 338% 422% 507%

11 152% 304% 456% 608% 760% 912% FE
RN

 b
lo
ck
 s
iz
e
S

12 270% 541% 811% 1081% 1351% 1622%

Table 1. Fern memory usage relative to SIFT (for Cars dataset).
The black line indicates configurations with similar memory usage.

5.2 Robustness
The optimized configurations for both SIFT and Ferns from the
last section were used to test robustness on different targets. We
defined a pose to be found successfully, if the number of inliers is
8 or greater. This definition of robustness is used for all tests in
the paper. Furthermore we also compared the pure localization at
every frame with the corner tracking and active search option of
the two systems.
As can be seen in the middle chart of Figure 9, the Book and

Figure 8: FERN runtime per frame (left) and robustness (right) for varying block size and number of model points.

Dashed black lines represent SIFT reference. The N = 50 line for robustness (right) is around 50% and far below the shown range.

Advertisement datasets (first two pictures in Figure 10) performed
worst. Compared to the other datasets, both targets consist of
large, untextured areas that provide only few trackable features. In
both cases active search and corner tracking where able to
improve tracking robustness considerably, while at the same time
improving tracking speed by 30-100%. Analyzing the reason for
tracking failure we noticed that tracking failed a few times over
longer sequences of frames, when the camera image showed
mostly untextured areas.

The Pano, Photo and Vienna datasets work noticeably better,
since theses images are uniformly covered with features including
many different brightness levels. The Cars and Map datasets
perform in medium quality for different reasons: while the Cars
poster is covered with many highly detectable features in the
middle area, its top and bottom areas are very weak in contrast
and hence only few corners are detected there. The Map dataset
on the other hand has many perfectly distributed features, but of
low average quality of being tracked: there are many small areas
on the map, that are uniformly colored at similar gray levels, a
condition that is equally unsuitable for SIFT and Ferns.

On average, both approaches performed very similar: Both
were able to track the targets in ~96% of all frames without active
search or corner tracker and performed ~1-2% better with. Also
the timings (on the PC) were similar at 3ms with active search and
corner tracking, and 5ms without.

5.3 Performance
Finally, the overarching challenge of natural feature tracking on
mobile phones is speed. To explore the operational speed of the
two approaches, we evaluated the Ad, Cars and Vienna sequences
from section 5.2 on the following list of devices:

 Notebook with a 2GHz Intel Core Duo (Windows XP)
 HP iPAQ 614c with a 624MHz Intel XScale PXA270

(Windows Mobile)
 Nokia N95 with a 330MHz TI OMAP 2420 (Symbian)
 Motorola Q9 with a 330MHz TI OMAP 2420

(Windows Mobile)

Both the Motorola Q9 (Windows Mobile) and the Nokia N95
(Symbian) use the same CPU, hence we expected similar
benchmarking results. Although most of our code is integer or
fixed-point based, we also benchmarked the N95 (who’s OMAP
2420 CPU has a hardware floating point unit) with hardware
floating point enabled (replacing all fixed-point code with

floating-point variants). The IPAQ 614c (Windows Mobile) runs
an XScale CPU with 624MHz and was therefore expected to
clearly outperform the other phones. For reference, we ran all test
series on a notebook with a 2GHz Core Duo. Since the code is
optimized for phones it does not take advantage of the PC’s 2nd
CPU core.

Three different test series were run on all devices:
Advertisement (bad tracking quality), the Cars poster (medium
tracking quality) and the Vienna satellite image (best tracking
quality).

In general, the timings (see Figure 9) show that we could
achieve our goal of natural feature tracking on mobile phones
operating at interactive speeds. The average runtime per frame is
around 60ms for the slowest devices, resulting in a potential frame
rate of 15 fps. After adding typical overheads of acquiring frames
and rendering output, we can still expect to build AR systems
operating at 10 fps on mobile phones.

However, our measurements did not fully reflect our
expectations because the Ferns code performed much slower (~2x
slower than it should) on the Windows Mobile devices, whereas it
works as expected on the Symbian platform it was originally
written for. The slow-down is specific to the log probability
summation code which is a simple memory lookup and
summation routine. Nevertheless, we were not able to identify the
reason for the slow down.

Ignoring this misbehavior we notice that both Ferns and SIFT
run at reasonable speed on all tested devices. The SIFT
implementation, which was developed on the Windows CE
platform is able to take full advantage of the 624MHz and runs at
~30 milliseconds on all test sets. Due to the problems mentioned
above, the Ferns code is not able to run at full speed on this
device.

On the N95 the Ferns implementation performs very similar to
the SIFT tracker: both algorithms run at 50-70 milliseconds for all
test sequences. Timings with fixed-point and floating-point are
very similar due to the low usage of these data types across the
tracking pipelines of both algorithms. As expected, the SIFT
tracker runs at almost identical speed on the Motorola Q9 as on
the Nokia N95, whereas the Ferns tracker again performs at only
half the speed it should.

Compared to all benchmarked phones, the PC executed both
approaches about 15-20 times faster. Even though its clock rate is
only 3.2 times higher than the clockrate of the XScale, its much
larger caches and multiple ALUs provide a clear advantage.

Figure 10: The 7 test sets (from left to right): book cover, advertisement, movie poster, printed map, panorama picture, photo, satellite image.

Figure 9: Left: timings of SIFT and Ferns on all 7 datasets on a PC with 2GHz. Middle: corresponding tracking robustness.
Right: Timings on 5 different platforms and 3 datasets; grouped by platform and algorithm.

5.3.1 Detailed speed analysis for SIFT
Looking in more detail into what SIFT spends its computation
time for (see Figure 11) shows that the most time consuming
single action is corner detection, requiring ~23% of the overall
time. This is not surprising since the corner detector has to look at
almost all 76800 (320x240) pixels (except for those pixel close to
the image border, where features can not be described).

Feature describing and matching together requires 50% of the
overall time. It starts with describing the features, which includes
blurring a patch, estimating its orientation, rotating to compensate
orientation and finally creating the description vector. Together
these 4 steps require ~21% of the overall time.

Figure 11. Relative timings of the SIFT tracker.

Matching of descriptors starts by dropping down the trees to the
very first leaves, which is fast, but consecutively requires merging
the lists of results. Although this merge operation requires only
linear time (the candidate lists are presorted) the pure number of
200-400 candidates makes this an expensive operation.
Calculating sum of squared difference (SSD) for the resulting best
candidates then takes only ~11% of the overall time.

Descriptor creation and matching is computationally expensive,
but is supported by corner tracking, which helps reducing the
number of descriptors to create, while at the same time
introducing only a small additional cost.

Outlier removal costs ~7% of the overall time per image. Most
of the time is spent for creating and testing homographies for the
last inlier test. Finally, pose refinement takes ~4% frame time.

5.3.2 Detailed speed analysis for Ferns
The Ferns algorithm is simpler then the SIFT algorithm and
consequently consists of only a few blocks (see Figure 12). A set
of operations is performed on the whole image consisting of
corner detection, down sampling to create a second octave and
blurring the input octave images. The remaining time is spent in
the classification which is linear both in number of interest points
and classes, and finally, outlier detection.

Figure 12. Relative timings of the Ferns component, normalized

to the full localization mode.

The impact of active search can be observed both in the
reduction of time spent in classification as fewer classes are
visited, as well as in the dramatically reduced time spent in the
RANSAC outlier detection stage. Here, the increased inlier rate
pays off as a large set of inliers can be established quickly.

5.4 Memory tradeoffs
Both SIFT and Ferns have to trade memory for speed and/or
robustness. Due to the limits of today’s mobile phones, both
approaches have to run with much less memory than originally

designed for. In this section we discuss where most of the memory
is spent and how reducing the overall memory footprint influences
tracking behavior.

5.4.1 Memory for SIFT matching
SIFT descriptor datasets as tested in this paper are typically in a
size from 50-100KB, which is highly suitable for mobile phones,
as long as only a small number of targets shall be tracked at a
time. Since brute force matching is too slow, we developed Spill
Forests as described in section 4.1.4. Due to their highly
redundant nature, Spill Forests can easily require several
megabytes of memory for the aforementioned datasets.

Figure 13. Robustness for SIFT descriptor searching as function

of number of Spill trees and Spill tree overlap.

We experimented with various Spill Forest sizes in terms of
memory usage (see Figure 5) and robustness (see Figure 13).
Memory requirements increase linear with the number of trees
and more than linear with overlap (threshold). Our tests show that
using only 2 Spill trees, combined with a low threshold (<14%),
does not yield robust matching. As can be seen in Figure 13, the
first combination (sorted from lowest to highest memory usage)
that allows tracking of more than 96% of all frames, uses 4 trees
and a threshold of 14% and was therefore used for all tests in this
publication.

5.4.2 Memory for Ferns datasets
Memory requirements for Ferns were already extensively
discussed in section 4.2.2 and 5.1. The exponential dependency on
the block size favors the use of more classes, but smaller blocks to
achieve a desired level of robustness. As Figure 8 shows, the
robustness does not depend greatly on the Ferns block size, but
rather on the number of classes trained. Thus, at the expense of
some computational overhead, smaller block sizes may be chosen
to reduce memory footprint.

6 CONCLUSIONS AND FUTURE WORK
We have presented two approaches for natural feature trackers
that allow robust pose estimation from planar targets in real time
on mobile phones.

The two original techniques, SIFT and Ferns, are very different
in their approach – while SIFT is engineered around a highly
sophisticated feature descriptor, Ferns recasts detection as
classification, and relies on Bayesian statistics of large quantities
of simple binary tests.

We originally assumed that the simplicity of Ferns would let it
outperform the more complex SIFT on a constrained platform
such as a phone. However, it turned out that in order to deliver a
high level of quality Ferns requires significant amounts of
memory (for a phone) and computational bandwidth to use the
consumed memory. Moreover, the very simple structure of Ferns

descriptors requires more sophisticated outlier management,
which consumes further computational resources.

The approach finally adopted for both shows interesting aspects
of convergence: In both approaches, Laplacian/Gaussian feature
detection was replaced by simple FAST detector at the expense of
losing scale independence. Ferns adopted a regularization using
the dominant orientation from SIFT, while SIFT adopted a search
forest approach from Ferns. Two of the three steps of outlier
management, namely orientation check and homography check,
are shared by both approaches. A major weakness of both
approaches is the rather limited tilt angle they can tolerate. While
artificial fiducial markers can be detected close to 90° tilt, both
SIFT and Ferns do usually not permit more than 40-50° of tilt.

The final performance of both techniques is very comparable
given an equal amount of CPU performance and memory. At the
lower end, SIFT may be more stable than Ferns, while Ferns may
be able to outperform SIFT given an increased amount of memory
and CPU bandwidth currently not afforded by phones.

The SIFT descriptor database can be limited to as little as 50K,
but the Spill Forest created at runtime can require several
megabytes. The Ferns datasets are much larger and have to be
downloaded to the phone and stored in advance. Yet, in order to
track larger or many targets concurrently, memory requirements
of both approaches have to be reduced.

We observe that the level of CPU performance on phones has
not increased very much in the last three years, probably because
of a certain market saturation and the very tight power budget
afforded by cell phone batteries. Instead, it is very likely that
programmable GPUs will be embedded in multi-core phone CPUs
very soon. This may enable more expensive per-pixel processing,
allowing to re-introduce operations such as Laplacian/Gaussian
transforms again. Depending on whether CPU or GPU
enhancements become available, the choice of next generation of
tracking technique may be different.

A natural future step is to extend the presented work in order to
support 3D tracking targets. In the case of 3D targets, estimating a
homography would not suffice anymore. Furthermore, it would be
necessary to cope with self-occlusions of the tracking target.

7 ACKNOWLEDGEMENTS
The authors thank Vincent Lepetit and the computer vision group
at EPFL for sample code and discussions regarding the Ferns
implementation. This research was funded by the Austrian
Science Fund FWF under contracts Y193 and W1209-N15, and
the European Union under contract FP6-2004-IST-4-27571.

REFERENCES
[1] Bay, H., Tuytelaars, T., Gool, L. V., Surf: Speeded up robust
features, In Proc. ECCV 2006, 2006.
[2] Bleser, G., Stricker, D., Advanced tracking through efficient image
processing and visual-inertial sensor fusion. In Proc. of IEEE VR 2008,
pp. 137-144 2008
[3] Chekhlov, D., Pupilli, M., Mayol-Cuevas, W., Calway, A., Real-time
and robust monocular slam using predictive multi-resolution descriptors,
In Proc. ISVC 2006, pp. 276–285, 2006.
[4] Chen, W.-C., Xiong, Y., Gao, J., Gelfand, N., Grzeszczuk, R.,
Efficient extraction of robust image features on mobile devices, In Proc.
ISMAR 2007, 2007.
[5] Davison, A.J., Mayol, W.W., Murray, D.W., Real-time localisation
and mapping with wearable active vision. In Proc. of ISMAR 2003, pp.
18-27, 2003
[6] Drummond, T.W., Cipolla, R., Visual tracking and control using lie
algebras. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition 1999, pp. 652-659, 1999

[7] Gausemeier, J., Fruend, J., Matysczok, C., Bruederlin, B., Beier, D.,
Development of a real time image based object recognition method for
mobile AR-devices, Proceedings of the 2nd International Conference on
Computer Graphics, Virtual Reality, Visualisation and Interaction in
Africa (Afrigraph 2003), pp. 133-1392003
[8] Henrysson, A., Billinghurst, M, Ollila, M.. Face to Face Collabora-
tive AR on Mobile Phones. Proceedings International Symposium on
Augmented and Mixed Reality (ISMAR'05), pp. 80-89, 2005
[9] Hile, H., Borriello, G., Information Overlay for Camera Phones in
Indoor Environments, 3rd International Symposium onLocation- and
Context-Awareness (LoCA 2007), pp. 68-84, 2007
[10] Jiang, B., Neumann, U., You, S., A robust hybrid tracking system for
outdoor augmented reality. In Proc. of VR 2004, pp. 3-10, 2004
[11] Klein, G., Drummond, T.W.. Robust visual tracking for non-
instrumented augmented reality. In Proc. of ISMAR 2003, pp. 113-122,
2003
[12] Klein, G., Murray, D., Parallel tracking and mapping for small ar
workspaces. In Proc. of ISMAR 2007, pp. 225–234, 2007
[13] Lepetit, V., Lagger, P., Fua, P., Randomized trees for real-time
keypoint recognition. In Proc. CVPR 2005, pp. 775-781, 2005
[14] Liu, T., Moore, A.W., Gray, A., Yang, K., An investigation of
practical approximate nearest neighbor algorithms. In Advances in Neural
Information Processing Systems, MIT Press, pp. 825-832
[15] Lowe, D., Distinctive image features from scale-invariant keypoints.
Int. Journal of Computer Vision, Volume 60, Issue 2, pp. 91-110, 2004
[16] Mikolajczyk, K. and Schmid, C. 2005. A Performance Evaluation of
Local Descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 10 (Oct.
2005), 1615-1630. 2005.
[17] Möhring, M., Lessig, C., Bimber, C.. Video See-Through AR on
Consumer Cell Phones. Proceedings of International Symposium on
Augmented and Mixed Reality (ISMAR'04), pp. 252-253, 2004
[18] Ozuysal, M., Fua, P., Lepetit, V., Fast keypoint recognition in ten
lines of code. In of Proc. CVPR 2007, pp. 1-8, 2007
[19] Reitmayr, G., Drummond, T.W., Going out: Robust tracking for
outdoor augmented reality. In Proc. of ISMAR 2006, pp. 109-118, 2007
[20] Rohs, M., Gfeller, B., Using Camera-Equipped Mobile Phones for
Interacting with Real-World Objects. Advances in Pervasive Computing,
Austrian Computer Society (OCG), pp. 265-271, 2004
[21] Rosten, E. Drummond, T., Machine learning for high-speed corner
detection. In Proc. of ECCV 2006, pp. 430-443, 2006
[22] Shibata, F., Mobile Computing Laboratory, Department of Computer
Science, Ritsumeikan University, Japan,
http://www.mclab.ics.ritsumei.ac.jp/research.html
[23] Skrypnyk, I., Lowe, D., Scene modeling, recognition and tracking
with invariant image features. In Proc. of ISMAR 2004, pp. 110-119, 2004
[24] Takacs, G., Chandrasekhar, V., Gelfand, N., Xiong, Y., Chen, W.-C.,
Bismpigiannis, T., Grzeszczuk, R., Pulli, K., and Girod, B., Outdoors
Augmented Reality on Mobile Phone using Loxel-Based Visual Feature
Organization, to appear in IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 2008
[25] Tordoff, B.J., Murray, D., Guided-MLESAC: Faster image
transform estimation by using matching priors. IEEE Trans. Pattern
Analysis and Machine Intelligence, Vol. 27, Issue 10 pp. 1523-1536, 2005
[26] Wuest, H., Vial, F., Stricker, D., Adaptive line tracking with multiple
hypotheses for augmented reality. In Proc. of ISMAR 2005, pp. 62-69,
2005
[27] Wagner, D., Schmalstieg, D., ARToolKitPlus for Pose Tracking on
Mobile Devices, Proceedings of 12th Computer Vision Winter Workshop
(CVWW'07), pp. 139-146, 2007
[28] Wagner, D., Schmalstieg, D.. First Steps Towards Handheld
Augmented Reality. Proceedings of the 7th International Conference on
Wearable Computers (ISWC 2003), pp. 127-135, 2003
[29] Wang, J. Zhai, S., Canny, J., Camera Phone Based Motion Sensing:
Interaction Techniques, Applications and Performance Study, In ACM
UIST 2006, pp. 101-110, 2006

