
Visual Programming for Hybrid User Interfaces
Christian Pirchheim∗ Dieter Schmalstieg† Alexander Bornik‡

Graz University of Technology

ABSTRACT

This paper presents a novel software system called Thekla that fa-
cilitates the integration of 2D and 3D user interfaces into hybrid,
distributed mixed reality applications. Combining heterogenous
display and interaction devices allows mixing and matching of in-
teraction styles for a convenient user experience that is often ab-
sent from pure virtual reality applications. To this aim, Thekla en-
ables an application developer to include standard 2D user interface
components based on the popular Qt framework with a convenient
visual programming environment, thereby significantly easing the
introduction of 2D components into hybrid user interfaces, com-
pared to the effort typically necessary in previous virtual and mixed
reality frameworks. Thekla consists of a 2D component which syn-
chronizes Qt-based user interfaces with 3D scene graphs, and a 3D
component which translates 3D tracker input into 2D events con-
sumable by desktop applications, allowing to turn any screen or
surface into a touch screen. The rapid prototyping of 2D user inter-
faces is supported by Qt Designer, a professional visual program-
ming tool bundled with Qt. Overall, Thekla provides the necessary
software components for the seamless integration of distributed hy-
brid 2D-3D user interfaces. Several examples including a complex
surgery planning application demonstrate Thekla’s abilities.

Index Terms: C.2.4 [Computer Communication Networks]: Dis-
tributed Systems—Client/server H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities

1 INTRODUCTION

The appeal of Virtual Reality (VR) user interfaces lies in the ability
to let a user directly and naturally manipulate three-dimensional
content. However, real-world applications do not only require 3D
object manipulation, but also involve other tasks, often summarized
as system control. Bowman et al. [3] give the following definition:
“System control is the action in which a command is issued to either
change the mode of interaction or the system state.” System control
is well understood in conventional desktop graphical user interfaces
(GUI), but often poorly supported and needlessly complicated in
VR systems – for example, consider the notorious flying menus
which must be operated with cumbersome 3D ray picking. Mixed
reality (MR) has the potential to address the need for proper system
control by combining virtual 3D content with real-world interfaces,
where one possibility is that the real world interfaces have the shape
of tried-and-tested 2D desktop interfaces. This approach leverages
some ideas from the field of ubiquitous computing and has been
dubbed hybrid interface by Feiner and Shamash [7].

Hybrid user interfaces have been introduced a while ago, but
have met only limited success in practical VR applications. We
believe this is not so much a user interface design but a software

∗e-mail: cpirch@icg.tu-graz.ac.at
†e-mail: schmalstieg@icg.tu-graz.ac.at
‡e-mail: bornik@icg.tu-graz.ac.at

engineering problem, grounded in a lack of proper development
tools for the 2D part of the interface. While developers of desktop
applications can rely on visual programming tools which make the
integration of a 2D GUI quick and painless, experimental VR and
MR systems do not offer similar commodities. A common prac-
tice for desktop VR applications is to split the screen between a 3D
window and a 2D panel. However, as soon as the VR/MR applica-
tion is required to be distributed across multiple hosts, such as in a
CAVE or shared space MR environment, standard GUI toolkits are
no longer trivially integrated because they lack suitable networking
capabilities. Instead, system control is usually deferred to rudimen-
tary system control toolkits directly embedded in the VR system,
or attached on a per-application basis with proprietary code. These
contingencies lack in code resusability, ergononomics and are not
supported by visual programming tools.

Thekla is novel software approach that aims to overcome these
deficiencies. It extends the MR framework Studierstube [18] with
the necessary components for the rapid prototyping of hybrid user
interfaces. Studierstube is based on a number of mature compo-
nents which form the foundation for our hybrid user interface ap-
proach: The scene graph library Coin3D1, based on [19] provides
3D graphics. OpenTracker [14] manages input and tracking de-
vices. Muddleware [22] is a blackboard communication tool for
light-weight application synchronisation within Studierstube. We
further chose Qt and Qt designer as mature tools for cross-platform
GUI development.

Thekla, the solution described in this paper, can be character-
ized as the “glue” that integrates the 2D and 3D components into a
seamless hybrid user interface with minimal demands on the side of
the application developer. Our intent was to make it so easy to inte-
grate a 2D part into a hybrid environment that there is no reason not
to do it. In this way we hoped to encourage more sophisticated and
feature-rich yet easy to use MR applications. The quick adoption of
Thekla in the ongoing research projects in our lab seems to confirm
this expectation. As the main contribution of Thekla we see the fact
that it goes beyond the proof of concept stage to show that the in-
tegration of professional development tools and experimental MR
software is feasible and useful. Thekla is not limited to a particular
set of tools, but can be easily extended for example with other 3D
libraries.

2 RELATED WORK

Thekla is a system integration effort and draws inspiration from
a variety of areas, such as message passing systems, computer-
supported collaborative work technology and visual programming.
For reasons of brevity, we limit ourselves only to VR and MR user
interface approaches that are relevant in the context of Thekla.

A major inspiration are hybrid user interfaces that integrate mul-
tiple heterogeneous user interface components according to a ubiq-
uitous computing manner. Besides the EMMIE system [5], there
are several works by Rekimoto which aim at bridging physical
spaces and incorporate multiple computers and input devices, for
example pick-and-drop [15] and Augmented Surfaces [16].

The idea of incorporating 2D user interfaces into VR and MR en-
vironments through the use of pen-and-tablet interfaces, goes back

1http://www.coin3d.org



(a) Shared system state of 2D and 3D applications is synchronized by
Thekla’s 2D component.

(b) Thekla’s 3D component enables tracked input devices to act as desktop
mouse substitutes.

Figure 1: Thekla’s components are embedded in 2D Qt and 3D
Studierstube/Coin applications and provide synchronization and in-
tegration features supporting the authoring of hybrid user interfaces.

to the idea of displaying legacy 2D content in [1]. Later works
used 3D rendering in MR to display proprietary 2D user interfaces
[20, 17, 6].

Many VR and MR architectures are based on communicating
heterogeneous components. Recent examples include DWARF
[11], AMIRE [23] and MORGAN [4]. These approaches typically
involve the use of object brokers such as CORBA and involve a peer
to peer message passing style, which has different advantages and
disadvantages to blackboard approaches such as the one featured
in Muddleware. By wrapping Qt as one of the components, these
systems are able to achieve a similar hybrid user interface, but the
necessity of CORBA to publish interfaces in advance does not lend
itself to rapid prototyping intermixed with visual programming to
the same degree as supported in Thekla. Likewise, many distributed
VR systems utilize a shared scene graph, for example Avango [21]
and DIVE [8], but scene graph sharing does not address any 2D
GUI aspects at all.

Several authors have investigated aspects of authoring MR en-
vironments. For example, [23] describes a visual editor to define
the architecture of MR applications and [9] presents a tool for the
layout of the 3D aspects of MR applications. However, these ap-
proaches do not address system control or 2D user interfaces and
our work is complementary to these approaches.

3 ARCHITECTURAL OVERVIEW

Hybrid user interfaces are usually developed for experimental ap-
plications, requiring a lot of iteration. The number and role of co-
operating components can quickly change, and the highest amount
of flexibility is expected. Any number of 2D and 3D components

should be coordinated, maybe even changing the set of compo-
nents at runtime - there can be multiple concurrent GUIs and scene
graphs. We therefore decided to model system state explicitely
and store it in a central repository, Muddleware. A subset of the
application state is the state of the graphical objects in the scene
graph, such as color or position. Input events of the user are not
directly distributed, but rather affect some portion of the overall
system state, and these state changes are distributed.

Muddleware provides persistence of the system state as well as
a known point of entry into the system, so all other components
may be dynamically altered or even restart after failure. Muddle-
ware supports a publish-subscribe architecture, so components can
subscribe to certain aspects of the system state and receive updates
irrespective of which component made them. A component join-
ing an ongoing session can receive a complete copy of the relevant
state from Muddleware. This is easily possible since Muddleware
supports a hierarchal data model that allows to refer to a set of data
items with a single root pointer.

Thekla’s 2D component allows to create 2D GUIs to control a
certain aspect of the system and synchronize the results with other
components, notably a 3D scene graph, irrespective of the loca-
tion of the scene graph component (see Figure 1(a)). In particular,
Thekla allows to remote control a scene graph from a different host.
Multi-user operation is implicit since multiple scene graph compo-
nents and multiple GUIs can co-exist and can be arbitrarily wired
together to form collaborative software ensembles. The synchro-
nisation between two components sharing a piece of system state
works in both directions, so that 2D user interfaces are enabled to
display the current state of a 3D scene that was modified with direct
manipulation or through other means such as physical simulation.
The centralized architecture of Muddleware implies that the sys-
tem is not designed for very large multi-user environments, but it is
very suitable for room-sized collaboration of ubiquitous computing
applications.

The major highlight of the 2D component of Thekla is the in-
tegration with Qt’s visual programming frontend, Qt Designer.
Through Qt Designer’s plug-in mechanism, widgets created by a
user as part of a GUI design can be published as part of the system
state and registered in Muddleware. The published system state is
automatically synchronized with a scene graph containing nodes
with correspondingly marked-up fields. Qt Designer’s C++ code
generator, which lets the user immediately produce executable and
testable GUIs, was extended to incorporate automatic synchroniza-
tion of the system state through Thekla. The development process
for Qt GUIs therefore remains largely unaltered compared to desk-
top development.

The 3D component of Thekla addresses the physical integration
of 2D and 3D user interfaces. Ergonomic operation of a hybrid user
interface demands that the same input device can be used to work
in both the 3D and 2D world. Essentially, a 3D tracked input de-
vice together with an arbitrary display surface (projector or screen)
yields a touchscreen interface. This is conceptually trivial because
all that is necessary is a projection of the input device position from
3D to the 2D interaction surface. However, the implementation in a
hybrid user interface must allow operation with any combination of
2D and 3D input devices, and of any (unaltered) 2D desktop appli-
cation. We achieve this by interfacing the OpenTracker library with
the desktop event system (see Figure 1(b)).

4 2D COMPONENT

4.1 Data-Driven Publish-Subscribe Pattern
Muddleware is a general-purpose communication tool based on a
blackboard approach. Publishers provide data items to Muddle-
ware, and subscribers either query for specific data, or subscribe
to receive notifications when data matching a particular pattern
becomes available. Muddleware decouples publishers and sub-



scribers, and also stores the data persistently, so that it can be used
as a permanent log or configuration tool. All data is represented in
the Extensible Markup Language XML and represented in Muddle-
ware as a Document Object Model (DOM). Queries issues by sub-
scribers use XPath to describe the portion of the Muddleware DOM
they are interested in. By relying on XML as a common represen-
tation, all recent advances in web-based information systems can
be harvested in Muddleware-based communication. In particular,
the self-descriptive nature of XML makes it easy to build dynamic
connections between components using Thekla, relying just on an
XML encoding of the relevant system state they refer to.

Thekla leverages Muddleware by publishing system state in the
Muddleware DOM. User input modifies the system state, and the
changes are published in Muddleware. Any subscribers of the mod-
ified system state will be notified of this change (see Figure 2).

Figure 2: XML representations of observables are published in the
XML database, subscribed and connected to observers.

Connections are formed by observable and observer object pairs.
Observables are published with Thekla by intializing a DOM ele-
ment that creates the XML representation of the object and inserts
it into the database. The workflow of subscribing an XML repre-
sentation starts with the creation of a DOM element by specifying
key values to Thekla. Keys are XML attribute values that corre-
spond to predefined attribute names and uniquely identify an XML
element within the database. The subscribing DOM element selects
the corresponding XML representation of the observable from the
database. The connection to an observer object is established by
passing appropriate objects to the DOM element (see Figure 3).

Figure 3: Establishing a connection between observable and ob-
server using DOM elements.

Connected observable and observer objects are synchronized by
Thekla. Each value change of the observable object is forwarded to
all connected observers. Synchronization is completed by overwrit-
ing the observer object value with the updated observable value.

Thekla establishes a consistent update notification chain from
observable to observer. Publishing DOM elements are notified
about changes in the observable object and update their XML
representations in the database. Subscribing DOM elements use
the Muddleware’s watchdog feature to receive update notifications
from the database. Whenever an observable XML representation
on the server is changed, Muddleware sends update messages con-
taining the updated XML string to DOM elements, that assign the
contained data values to connected observer objects (see Figure 4).

The first link of the notification chain concerns the observable.
Thekla employs adapters to receive update notifications from ob-
servable objects. Qt adapters are used to track Qt signals and prop-
erties. Field sensors are used to track fields of nodes in the scene
graph. Receiving an update, the object values are serialized and the
XML representation in the database is updated.

Figure 4: Update notification chain from observable to observer.

Adapters are also employed in the assignment of data values to
observer objects. Observable data values arrive encoded as XML
strings and need to be deserialized to binary objects resembling the
original data type. Qt objects, properties and signals employ prim-
itive and Qt data types to store its values. These data types can be
serialized and deserialized using QVariant objects. Node fields
in Coin3D provide methods for serialization and deserialization that
are originally used for Inventor script. The type conversion module
of Thekla performs conversion between Coin3D and Qt data types
on basis of QVariant and SoField objects (see Figure 5).

Figure 5: Employment of adapters in receiving update notifications
from observables and synchronizing observers.

4.2 Hybrid Application Development Workflow
To illustrate how Thekla works, we will consider a simple dis-
tributed application consisting of a 2D GUI and a 3D graphics ap-
plication running on different machines. Figure 6 illustrates the
workflow of creating a simple hybrid graphics application using de-
velopment tools provided by Qt and Thekla.

4.2.1 Creating the 2D Qt GUI application
For drawing and layouting the GUI, the visual development tool Qt
Designer is used. Working with Qt Designer, forms are populated
with widgets which are arranged in layouts. Qt Designer saves the
forms in XML user interface (.ui) files.

Thekla provides context context menu extensions within Qt De-
signer that allow to publish Qt widgets. When right-clicking on

Figure 6: Ideal workflow for creating a hybrid application that con-
sists of a 2D GUI and a 3D graphics application and employs Thekla
as object communication mediator. Green parts signalize visual tool
support, blue parts automatic code generation and yellow parts man-
ual programming work.



Figure 7: Inventor script using engines to publish, subscribe and con-
nect Qt widgets and Coin fields.

a Qt widget, the “object settings” dialog allows to publish signals
(events) and properties of the corresponding widget. This informa-
tion is stored alongside the standard .ui file of Qt Designer.

The global settings dialog provides the “generate” button that
triggers the generation of a Qt application source code skeleton cor-
responding to the actual form window. The source code skeleton
consists of the UI form class file, the application main file and the
Qt project file.

The form file contains a wrapper class for the form that initializes
a Thekla client with the current observable settings. The applica-
tion main file creates an instance of the form class and starts the
Qt main loop. The Qt build tool qmake, applied to the provided
Qt project file, creates Makefiles or Visual Studio project/solution
files depending on the current operating system platform. The com-
pilation of the generated source code files yields an executable Qt
application whose appearance resembles the form preview in the Qt
Designer and features a Thekla client, publishing all scheduled ob-
servables. Thus, selected signals and properties (i. e., system state)
are ready to be subscribed by other application components.

4.2.2 Implementing Thekla in the 3D application

Existing 3D applications can easily be extended with Thekla ser-
vices. For all manual programming tasks Thekla provides a client
API to publish and subscribe observables by writing only a few
lines of source code.

Using the Thekla client API, connections between published Qt
properties and Coin3D fields are established. First, the Qt object
and its associated property need to be selected from the database.
This returns a proxy object which is then used to establish the con-
nection to the node field.

The establishment of connections from Coin3D fields to Qt wid-
gets requires the publication of corresponding fields. Publishing is
a two-step workflow consisting of inserting and binding. For each
Coin3D field, a proxy is created which inserts its observable into
the Muddleware database. Binding the proxy to the field refers to
the establishment of mechanisms that allow the proxy to observe
the field. Receiving notifications, the proxy updates the observable
in the database.

To simplify this process within Coin3D, a set of Coin3D engine
classes was implemented that allows to script these connections di-
rectly in .iv script files as part of the scene graph. The Thekla engine
classes were bundled in a shared library as part of the Studierstube
components collection, and can be loaded on demand.

Two types of engines are provided. Input type engines subscribe
to specific Qt widgets such as buttons or sliders from a database,
providing relevant values in their output fields. Output type engines
publish Coin3D fields in a database. Information about targeted
Muddleware database, Qt widgets and Coin fields are specified in
the engines’ input fields. Each engine creates a Thekla client object
that is initialized with the given Muddleware server information and
the application ID.

Each input engine class is dedicated to a specific Qt widget type.
They subscribe to a default set of properties and signals, and as-
sign the observable values to the output fields. Output fields can
be connected to multiple appropriate fields within the main scene
graph.

Output engines provide input fields which can be fed from arbi-
trary scene graph fields. The connected master field is published in
the Muddleware database using the Thekla client.

Using Thekla engine classes allows to write .iv scripts as pre-
sented in Figure 7. The depicted script is devided into three sec-
tions. In the first section, input engines are employed to subscribe
Qt widgets from the database. In the second section, referencing
the engines allows to connect their output fields to arbitrary scene
graph fields in the main section. Finally in the third section, refer-
ences to scene graph entities are used to let Thekla engines publish
fields which are connected to their inputs.

4.2.3 Extending the 2D application skeleton code
Thekla’s Qt Designer plugin does currently not allow to specify
connections between form widgets and observables of other ap-
plication components. Statements that establish such connections
must be added manually to the existing source code skeleton.

Compiling the extended skeleton yields a Qt GUI application
that communicates bi-directionally with the Muddleware database.
Scheduled Qt widgets are published, remote Coin3D fields are sub-
scribed and employed to establish synchronized connections with
Qt widgets.

4.2.4 Fine-tuning Thekla clients
The Thekla client API provides some fine-tuning methods to man-
age performance issues. The problems are related to the high update
and synchronization rate of some Thekla clients. Besides the de-
fault immediate mode, clients can be configured to work in queued
mode. Working in queued mode, clients stack scheduled update
and synchronization operations locally, processing them efficiently
in configurable intervals, triggered by timers. Both update and syn-
chronization processing intervals can be specified separately.

Applications may also globally disable and re-enable Thekla
clients using appropriate client API methods. For example, the
Thekla client may be shut down in phases when the application per-
forms stressful computations, and switched back on after the com-
putation is complete.

5 3D COMPONENT

OpenTracker is a dataflow processing framework specifically de-
signed for the high performance acquisition and processing of
tracker data. It features support for a wide variety of hardware
devices and is widely used both within the Studierstube research
community and by others. Its main purpose is to provide tracking
data to applications through a well defined interface called a sink.
An OpenTracker sink can be feed with a stream of tracking data ac-
quired either from a device connected to the local host, or received
via the network.

The Thekla sink for OpenTracker provides a bridge to let tracked
input devices simulate the desktop mouse in GUI applications. In
order to generate appropriate mouse events (move, button, wheel)
different types of source devices are required by the Thekla sink.



Figure 8: Geometric transformations applied to compute the spatial
desktop screen location starting from the world (tracking) coordinate
system origin and its correlations with the data gained in the calibra-
tion routine from the user-marked screen corner positions (1), (2), (3)
and (4). φ determines the orientation difference of the ASPD to the
world coordination system. The positional vector w directs from the
application screen coordinate system origin to the screen root posi-
tion, per definition the top left corner of the screen. The vectors v1
and v2 span the extent of the screen plane. During operation mode
the location of the screen plane must be recomputed if the position
or orientation of the ASPD changes. If the new orientation angle is
φ ′, the recomputation is established by rotating the position vectors w
and v1,v2 about the difference angle φ ′−φ . These operations match
vector transformations from one coordinate system (represented by
φ ) to another coordinate system (represented by φ ′).

The following source devices are distinguished, allowing the devel-
oper to specify different physical devices for specific subtasks:

• Mouse Position Interface Provides spatial 3D position data
for the calculation of the desktop mouse cursor position
(3DOF).

• Mouse Button Interface Provides button state values either
enabled or disabled for each button at a time, at least the left,
right and middle mouse button.

• Mouse Wheel Interface Provides wheel state values either
enabled or disabled for wheel forward and backward rotation.

• Application Screen Position Interface Provides 3D posi-
tion and orientation of the target applicaton desktop screen
(6DOF) in case a movable, tracked screen is used (otherwise
OpenTracker can simply provide a constant).

Each source device is related to a corresponding Thekla sink
which receives the tracking data. Thekla requires the application
screen position, mouse position and button to the provided, while
the wheel is optional. A single source device can be employed for
multiple interfaces.

Thekla distinguishes between calibration mode and operation
mode. The latter is executed within the target application context
and actually generates mouse events from tracking data. Calibra-
tion mode is employed during the preliminary calibration procedure
of the desktop screen.

The Thekla module also provides a dedicated singleton class that
implements the public interface and is intended to be used by target
applications to initialize the module and trigger the desktop mouse
simulation services at application startup.

Figure 9: The screen cuboid is spanned by the screen width v1,
screen height v2 and screen depth v3. v3 is computed as dot product
of v1 × v2. The volume marks the mouse event sensitive region.

5.1 Calibration mode
The calibration mode is applied during the execution of the calibra-
tion routine. The purpose of the calibration routine is to calculate
and store the location and extent of the target application screen rel-
ative to the position and orientation of the tracked screen. Thekla
provides a command line tool, which guides the user through the
calibration procedure. The tool is invoked with an intermediate
OpenTracker XML configuration file specifying the source devices.
The results of the calibration are written to final configuration file.
During calibration, the user is asked to mark the four corner points
of the target desktop screen in clockwise order (see Figure 8).

5.2 Operation mode
In operation mode the desktop application initializes the Thekla
module, which also instantiates the necessary OpenTracker run-
time. A timer thread is started that drives the processing of tracking
events. The Thekla sinks store incoming events only if the pend-
ing event differs from the last event to reduce computational load if
idle.

The processing of pending events starts with the application
screen (see Figure 8). Obviously, without accurate information
about the location and extent of the desktop screen, the compu-
tation of the mouse cursor relative to the screen is pointless. Thekla
defines a certain 3D volume located in front of the target desktop
screen as mouse event sensible region. This region is called screen
cuboid. Figure 9 illustrates this concept. If the input device is in-
side the screen cuboid, the source devices for position, buttons and
wheels are used to update the desktop cursor coordinate. The use
of screen cuboids prevents unwanted effects if the input device is
not near a particular screen, and also permits to use the same in-
put device for 2D interaction with multiple tracked and non-tracked
screens as long as the cuboids are non-overlapping.

6 EXAMPLES

6.1 Liver Surgery Planning System
This section describes the implementation workflow of Thekla into
the existing hybrid user interface of the Liver Surgery Planning Sys-
tem (LiverPlanner) [13]. The LiverPlanner was developed to sup-
port radiologists and surgeons in the preparation of liver tumor re-
sections in order to make optimal decisions. The project combines
medical image analysis and VR. The task of medical image analysis
is the segmentation of the liver (tumors, vessels, segment approxi-
mation) based on computer tomography data, in order to compute a
volumetric model of the liver. When the liver model is then visual-
ized in 3D the user alternately switches between model inspection
stage and the actual resection planning stage.

The LiverPlanner consists of two application components which
are distributed on different machines and communicate via the net-
work. A Qt GUI application is used for system control and some



(a) System overview. (b) Tablet PC user interface. (c) Hybrid interaction device.

Figure 10: LiverPlanner system overview explained from left to right. The hybrid setup consists of (1) optical tracking system, (2) Tablet PC and
(3) 3D stereo wall, showing the liver geometry on both display devices. System control tasks are exectuted on the Tablet PC 2D user interface.
The hybrid input device allows to operate both 2D and 3D user interfaces (images taken from [2]).

2D manipulation/inspection tasks. A VR application displays the
liver geometry and allows to manipulate it directly in 3D.

When we started the work on Thekla, the hybrid setup of the
LiverPlanner consisted of a Tablet PC and a large 3D stereo projec-
tion wall. A special hybrid input device called the Eye-of-Ra was
developed, that can conveniently be used in all 2D and 3D tasks.
The Eye of Ra is tracked with 6DOF and can also be used as a sty-
lus on the Tablet PC due to its embedded magnetic stylus tip. The
usage of the 2D screen for an additional monoscopic 3D view is
motivated by the higher display resolution compared to the projec-
tion wall, and the steady precise operation with a stylus on a screen
surface, which is necessary for per-slice manipulation of the volu-
metric liver dataset. Of course system control widgets have their
natural place on the 2D screen of the Tablet PC.

The original hybrid user interface integrated the high end work-
station driving the projection screen with the Tablet PC using
Thekla and Muddleware. Soon it became evident that the Tablet
PC did not deliver sufficient graphics performance to display the re-
quired medical datasets. Rather than replacing it with a more pow-
erful graphics workstation with an expensive external touch screen,
we resorted to upgrading to a workstation with just a conventional,
inexpensive flatscreen. We resued the already existing tracked Eye-
of-Ra as 2D mouse replacement with a tracked flat screen and let
the Thekla sink translate the tracking information from the Eye-of-
Ra into mouse events for the 2D user interface. The Eye-of-Ra is
thus sufficient to operate all parts of the hybrid LiverPlanner sys-
tem, a mouse is no longer required at all.

6.2 Vidente: 3D Visualization of Subsurface Features in
Real Time

Vidente2 [10] refers to a research project that aims to provide field
workers with mobile devices such as ultra-mobile PCs that visualize
subsurface cable and pipe networks depending on the devices’ ac-
tual position and orientation. Using a video see-through approach,
the real-world scene is captured with a video camera, registered
with spatial geographic data from a geographic information system
(GIS) database, augmented with information about the subsurface
supply infrastructure, and rendered in real-time on the mobile de-
vice.

Vidente is a work-in-progress research project. The current mo-
bile client prototype works in local environments as shown in Fig-
ure 11(a) and is executed on a Samsung Q1 ultra-mobile PC. An
USB camera captures a miniature urban site model. Optical marker
tracking is employed to register a previously acquired virtual 3D
model with the physical model. All information about the subsur-

2http://studierstube.icg.tu-graz.ac.at/vidente/

(a) Local environment setup. (b) Hybrid 2D/3D client applica-
tion.

Figure 11: Vidente setup and user interface. The miniature model is
equipped with markers. The client application tracks these mark-
ers optically from video images, registering physical and virtual
3D model. The display of aboveground and subsurface objects is
adjustable. Objects’ rendering style alters when intersected with
context-sensitive lenses.

face infrastructure is contained in the virtual model that is stored in
a scene graph database.

The user interface of the Vidente client consists of 2D and 3D ap-
plications which are arranged side by side without leaving gaps as
shown in Figure 11(b). The 3D application is based on the Studier-
stube framework. The 2D application is based on the Qt library.

The appearance of the displayed 3D scene is customized via the
2D GUI. The display of aboveground and subsurface objects is en-
abled or disabled using checkboxes. The provided set of context-
sensitive lenses can be used to alter the visualization of displayed
objects. Magic Lenses [12] are context-sensive information filters
that affect the rendering style of objects in a 3D scene. The lenses
are displayed as transparent volumes in the 3D scene and are guided
by the user with the sliders from the 2D UI, intersecting objects
from the scene. Depending on the lenses’ attached context, ren-
dering styles of the intersected objects are changed. In the bottom
right panel of the 2D UI text labels are employed to display 3D ap-
plication status information. Connections between the 2D and 3D
application components are realized with Thekla.

The switch from a rudimentary 3D interface for system control to
the Qt interface was much appreciated by the users. The implemen-
tation workflow of the hybrid user interface for the Vidente client
followed the workflow presented in Section 4.2 without significant
deviations, and was performed within a few days.

Thekla additionally allows to rapidly switch between different
user interface configurations in Vidente. Since 2D GUI and 3D



components of the Vidente user interface are executed in differ-
ent application processes and synchronized over a (local) network
interface, they can easily be spread over two different machines
changing only the host name of the Muddleware server in the
Thekla configuration files. The split setup is useful for presenta-
tion purposes where the 3D graphics are exclusively displayed on
a larger display and operated from a separate machine such as a
Tablet PC (see Figure 11(a)), whereas the single ultra-mobile PC
setup is used for outdoor operation.

7 DISCUSSION AND CONCLUSIONS

This paper presented design and implementation of Thekla, a
special-purpose library that facilitates the integration of 2D and 3D
applications into hybrid user interfaces. It provides an API that al-
lows to establish synchronized one-to-many connections between
Qt and Coin3D application objects. Furthermore, Thekla supports
the visual development of GUI application prototypes, which are
employed for system control and symbolic input tasks in interac-
tive distributed VR/MR systems.

Interviewing developers who used Thekla in their applications
revealed that they appreciated the idea of using GUIs. They de-
scribed the usability of 2D interfaces as superior to their previous
interfaces. Alternatives such as 3D menus were possible, but re-
quired considerable re-design of their applications. The proposed
implementation workflow was mentioned as well-considered. Es-
pecially the visual development tool support in the creation of the
Qt GUI application was praised. In general, the work for creating
2D GUIs and integrating them into existing Coin3D applications
was completed within one or two days, including the installation of
the Thekla software library. The authors rate this feedback as con-
firmation for the targeted rapid prototyping capabilities of Thekla.
Slight criticism was raised because of the additional deployment
complexity arising from the introduction of the Muddleware server.
Running the combined 2D and 3D applications, the Thekla syn-
chronization services worked flawlessly.

Questions arose particularly around the generic approach of
Thekla concerning the treatment of Qt object properties and sig-
nals as observables. The developers requested even more autom-
atization, e.g. in the selection of property and signal observables
for certain default widgets in the Qt Designer plugin. Such a ser-
vice would would save developers from reading the Qt API doc-
umentation, figuring out the “requested” property and signal ob-
servables. Furthermore, developers also asked for scripting support
for the establishment of connections in favor of adding appropriate
source code statements manually, freeing them from the annoyance
of steady compilation passes. In this context, the Thekla Coin en-
gine class extensions (see Section 4.2.2) were conceived, providing
the possiblity to define connections in Inventor scripts of Coin3D
applications. Extending the Qt Designer plugin with subscription
features would be desirable. Currently, the plugin only allows to
publish widgets.

Another request concerned the possiblity to establish bi-
directional synchronized connections, e.g. between Qt properties
and Coin fields. Such connections conflict fundamentally with the
currently implemented publish-subscribe pattern, which does not
allow observers to modify observables. Although bi-directional
connections are possible by establishing a second connection from
the observer to the observable, the resulting synchronization op-
erations are not very efficient. The addition of the requested
“observable-observable” connection feature to the existing imple-
mentation is planned for future work.

Developers raised the question concerning the usage of Thekla
in standalone hybrid 2D/3D GUI applications. The Coin3D frame-
work comes with a library called SoQt which is based on Qt. SoQt
allows to integrate 3D geometry panels into Qt interfaces. Syn-
chronization between Qt and Coin3D data structures must be pro-

grammed manually, but SoQt does not require to spawn multiple
processes or install and execute Muddleware. To reduce the over-
head in such situations, Thekla can be configured to link Muddle-
ware into an application process, which simplifies Thekla’s deploy-
ment, but retains the synchronisation and persistency features. The
choice among SoQt and this standalone version of Thekla is some-
what subjective, but definitely the strength of Thekla come into play
in larger multi-host configurations.

Fair comment was also received in terms of performance issues.
Frame rates of graphics applications decreased considerably due
high CPU usage of Muddleware when many subscriptions were
concurrently registered. This problem is related to a lack of caching
query results from XPath evaluations within Muddleware and will
be addressed in future versions of Muddleware. However, most of
the performance problems could be quickly resolved without im-
proving Muddleware by simply restricting the update rate of Qt sig-
nals in certain widgets to useful rates (for example, it is unrealistic
to check for button presses with 100Hz per button).

The Thekla sink simulates touchscreen behavior from 3D in-
put devices through simulated mouse events. It thereby comple-
ments the construction of a hybrid user interface by allowing a sin-
gle 3D input device to be used with both the 3D and the 2D part
of the application. The Thekla sink performs accurately and con-
forms with reference behavior of the desktop mouse in most ways.
Some performance critical tasks such as drag and drop do not al-
ways work reliably, and some advanced features such as combined
mouse/keyboard interaction are not supported. These deficiencies
were not found to be showstoppers, but we intend to address them
over time.

Thekla acts as glue between 2D Qt and 3D Studierstube/Coin ap-
plications, using Muddleware as communication platform. The Qt
framework was choosen because of its cross-platform applicability
and its excellent development tool support. Qt integrates with pop-
ular IDEs, allowing to draw UIs and use Thekla’s features e.g. from
within Microsoft’s Visual Studio. Some developer may think of re-
placing Thekla’s backend libraries with the intention to employ a
different 2D GUI or 3D graphics toolkit. While architecturally pos-
sible, the developer must bargain for completely re-implementing
the entire Thekla functionality for the replacement library. Gener-
ally, 2D UIs can be used to control any kind of device or application
remotely over the network. We think of scenarios, where backend
adapters for some target devices are implemented, which commu-
nicate with Muddleware servers and access interaction event data
that is written by 2D Thekla clients. In these scenarios, Thekla pro-
vides the visual programming and code generation tools that allow
to quickly create and adapt 2D UIs for that purpose.

Overall, the test users’ reactions to Thekla have been mainly pos-
itive, and confirm our expectation that Thekla significantly simpli-
fies the development of hybrid user interfaces.

ACKNOWLEDGEMENTS

This work was sponsored by the Austrian Science Fund FWF under
contract no. Y193. The authors would like to thank Erick Mendez,
Daniel Wagner, Markus Sareika and everyone who commented on
and contributed to the development of Thekla.

REFERENCES

[1] I. Angus and H. Sowizral. Embedding the 2D Interaction Metaphor in
a Real 3D Virtual Environment. In Proceedings SPIE, volume 2409,
pages 282–293, 1995.

[2] A. Bornik, R. Beichel, E. Kruijff, B. Reitinger, and D. Schmalstieg. A
Hybrid User Interface for Manipulation of Volumetric Medical Data.
In 3DUI ’06: Proceedings of the 3D User Interfaces (3DUI’06), pages
29–36, Washington, DC, USA, 2006. IEEE Computer Society.

[3] D. A. Bowman, E. Kruijff, J. J. LaViola, and I. Poupyrev. 3D User
Interfaces: Theory and Practice. Addison-Wesley, 2005.



[4] W. Broll, I. Lindt, J. Ohlenburg, I. Herbst, M. Wittkamper, and
T. Novotny. An Infrastructure for Realizing Custom-Tailored Aug-
mented Reality User Interfaces. IEEE Transactions on Visualization
and Computer Graphics, 11(6):722–733, 2005.

[5] A. Butz, T. Hollerer, S. Feiner, B. MacIntyre, and C. Beshers. En-
veloping Users and Computers in a Collaborative 3D Augmented Re-
ality. In Augmented Reality, 1999. (IWAR ’99) Proceedings. 2nd IEEE
and ACM International Workshop on, pages 35–44, 20-21 Oct. 1999.

[6] S. Coquillart and G. Wesche. The Virtual Palette and the Virtual Re-
mote Control Panel: A Device and an Interaction Paradigm for the
Responsive Workbench((tm)). In VR ’99: Proceedings of the IEEE
Virtual Reality, page 213, Washington, DC, USA, 1999. IEEE Com-
puter Society.

[7] S. Feiner and A. Shamash. Hybrid user interfaces: breeding virtu-
ally bigger interfaces for physically smaller computers. In UIST ’91:
Proceedings of the 4th annual ACM symposium on User interface soft-
ware and technology, pages 9–17, New York, NY, USA, 1991. ACM
Press.

[8] E. Frecon. DIVE: communication architecture and programming
model. Communications Magazine, IEEE, 42(4):34–40, Apr 2004.

[9] M. Haringer and H. T. Regenbrecht. A Pragmatic Approach to Aug-
mented Reality Authoring. In ISMAR ’02: Proceedings of the Inter-
national Symposium on Mixed and Augmented Reality (ISMAR’02),
page 237, Washington, DC, USA, 2002. IEEE Computer Society.

[10] S. Junghanns, E. Mendez, and D. Schmalstieg. Vidente - Ein
Augmented-Reality-System zur Echtzeitvisualisierung unterirdischer
Ver- und Entsorgungsinfrastruktur. In J. Strobl, T. Blaschke, and
G. Griesebener, editors, Angewandte Geoinformatik 2006 - Beitrge
zum 18. AGIT-Symposium Salzburg. Wichmann Verlag, Heidelberg,
2006.

[11] A. MacWilliams, C. Sandor, M. Wagner, M. Bauer, G. Klinker, and
B. Bruegge. Herding sheep: live system for distributed augmented
reality. In Mixed and Augmented Reality, 2003. Proceedings. The Sec-
ond IEEE and ACM International Symposium on, pages 123–132, 7-
10 Oct. 2003.

[12] E. Mendez, D. Kalkofen, and D. Schmalstieg. Interactive Context-
Driven Visualisation Tools for Augmented Reality. In Proceedings,
ISMAR 2006, pages 209–216, Santa Barbara, California, USA, Octo-
ber 22-25 2006.

[13] B. Reitinger, A. Bornik, R. Beichel, and D. Schmalstieg. Liver
Surgery Planning Using Virtual Reality. IEEE Computer Graphics
and Applications, 26(6):36–47, Nov/Dec 2006.

[14] G. Reitmayr and D. Schmalstieg. OpenTracker: A flexible software
design for three-dimensional interaction. Virtual Real., 9(1):79–92,
2005.

[15] J. Rekimoto. Pick-and-drop: a direct manipulation technique for mul-
tiple computer environments. In UIST ’97: Proceedings of the 10th
annual ACM symposium on User interface software and technology,
pages 31–39, New York, NY, USA, 1997. ACM Press.

[16] J. Rekimoto and M. Saitoh. Augmented surfaces: a spatially contin-
uous work space for hybrid computing environments. In CHI ’99:
Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, pages 378–385, New York, NY, USA, 1999. ACM Press.

[17] D. Schmalstieg, L. M. Encarnao, and Z. Szalavri. Using transparent
props for interaction with the virtual table. In SI3D ’99: Proceedings
of the 1999 symposium on Interactive 3D graphics, pages 147–153,
New York, NY, USA, 1999. ACM Press.

[18] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavári, L. M. Encar-
nacão, M. Gervautz, and W. Purgathofer. The studierstube augmented
reality project. Presence: Teleoper. Virtual Environ., 11(1):33–54,
2002.

[19] P. Strauss and R. Carey. An object oriented 3D graphics toolkit. In
ACM SIGGRAPH’92, 1992.

[20] Z. Szalavri and M. Gervautz. The Personal Interaction Panel – a Two-
Handed Interface for Augmented Reality. Computer Graphics Forum
(Proceedings of EUROGRAPHICS’97), 16(3):335–346, 1997.

[21] H. Tramberend. Avocado: a distributed virtual reality framework. In
Virtual Reality, 1999. Proceedings., IEEE, pages 14–21, 13-17 March
1999.

[22] D. Wagner and D. Schmalstieg. Muddleware for Prototyping Mixed

Reality Multiuser Games. In Proceedings of IEEE Virtual Reality
2007 (VR2007). IEEE, IEEE, March 2007.

[23] J. Zauner, M. Haller, A. Brandl, and W. Hartmann. Authoring of a
Mixed Reality Assembly Instructor for Hierarchical Structures. In
ISMAR ’03: Proceedings of the The 2nd IEEE and ACM International
Symposium on Mixed and Augmented Reality, page 237, Washington,
DC, USA, 2003. IEEE Computer Society.


