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Abstract

In this work we present a method to detect overlaps in
image sequences, and use this information to integrate over-
lapping sparse 3D structure from video sequences. The ad-
ditional temporal information of these images is used to
increase robustness over single image pair matching. A
scanline optimization problem formulation is used to com-
pute the best sequence alignment using wide-baseline im-
age matching techniques. Compared to a direct dynamic
programming approach, the scanline optimization formu-
lation increases the robustness of sequence alignment for
general relative motions. The proposed alignment method
is employed to integrate sparse 3D models reconstructed
from separate video sequences. In addition loop closures
are detected. Consequently, the 3D modeling process from
sequential image data can be split into fast sequence pro-
cessing and subsequent global integration steps.

1. Introduction

Current Structure from Motion (SfM) methods may be
classified based on the image data they use. Two major
types of image sources are still images and video sequences.
This choice of input data usually has strong implications on
the selection of algorithms used to solve the SfM problem.
Unordered sets of still images relay on wide baseline im-
age matching techniques to establish correspondence infor-
mation and the SfM problem may be solved for all input
images simultaneously or in an incremental way. Two ex-
amples of this type of systems are [14] and [26]. The cor-
respondence problem can be reduced to a tracking problem
when a video stream is used as input. The practical implica-
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tion of this is that more difficultly textured scenes can be re-
constructed, i.e. repetitive structures. Additionally can the
SfM problem be solved efficiently in real time, as described
for example in [16]. Using video based tracking to capture
complex scenes is difficult in practice because one usually
cannot capture the scene in just one take that is suitable for
feature point tracking.

In this paper we examine how to extend the concept of
image matching to the matching of consecutive video se-
quences and apply this matching technique in a 3D vision
system. We want to combine the advantages of video with
the advantages of global reconstruction optimization. The
ultimate goal is to be able to provide at least partial recon-
structions in near real time and integrate them into a larger
database so that the user can be informed about the quality
of the reconstruction and missing areas and add additional
data selectively. We exploit the spatial-temporal relation of
video sequence images to increase the flexibility of video
3D vision systems. Using the additional sequential informa-
tion for the matching process also increases the robustness
compared to single image matching.

Many reconstruction systems in computer vision are
based on images from a moving video camera. These video
based systems can use uncalibrated [20] or calibrated cam-
eras [15] [16] [18] and are applied for example to cul-
tural heritage modeling, odometry, robot navigation and city
modeling. Multi-camera heads can be used to extend the
field of view [1]. These methods are particularly appro-
priate to create large sparse reconstructions of continuous
movements in real time.

Another source of images with additional sequential in-
formation are vision based Simultaneous Localization and
Mapping (SLAM) methods. Incremental map building and
continuous localization increase the robustness of SfM as
demonstrated in [4] [3] [5]. The area that can be covered is
limited by the number of landmarks that can be recognized
and optimized efficiently. Furthermore, classical SLAM



algorithms use every single image from the video stream
for the tracking and mapping operations. To handle these
amounts of data, bundle adjustment is replaced by simpler
methods to integrate the mapped landmarks. An exception
is [12], where tracking and mapping is split into separate
tasks, but this SLAM approach is explicitly designed for
small workspaces.

A logical extension of visual odometry based reconstruc-
tions is the integration of multiple sequences. We propose a
method to integrate multiple sparse reconstructions from a
visual odometry front end into a global coordinate system.
Loops are a special case of overlaps of sequences and struc-
ture that provide a way to reduce drift from an odometry
trajectory. An example of a system where loops are de-
tected in a sparse reconstruction to reduce this drift can be
found in [28]. In [9] the additional sequential information
of image sequences is used for loop closing and therefore
drift reduction in robot navigation.

In our work flow continuous, sequential sparse recon-
structions from a scene are acquired using a visual odom-
etry approach. The output of this step is a camera tra-
jectory, sparse 3D points and the images used for visual
odometry. These images have the property that they have
been obtained consecutively and contain additional sequen-
tial information. The sequences are fed into a batch pro-
cess where overlaps are detected, i.e. generalized loops.
With this sequence overlaps, the 2D-3D correspondences
are relinked. Bundle adjustment is then used to integrate
sequences into one coordinate system and reduce drift si-
multaneously.

2. Image based Sequence Similarity

This section describes how a first matching of individual
images of two sequences is done efficiently. The matching
score of image sequences uses a similarity score of individ-
ual image pairs. The image pair similarity score is feature
based. A vocabulary tree can be used to avoid the matching
of all image pairs. The extracted features are further used to
fuse the sparse reconstructions of the sequences. Currently
our implementation uses SIFT features [13].

2.1. Image Sequences Extraction

The image sequences that we use are extracted with a
monocular SfM framework similar to [16]. Our SfM ap-
proach takes a video from a single calibrated camera as in-
put and computes the camera motion and sparse scene struc-
ture in an incremental way. Only a subset of key-frames
from the video input is used in the SfM framework. This
subset of images is chosen so that the baseline and feature
track number between key-frames is optimized. Only this

subset of key-frames is used for sequence matching, Figure
1 shows two example sequences.

2.2. Image Matching

The cost of matching all image pairs of two sequences
would severely limit the possible sequence lengths. Re-
trieving similar images for a given one is currently a very
active research topic e.g. [21, 19, 11]. To speed up the pair-
wise matching we employ a visual vocabulary tree approach
similar to [19]. The vocabulary tree enables us to efficiently
match a single image against all images in the sequence.

In our system the vocabulary tree is trained in an un-
supervised manner with a subset of 2 × 106 SIFT feature
vectors randomly taken from 2500 images. The descriptor
vectors are then hierarchically quantized into clusters using
a k-means algorithm. We set the branch factor to 10 and al-
low up to 7 tree levels. For each level the k-means algorithm
is initialized with different seed clusters and the result with
the lowest Euclidean distance error is retained. Once the
vocabulary tree is trained, searching the visual vocabulary
is very efficient and new images can be inserted on-the-fly.

In our current setting we rely on an entropy weighted
scoring similar to the tf-idf “term frequency inverse docu-
ment frequency” as described in [24]. Let D be an image in
our database and t be the term in the vocabulary associated
to feature f of the current query image Q, then our scoring
function is, ∑

t∈Q∩D

log
(

N

n(t)

)
(1)

where N is the total number of images in the collection and
n(t) is the number of images that contain term t. In order to
guarantee fairness between database images with different
number of features, the query results are normalized by the
self-scoring result.

2.3. Visual Similarity Matrix

Given two image sequences s1 and s2, the image features
of s1 are inserted into an empty vocabulary tree to create the
inverted file structure. For each image in s2 a query with
the the vocabulary tree and the scores of the k best match-
ing images are returned. The obtained matching scores are
used to construct a Visual Similarity Matrix (VSM). Fig-
ure 2 shows the VSM obtained from the two sequences of
Figure 1. Each element ei,j of the VSM corresponds to an
image similarity between image i of the first sequence s1

and image j of the second image sequence s2. Each row of
the VSM has at most k non-zero entries.

Our experiments have shown that it is sufficient to use
the image similarity scores from the vocabulary tree di-
rectly to construct a VSM. No further image to image fea-



Figure 1. Each row shows an image sequence. Only a subset of key-frames obtained from the SfM
input video is shown.

ture matching or geometric verification is done to enhance
the scoring accuracy at this stage.

3. Sequence Alignment

After computing the VSM, a contiguous path of corre-
sponding images in this matrix can be extracted to repre-
sent the video sequence overlap. This section describes
our approach to solve this problem. An optimal local se-
quence alignment can be computed in principle using the
well known Smith-Waterman [25] algorithm. This dynamic
programming algorithm is used for example in bioinformat-
ics to align protein or nucleotide sequences. Local sequence
alignment includes the ability to detect and match only sub-
sequences of the input and to ignore non-corresponding sec-
tions. Global sequence alignment can be achieved by a
slightly simpler variant of the Smith-Waterman algorithm,
the Needleman-Wunsch [17] method.

A limitation of this approach for image sequence match-
ing is that only sequence overlaps in the forward direction
of relative movement can be obtained. This is due to the or-
dering constraint inherent in all classical dynamic program-
ming approaches. This means that image sequence match-
ing has to be done two times for a sequence pair if the rel-
ative sequence movement is not known a priory. In more
complex cases, where the relative movement direction of a
sequence pair changes multiple times, the Smith-Waterman
algorithm can only find sequence parts with consistent rela-
tive movement. Hence, the full overlapping sequence is un-
necessarily split into several subsequences, which need to
be merged in a post-processing step. We propose scanline
optimization for local sequence alignment to find longer
matching sequences, and therefore to avoid any later post-
processing step.

We propose a variation of scanline optimization [22] to
compute the best sequence alignment. In general, scanline
optimization is a dynamic programming approach to deter-
mine the maximum a posteriori solution of 1-D Markov ran-
dom fields. Most prominently, it is used in several methods
for dense depth estimation from stereo images [22, 8]. In

Figure 2. VSM matrix of the two sequences
from Figure 1 and the resulting dynamic pro-
gramming matrix H and the extracted corre-
spondence path for the two sequences.



contrast to earlier Dynamic Programming (DP) approaches
for stereo, scanline optimization does not enforce the or-
dering constraint. In our application, this feature enables
sequence alignment for more general motions, which we
consider the main advantage of our method compared with
DP-based ones. A slight drawback of scanline optimization
is the non-commutativity, i.e. the returned path for swapped
inputs is not just the transpose of the original path.

3.1. Scanline Optimization Problem Formu-
lation

Scanline optimization computes the optimal assignment
of a sequence of images xi to corresponding images of an-
other sequence dx. It finds the value of

score(x, d) = arg min
dx

N∑
i=1

(
D(xi, dx) + λV (dx, dx−1)

)
,

(2)
where D(x, d) = −S(x, d) is the dissimilarity score of two
images at positions x and x + d, and V (d, d′) is the regu-
larisation cost and λ weights the relative influence of these
two factors.

In order to obtain similar results in cases of pure for-
ward/backward motion, we model the regularisation to ap-
proximate the moves favored by the Smith-Waterman algo-
rithm. The smallest regularisation cost, zero, is assigned to
diagonal moves, i.e. if |dx−1 − dx| = 1. The cost of any
occlusions in the image sequence (i.e. skipping images) is
equal to the number of skipped frames. E.g., moving in one
image, but not in the other (dx−1 = dx) has cost one. More
formally, the regularization cost for two successive image
assignments dx−1 and dx is given by:

V (dx, dx−1) =


i− 1 if dx = dx−1 − i, i = 2, 3, . . .

0 if dx = dx−1 ± 1,

1 if dx = dx−1,

i− 1 if dx = dx−1 + i, i = 2, 3, . . .

3.2. Efficient Minimization

Minimizing Eq. 2 and determining the corresponding op-
timal assignment dx can be efficiently performed using a
dynamic programming approach by maintaining the mini-
mal accumulated costs H(x, d) up to the current position in
the first image sequence x:

H(x, d) = D(x, d) +
min

d′
(H(x− 1, d′) + λV (d, d′)) .

We have the initial values H(1, d) = D(1, d). Note, that
our specific choice of V (·, ·) can be written as

V (d, d′) = min (|d + 1− d′|, |d− 1− d′) , (3)

i.e. it is the minimum of two linear discontinuity cost func-
tions. Consequently,

min
d′

(
H(x− 1, d′) + λV (d, d′)

)
=

min
{

min
d′

(H(x− 1, d′) + λ|d + 1− d′|) ,

min
d′

(H(x− 1, d′) + λ|d− 1− d′|)
}

.

Following [6], the simultaneous calculation of the sub ex-
pressions

min
d′

(H(x, d′) + λ|d + 1− d′|) (4)

and
min

d′
(H(x, d′) + λ|d− 1− d′|) (5)

for every d can be performed in linear time using a for-
ward and a backward pass to compute the lower envelope.
Hence, the proposed energy can be minimized in O(n m)
time, where n and m are the lengths of the two sequences,
respectively. A direct approach would have O(n m2) time
complexity.

The procedure to fill the entries of H is summarized in
Algorithm 1. The necessary instructions to maintain the
backtracking table for fast subsequent alignment extraction
are omitted. This procedure is very similar to the scanline
optimization method proposed for stereo, with two main
distinctions: first, the discontinuity cost V has a different
shape; second, clamping the accumulated cost to 0 indi-
cates the potential termination of a locally aligned sequence.
Note that in this application the accumulated costs are less
or equal zero.

Figure 2 shows an example of the matrix H and the ex-
tracted sequence correspondence path.

Algorithm 1 Dynamic programming scanline optimization
Input: Dissimilarity scores Dn×m = −Sn×m

H ← 0n×m

H[d, :]← D[1, :]
for x = 2 : n do
{ h can be computed in O(m) time using [6]. }
∀d : h[x, d]← mind′

(
H[x− 1, d′] + λV (d, d′)

)
{ Note: H[x, d] = 0 terminates the local alignment
sequence. }
∀d : H[x, d]← min

(
0, D[x, d] + h[x, d]

)
end for
return H

3.3. Matching Multiple Sequences

We use an incremental approach to find the overlap
of multiple image sequences. To compare multiple se-
quence matches, the optimal scanline assignment score,
score(x, d), is computed for all pairs.



A slow relative movement that covers only a small
amount of structure overlap but contains many images pro-
duces a similar score as a larger movement with the same
amount of wider placed images. We normalize the sequence
matches to favour sequence matches that cover a wide range
of structure over slow relative movements. This is done by
scaling the matching score with the deviation from an ideal
diagonal movement. This leads to the normalized score

scoren(x, d) = score(x, d)
width(path, x) width(path, d)

‖path‖2
,

where path is the sequence of image matches and
width(path, a) is the number of different images from the
sequence a that is contained in the image correspondence
path.

4. Sequence Merging

The image sequence correspondences are used to merge
the sequences into one coordinate system. We assume that
the sparse reconstructions (camera poses and 3D feature
points) of the individual sequences are available. The fol-
lowing steps give an overview of the merging process:

Feature matching: For each image correspondence pair
between two sequences from the scanline optimiza-
tion, SIFT features are matched. A modified kd-tree
[2] is used to speed the matching up.

Feature tracking: For each sequence, the SIFT features
are merged to feature tracks. This is done by match-
ing the features in neighboring images.

Geometric verification: The SIFT tracks are triangulated
with the available camera poses of one sequence and
the absolute pose [10] of each matching image in the
other sequence is computed using RANSAC [7]. This
is done to find the reliable correspondences between
the two sequences.

Similarity transform: A similarity transform between two
sequences is computed with the reliable feature
matches and their corresponding triangulated 3D
points. The sequences are brought into one coordinate
system.

Bundle adjustment: Bundle adjustment [27] is used to re-
fine the merged sequences. We use the feature tracks
from the original sequences (corner points that are
tracked [23]), the extracted SIFT tracks and their inter-
sequence correspondences.

Figure 3 illustrates all used correspondences.

5. Results

We demonstrate our algorithms on two data sets. The
first experiment demonstrates the added image matching
robustness under weakly textured scenes and the concept
of merging of different sparse odometry reconstructions.
Three image sequences were captured by hand with a digital
compact camera. The Motion JPEG videos with 640× 480
pixels resolution were used to compute three separate sparse
reconstructions. Figure 4 shows the result of the sequence
overlap extraction and geometry merging process. The sec-
ond data set demonstrates the extraction of image corre-
spondence paths that change their relative movement direc-
tion and the loop closing capabilities of the merging pro-
cess. One Motion JPEG video with 840 × 480 pixels res-
olution was used in this experiment as odometry input. A
reversed copy of the video was added to the stream before
the initial reconstruction was obtained so that the begin and
end of the camera trajectory are the same. Figure 5 shows
the results.

6. Summary and Conclusions

We presented a method and work flow to integrate mul-
tiple sparse reconstructions from video sequences into one
coordinate system. To obtain the initial sparse reconstruc-
tions fast and robust feature point tracking and visual odom-
etry can be used. The initial sequence overlaps are com-
puted with the key frames from the sparse reconstruction.
Matching the whole image sequences using a scanline op-
timization problem formulation increases the robustness
compared to single image pair matching. No 3D structure
is used at this point because structure can be severely dis-
torted by drift and is difficult to match between different se-
quences. The image based sequence overlaps are then used
to connect common 3D structure.

Results show that sequence relations can be obtained
for data sets even where single images cannot be matched
unambiguously. The presented image based techniques
are particularly well suited for large scale reconstructions.
Loop closing is just a special case of more general sequence
overlaps. A limitation in our implementation at the moment
is that the actual structure integration work is done using
global bundle adjustment. Our sparse bundle adjustment
implementation is only suitable for a few hundred images
because it does not exploit the second order structure of the
problem. Partitioning and hierarchical handling of global
reconstructions will be addressed in future work.
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Figure 4. Merging of three odometry sequences in a difficult environment around a building. The
pyramids represent camera positions, structure points are shown red. The three sequences overlap
in two regions. These regions are highlighted in the zoomed in views. The merged reconstruction
contains 449 cameras, the side length of the shown part of the building is about 20 meters.



Figure 5. Sequence around a fire hydrant. The camera was moved towards the hydrant and then
three loops were obtained. Before starting the initial visual odometry processing, a reversed copy
of the video was added to the video stream, so that drift could be noticed easily. The second row
shows the dynamic programming matrix H that was obtained by scoring the sequence with itself (the
VSM diagonal scores have to be removed when a sequence is matched with itself) and two example
correspondence paths. The last row shows the integrated reconstruction with successfully removed
drift. Note that the reversed images do not have exactly the same position in space as the original
because our odometry system selects images from the video stream dynamically.


