
Copyright © 2008 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
IPT/EDT 2008, Los Angeles, California, August 9–10, 2008.
© 2008 ACM 978-1-60558-211-5/08/0008 $5.00

Multi Projector Displays Using a 3D Compositing Window Manager

Manuela Waldner∗ Christian Pirchheim†

Institute for Computer Graphics and Vision
Graz University of Technology

Dieter Schmalstieg‡

(a) (b) (c) (d)

Figure 1: Calibration steps: (a) The unmodified desktop. (b) Warping is applied and the display is rectified as smallest circumscribed
rectangle of the projection area. (c) Alpha blending provides approximate uniform image brightness across projection seams. (d) Manual
adjustment of the display image.

Abstract

The usage of projected displays in everyday office environments is
still uncommon due to deficiencies in nowadays projection systems.
An automatic calibration routine for multi-projector setups should
adopt to the existing room geometry while not restricting the users’
workflow to specific applications or by modifying their desktop en-
vironment.

We present a geometry-adaptive calibration and rendering appli-
cation for multi-planar surfaces which applies warping and alpha
blending to an unmodified X desktop, implemented as plugin for an
existing 3D hardware-accelerated compositing window manager.
The transformations are performed transparently to X applications
and require negligible computational resources.

CR Categories: B.4.2 [Input/Output and Data Communications]:
Input/Output Devices—Image display I.3.3 [Computer Graphics]:
Picture/Image Generation—Display algorithms H.5.2 [Information
Interfaces and Presentation]: User Interfaces—Windowing sys-
tems

Keywords: multi-projectors, compositing window manager,
seamless display, calibration

1 Introduction

For team workers, a public projected display wall in the team’s of-
fice room may provide a convenient walk-up information space for
ad-hoc discussions and presentations. Especially in small office en-
vironments, the limited wall space often restricts the usage of pro-

∗e-mail: waldner@icg.tugraz.at
†e-mail: pirchheim@icg.tugraz.at
‡e-mail: schmalstieg@icg.tugraz.at

jected displays resulting in oblique projection angles or discontinu-
ous overlap regions between adjacent projection areas.

There are numerous solutions to calibrate projector-based displays
to compensate for keystoning effects and to provide uniform tiled
displays automatically. Usually, one or more cameras are employed
to detect the display surface using structured light patterns. Based
on the camera images, geometric, sometimes photometric, warping
is calculated.

A common technique to describe geometric warping for planar tiled
displays is to define camera-projector homographies, either for one
camera [Raskar et al. 2002; Yang et al. 2001] or for many [Chen
et al. 2001]. Overlapping projection areas have to be blended in
order to create uniform image brightness. By obtaining a three-
dimensional model of the display surface, images can be pro-
jected on much more complex geometries without visual distor-
tion [Raskar et al. 1999; Bimber et al. 2005]. Depending on the
complexity of the surface, a fairly dense surface mesh is required.
Common indoor geometries usually consist of piecewise planar sur-
faces, such as walls and tables. With a multi-planar representation
of the surface, corners can be modeled precisely while dramatically
decreasing the density of the polygon mesh. A projection system
for multi-planar geometries can be achieved by fitting planes into a
point cloud reconstruction of the surface [Quirk et al. 2006] or by
describing plane-wise homographies [Ashdown et al. 2004].

If a 3D surface model is available, distortion is usually compen-
sated from a single tracked user’s or camera’s point of view [Raskar
et al. 1999; Bimber et al. 2005; Quirk et al. 2006]. However,
this approach is not feasible for multi-user setups. Raskar et al.
[2003] proposed the employment of least squares conformal maps
(LSCM) texture mapping technique [Lévy et al. 2002] to achieve
view-independent projection on arbitrary surfaces. This tech-
nique provides a distortion-free parameterization of developable
surfaces with no angle-deformation and minimal stretch. For non-
developable surfaces, such as a projection spanning over two per-
pendicular walls and the floor, the algorithm aims at a minimal
distortion. Raskar et al. texture-map the single projector’s surface
model using the obtained LSCM texture coordinates with arbitrary
image content and render the model from the projector’s point of
view. Displays thus appear like a wallpaper attached to the surface
and are therefore particulary suitable for multi-user setups.

Projector systems require the desired output image to be warped
and blended before being rendered. Most of the examples men-
tioned above use proprietary software and apply required image
transformations directly onto a rendered 3D scene, by using des-
ignated pixel shaders, or by employing a two-pass rendering ap-
proach. However, if the output image is not generated by the warp-
ing application itself, i.e. the desktop image, the usual rendering
pipeline has to be intercepted at some point.

Tools like VNC [Richardson et al. 1998] and Microsoft RDP ac-
quire bitmap desktop images stored in an off-screen buffer. The
primary purpose of these applications is to send compressed desk-
top pixels from a server machine to a connected remote computer.
Thus, they are commonly used for tiled display setups in combina-
tion with PC clusters [Yang et al. 2001; Cotting et al. 2005]. Im-
age data must be transfered from graphics to main memory, where
warping and blending operations are applied by the render appli-
cation. This expensive operation has to be executed whenever the
display is modified and a desktop repaint is necessary. Figure 2 (a)
shows the required processing workflow.

DeskAlign [Wallace et al. 2004] uses a dual graphics pipeline in-
frastructure to render the unmodified desktop on the first pipeline
and then passes the pixels to the texture memory of the second
pipeline where the image is warped. Thus, for running a two-
projector display, a quad graphics card is required.

To improve the usage of projected displays in office space, we de-
veloped an application-transparent and geometry-adaptive projec-
tion system for displaying unmodified X Window System desktop
content on multi-planar surfaces using a single workstation.

We make use of Linux 3D compositing window managers to apply
the necessary warping and blending functions transparently to the
applications. 3D window compositing allows us to transform the
desktop using hardware-accelerated graphics in a two-pass render-
ing technique.

2 System Overview

3D accelerated compositing window managers are available on
most common platforms, such as Quartz Extreme on Mac OS X,
Microsoft Windows Vista’s Aero, and OpenGL-based implementa-
tions for Linux OS. They provide compositing effects like window
blending or rendering of the desktop onto an interactive 3D cube.
The well-known Linux implementations Beryl and Compiz provide
a plugin architecture to easily apply new windowing effects. We
developed several plugins for the Beryl window manager to enable
necessary desktop transformations for multi-projection systems.

The Composite extension of the X window system allows to render
application windows into an off-screen buffer on the graphics card.
The window manager can access these pixmaps as textures using
the OpenGL extension EXT_texture_from_pixmap – either
directly via the NVIDIA driver or indirectly via the Xgl implemen-
tation. Thus, 3D compositing window managers make effective use
of available graphics hardware and provide efficient ways to manip-
ulate desktop and window geometries, as well as their textures.

In particular, the Beryl window manager enables us to access the
final desktop composition in our plugin and to render the desktop
image into a frame buffer object. The buffer content is then texture-
mapped onto custom geometry and modified according to the cal-
ibration results. Figure 2 (b) illustrates the processing steps of our
approach.

Our system is divided into two main parts. The offline calibration
procedure is controlled by a central master application, while lo-
cal calibration routines generate and detect structured light patterns.

(a) (b)

Figure 2: Simplified processing workflow for desktop warping tech-
niques in the single machine case: (a) A dedicated warping appli-
cation accesses the off-screen buffer content and copies the bitmap
content to main memory. (b) The window manager plugin can di-
rectly use the off-screen buffer content as texture.

The master application then distributes the calibration results to the
local Beryl window manager plugins for online warping and blend-
ing. Although our calibration application is designed as distributed
system, we will only consider the single machine case in this paper.

3 Calibration

A calibration step is required to compensate for distortions caused
by oblique projection angles and to provide a uniformly illumi-
nated, rectified display area for overlapping projections. As our
approach is designed for multi-user setups in indoor environments,
we generate viewpoint-independent geometric warping using the
LSCM texture mapping technique for multi-planar surfaces. Plane
fitting allows us to reduce the number of vertices to be rendered by
the window manager plugin, while corners are properly modeled.
For each resulting screen plane a homography warping function is
defined. Although a three-dimensional surface model is not nec-
essarily required to describe piecewise planar surfaces [Ashdown
et al. 2004], the obtained display reconstruction enables us to de-
scribe relationships between spatially discontinuous displays for fu-
ture work. Edge blending is applied when projection areas overlap.
Our calibration system does not compensate for color discontinu-
ities between different projectors yet.

Point cloud acquisition. Structured light patterns are generated
and detected by two or more cameras with known intrinsic parame-
ters. Detected pattern points deliver point correspondences between
camera images. Two cameras with the most common point corre-
spondences represent the base stereo camera pair. Their relative
camera poses are estimated from the recovered epipolar geometry.
A three-dimensional point cloud reconstruction is obtained by tri-
angulation of point matches. In an iterative procedure, the absolute
poses of the remaining cameras are estimated and the reconstruc-
tion is updated.

Polygonal model creation. Based on the point cloud, a RANSAC-
based plane fitting algorithm is applied to approximate the planar
display areas, as proposed by Quirk et al. [2006]. A simple homog-
raphy thus relates screen coordinates to world plane coordinates.
A three-dimensional polygonal model for each projector is created
from the infinite fitted planes by projecting the actual screen cor-
ners onto each world plane and cutting adjacent planes along the
screen edges. Based on the screens’ polygons, overlapping screen
portions are detected and combined to displays.

Surface parameterization. The simplified display model is then
parameterized using the LSCM texture mapping technique. To

retrieve the LSCM texture coordinates, a display triangle mesh,
which describes the relationship between overlapping projectors,
is required. Due to the multi-projector setup, a 2D triangulation
in screen space is not feasible. We therefore label screen polygon
vertices according to the world plane on which they are located,
irrespective of the projector they belong to. A 2D Delauney trian-
gulation is applied for each plane separately. The display mesh is
combined in 3D world space and is subject to the parameterization
routine.

Display rectification. The LSCM texture space can be imagined
as perfect flattening of the surface and is thus our “ideal” space,
where we define the rectification of the display. The parameterized
vertices of all screen polygons are circumscribed with a rectangle
of the display’s aspect ratio. By circumscribing the display rectan-
gle instead of inscribing the rectangle into the polygons’ boundaries
we avoid a loss of resolution and interpolation artifacts caused by
the necessary minification of the displayed images to a smaller in-
scribed rectangle. Instead, our computed image extends the physi-
cal projection space and leads to a loss of information at the bound-
aries of the display (cf. figure 1 (c)). A window manager function
allows the user to adjust the display’s size, rotation and position
within the projection at runtime to best fit her needs (cf. figure 1
(d)).

4 Rendering

Similar to Raskar et al. [2002], we define homography functions
mapping screen pixels x from X display space to undistorted screen
space x′. Screen pixels are given as homogeneous coordinates in
R2 in the form x = (x, y, 1)T . In order to deal with the multi-
planarity, we apply homography functions not only per projector
i, but for each screen polygon j, where each projector has at least
one polygon. In addition, we introduced the concept of a virtual
display, defined by the physical screen topology, which is not nec-
essarily co-incident with the involved X displays (cf. figure 3 (c)).
The first function Hid thus maps X display coordinates from a pro-
jector i = 1, .., N to virtual display coordinates describing the
overall resulting display (cf. figure 3 (b) and (c)). Virtual display
coordinates are mapped to the rectified display in texture space by
the function Hdu (cf. figure 3 (c) and (d)). Finally, for each screen
polygon j = i, .., M, whereM ≥ N , the function Huj maps poly-
gons from texture space to X display space (cf. figure 3 (d) and (b)).
Thus, for each screen polygon j, the following warping function is
applied: Hj = HujHduHid, so x′

j ∼ Hjxj.

(a) (b) (c) (d)

Figure 3: (a) A tiled display in a corner is driven by (b) two X dis-
plays. (c) The virtual display topology is retrieved from the physical
relationship of projected images. (d) In 2D parameterization space,
the display rectification is obtained (circumscribed rectangle). It
is clearly visible in (a) and (d) that the virtual display extends the
physical projection area. The single steps are illustrated for a high-
lighted screen polygon.

To preserve approximate uniform image brightness across single
projectors and overlap regions, an alpha blending function is cal-
culated as proposed by Raskar et al. [2002] and saved in the alpha
channel of a texture. For this purpose, the relationship between ad-
jacent projection screens on common virtual displays is required.

The function mapping screen pixels from one screen space to the
other via texture space is dependent of the polygons j and k the
pixels are associated with: xk ∼ (HukH−1

uj)xj.

(a) (b)

(c)

Figure 4: (a) A corner with unmodified projected data: mind the
different scales caused by the projection angle. (b) Plane-wise
warping provides approximate uniform pixel size across corners
and compensates for angle deformations. Warping causes inter-
polation artifacts which are especially disturbing when small text
is displayed. (c) A screenshot of what is actually rendered by the
3D compositing window manager: the individual screen polygon
corners are marked as green dots, the overlap region between the
two projectors is blended.

Our plugins for the Beryl window manager perform display warp-
ing, blending, and user-defined display transformations, as well as
rendering of structured light. A network plugin serves as commu-
nication interface for data exchange with the projection system’s
master application.

Our projection plugin is responsible for warping and alpha blend-
ing in a two-pass rendering technique. The projection matrix is
set to an ortho matrix co-incident with X display coordinates. The
plugin receives the X display coordinates of each projector’s poly-
gons, as well as the associated warping functions. The unmodified
X desktop is first rendered into a frame buffer object. The poly-
gons are individually texture-mapped by the off-screen buffer con-
tent and warped with the corresponding homography matrices. For
each screen, the alpha blending texture is rendered fullscreen on
top of the warped polygons using an appropriate OpenGL blend-
ing function. Figure 1 shows the rendering of different calibration
states. Figure 4 (c) shows a screenshot of a warped and blended
two-projector X display.

As the mouse pointer is directly rendered in hardware by default,
the cursor remains unaffected by the desktop warping. This leads to
an offset between rendered windows and cursor interaction space.
Our mouse pointer plugin renders the cursor representation, which
is then added to the frame buffer object texture, while the hardware
cursor is hidden.

A GUI front-end allows the user to toggle warping and blending, as
well as to apply custom display transformations to place the display
rectangle within the available projection area.

Figure 5: Different setups, each driven by two projectors. The
small sub-images show the unwarped configurations.

5 Results

We built several prototype setups, all including at least one cor-
ner. Our hardware configuration consisted of a workstation running
Linux Ubuntu Feisty Fawn (7.04) with an NVIDIA GeForce 8800
graphics card, one or two LCD projectors with XGA resolution, and
two or three XGA gigabit ethernet grayscale cameras. The cameras
are intrinsically calibrated and the camera image is filtered for ra-
dial and tangential lens distortion. We do not consider radial distor-
tions caused by the projector lenses so far. The overall calibration
procedure usually takes no longer than one minute. During run-
time the framerate is hardly affected by the warping operations and
far above the physical hardware limits. With our plugins enabled,
Beryl’s CPU and memory consumption increase is negligible.

Figure 5 shows different setups running custom applications, in-
cluding our GUI configuration tool and the reconstruction visual-
ization of the display surface. The modeling of corners is illustrated
in close-up figure 4 (a) and (b).

6 Conclusion

We presented an application-transparent approach for bringing
projector-camera systems one step further to people’s everyday
working environment. Our calibration routine adopts to most com-
mon indoor environments while the integration into an existing 3D
compositing window manager allows the user to run her preferred
applications on an unmodified desktop environment.

In the future, we envision a system that is not restricted to a single
machine setup. To scale up the tiled display, X displays have to
be stitched together. Cursor re-routing between involved machines,
as well as window duplication and migration is required in order
to create seamless display interaction. Our distributed calibration
framework and the retrieved 3D model of display surfaces allow
us to virtually combine existing displays, such as single and tiled
projection walls, as well as private monitors, to a large distributed
desktop with seamless interaction for multiple users.

Acknowledgements

This project was funded in part by the Austrian Science Fund FWF
under contracts Y193, and W1209-N15, and FIT-IT 813398. We
would like to thank Ralph Wozelka for his parameterization inter-
face, Werner Trobin for computer vision support, and Albert Walzer
for video production.

References

ASHDOWN, M., FLAGG, M., SUKTHANKAR, R., AND REHG, J.
2004. A Flexible Projector-Camera System for Multi-Planar Dis-
plays. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, vol. 2, 165–172.

BIMBER, O., WETZSTEIN, G., EMMERLING, A., AND
NITSCHKE, C. 2005. Enabling View-Dependent Stereoscopic
Projection in Real Environments. In Proceedings of the 4th
IEEE/ACM International Symposium on Mixed and Augmented
Reality, 14–23.

CHEN, H., SUKTHANKAR, R., WALLACE, G., AND CHAM, T.
2001. Calibrating scalable multi-projector displays using cam-
era homography trees. In Proceedings of Computer Vision and
Pattern Recognition.

COTTING, D., FUCHS, H., ZIEGLER, R., AND GROSS, M. H.
2005. Adaptive instant displays: Continuously calibrated pro-
jections using per-pixel light control. Comput. Graph. Forum
24, 3, 705–714.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002.
Least squares conformal maps for automatic texture atlas gener-
ation. In Proceedings of ACM SIGGRAPH 2002, ACM Press,
362–371.

QUIRK, P., JOHNSON, T., SKARBEZ, R., TOWLES, H.,
GYARFAS, F., AND FUCHS, H. 2006. RANSAC-Assisted Dis-
play Model Reconstruction for Projective Display. In Proceed-
ings of the IEEE Virtual Reality Conference.

RASKAR, R., BROWN, M. S., YANG, R., CHEN, W.-C., WELCH,
G., TOWLES, H., SEALES, B., AND FUCHS, H. 1999. Multi-
Projector Displays Using Camera-Based Registration. In Pro-
ceedings of the 10th IEEE Visualization Conference.

RASKAR, R., VAN BAAR, J., AND CHAI, J. 2002. A Low-Cost
Projector Mosaic with Fast Registration. In Proceedings of Asian
Conference on Computer Vision.

RASKAR, R., VAN BAAR, J., BEARDSLEY, P., WILLWACHER,
T., RAO, S., AND FORLINES, C. 2003. iLamps: geometri-
cally aware and self-configuring projectors. ACM Transactions
on Graphics 22, 3, 809–818.

RICHARDSON, T., STAFFORD-FRASER, Q., WOOD, K. R., AND
HOPPER, A. 1998. Virtual Network Computing. IEEE Internet
Computing 02, 1, 33–38.

WALLACE, G., CHENY, H., AND LI, K. 2004. Automatic Align-
ment of Tiled Displays for a Desktop Environment. Journal of
Software 15, 12 (December), 1776–1786.

YANG, R., GOTZ, D., HENSLEY, J., TOWLES, H., AND BROWN,
M. S. 2001. PixelFlex: a reconfigurable multi-projector display
system. In Proceedings of the conference on Visualization, 167–
174.

