

ARToolKitPlus for Pose Tracking on Mobile Devices

Daniel Wagner and Dieter Schmalstieg

Institute for Computer Graphics and Vision, Graz University of Technology
{ wagner, schmalstieg } @ icg.tu-graz.ac.at

Abstract In this paper we present ARToolKitPlus, a
successor to the popular ARToolKit pose tracking library.
ARToolKitPlus has been optimized and extended for the
usage on mobile devices such as smartphones, PDAs and
Ultra Mobile PCs (UMPCs). We explain the need and
specific requirements of pose tracking on mobile devices
and how we met those requirements. To prove the
applicability we performed an extensive benchmark series
on a broad range of off-the-shelf handhelds.

1 Introduction
Augmented Reality (AR) and Virtual Reality (VR) require
real-time and accurate 6DOF pose tracking of devices such
as head-mounted displays, tangible interface objects, etc.
Pose tracking must be inexpensive, work robustly in
changing environmental conditions, support a large
working volume and provide automatic localization in
global coordinates. A guaranteed level of accuracy on the
other hand is usually not required.

Solutions that fail to address any of these requirements
are not useful for VR and AR applications. In particular for
mobile AR applications, all the requirements must be met
while working with very constrained technical resources.
The typical mobile AR configuration involves a single
consumer-grade camera mounted at a head-worn or
handheld device. The video stream from the camera is
simultaneously used as a video background and for pose
tracking of the camera relative to the environment. This
inside-out pose tracking needs to execute in real-time with
the limited computational resources of a mobile device.

Tracking fiducial markers is a common strategy to
achieve robustness and computational efficiency
simultaneously. While the visual clutter resulting from the

fiducial markers is undesirable, the deployment of black-
and-white printed markers is inexpensive and quicker than
accurate off-line surveying of the natural environment. By
encoding unique identifiers in the marker, a large number
of unique locations or objects can be tagged efficiently.
These fundamental advantages have lead to a proliferation
of marker-based pose tracking despite significant advances
in pose tracking from natural features.

In this paper we focus on ARToolKitPlus, an open
source marker tracking library designed as a successor to
the extremely popular open source library ARToolKit [4].
ARToolKitPlus is unique in that it performs extremely
well across a wide range of inexpensive devices, in
particular ultra-mobile PCs (UMPCs), personal digital
assistants (PDAs) and smartphones (see Figure 1).

The market share of smartphones with cameras which
are able to execute AR applications is growing rapidly,
predicted to reach one billion by 20121. We therefore
believe it is timely to deploy marker tracking on mobile
devices, laying the foundation for mass-marketed AR. This
paper describes the design requirements and lessons
learned from developing such a state of the art library.

2 Related work
One of the first projects using camera-based 6DOF
tracking of artificial 2D markers was Rekimoto’s 2D
Matrix Code [6] in 1996. It pioneered the use of a square
planar shape for pose estimation and an embedded 2D
barcode pattern for distinguishing markers. In 1999 Kato
used a similar approach to develop ARToolKit [4], which
was released under the GPL license and therefore became

1 Canalys report from Nov. 2006, http://www.canalys.com/

 Figure 1: Devices for handheld Augmented Reality: UMPC, PDA and smartphone.

Computer Vision Winter Workshop 2007, Michael Grabner, Helmut Grabner (eds.)
St. Lambrecht, Austria, February 6–8
Graz Technical University

ARToolKitPlus for Pose Tracking on Mobile Devices

enormously popular among AR researchers and enthusiasts
alike. Since then, many similar square tracking libraries
have emerged among which the most prominent ones are
ARTag [1], Cybercode [7], the SCR marker system [11]
and the IGD marker system used in the Arvika project [2].

ARToolKit is the basis for several projects
concentrating on 6DOF tracking on handheld devices. The
first port of ARToolKit to Windows CE led to the first
self-contained handheld AR application [10] in 2003. This
work evolved later into ARToolKitPlus which is described
in this paper. In 2005 Henrysson [3] created a Symbian
port of ARToolKit partially based on the ARToolKitPlus
source code.

Other researchers tried making best use of the restricted
resources of low to mid-range mobile phones by using
simpler models with very restricted tracking accuracy. In
2004 Möhring [5] created a tracking solution for mobile
phones that tracks color-coded 3D markers. At the same
time Rohs created the Visual Code system for smartphones
[8]. Both techniques provide only simple tracking in terms
of position on the screen, rotation and a very coarse
distance measure.

3 Background: marker tracking with
ARToolKit

Tracking rectangular fiducial markers is today one of the
most widely used tracking solutions for video see-through
Augmented Reality applications. In this section, we outline
the basic principle of the original ARToolKit, which was
designed to run only on standard PCs. More details can be
found in [4].

Before camera-based 6DOF tracking can be performed,
the camera must be calibrated once as a pre-processing
step. The results of this step are a perspective projection

matrix as well as the image distortion parameters of the
camera. Both are saved in a calibration file that is loaded
later on during the start-up phase of the tracking system.

The basic workflow of ARToolKit at run-time is
outlined in Figure 2: A camera equipped device (left top
picture) reads a video stream which is rendered as a video
background to generate a see-through effect on the display.
The camera image is forwarded to the tracking system
(middle top) which applies an edge detection operation as a
first step. ARToolKit performs a very simple edge
detection by thresholding the complete image with a
constant value (right top picture), followed by a search for
quadrangles. Resulting areas being either too large or too
small are immediately rejected. Next the interior areas of
the remaining quadrangles are normalized using a
perspective transformation. The resulting sub-images are
then checked against the set of known patterns.

When a pattern is detected, ARToolKit uses the
marker’s edges for a first, coarse pose detection. In the
next step the rotation part of the estimated pose is refined
iteratively using matrix fitting. The resulting pose matrix
defines a transformation from the camera plane to a local
coordinate system in the centre of the marker (see bottom
right picture in Figure 2). An application can use these
matrices for rendering 3D objects accurately on top of
fiducial markers. The final image is displayed on the
device’s screen (bottom left picture).

ARToolKit can combine several co-planar markers into
a multi-marker set. From an application point of view this
multi-marker set is treated as a single marker and can be
tracked as long as one or more markers of this set are
visible. Multi-marker tracking increases the computational
load but results in considerably more accurate and robust
tracking.

Figure 2: Basic workflow of an AR application using fiducial marker tracking.

ARToolKitPlus for Pose Tracking on Mobile Devices

4 Requirements for handheld tracking
Tracking on handheld devices such as PDAs or mobile
phones enforces many restrictions that are not present on
stationary or mobile PC-based setups. Attaching external
sensors is usually not possible since these devices are
typically too small and also do not expose the required
hardware interfaces. Moreover, requiring external sensors
defeats the objective of an off-the-shelf inexpensive
solution. This leaves camera-based tracking as the only
option. Consequently, the pose tracking software has to be
specifically designed to run on these restricted platforms.

4.1 Hardware

Although the general hardware concepts are similar, a
mobile phone’s or PDA’s hardware configuration is in
many ways very different from standard PC hardware.

Most mobile phones use ARM compatible CPUs
running at a rate of 100-600 MHz, which are primarily
optimized for low power consumption. Despite a strong
interest in multimedia applications, these CPUs usually do
not have floating-point units (FPUs). Instead, floating-
point operations are emulated in software which makes
them about 50 times slower than integer operations. Even
integer divisions are generally emulated in software. Due
to size, cost and power restrictions, mobile phone CPUs
usually do not possess parallel execution units. Thus there
is no multi-core or hyper-threading technology, and
designs with a single arithmetic/logical unit (ALU) are
prevalent.

Memory is a scarce resource on mobile phones. To
reduce costs and conserve battery power, mobile phones
possess as little memory as possible. High end devices
typically have up to 64 Mbytes of RAM, but the limited
operating system design often constrains applications to
use no more than a few Mbytes. To conserve even more
power, memory access is very slow, and every cache-miss
stalls the CPU considerably.

Most mobile phones today include built-in cameras, but
image quality of these cameras is usually poor compared to
PC-based cameras used for computer vision. While today’s
mobile phones can record still pictures at megapixel
resolutions, internal bandwidth limits video to typical
resolutions of 320x240 or even 160x120 pixels. In order to
reduce costs and size, most mobile phones use tiny, low-
quality lenses, which can cause strong vignetting (radial
luminance fall-off to the corners, see left image in Figure
4). Finally, most cameras provide the video stream in
proprietary or unusual pixel formats such as YUV12.

4.2 Software

Most mobile phones today use proprietary, closed
operating systems and are not accessible to system-level
programming. Among the open, programmable operating
systems, the most important ones are Symbian, Linux and
Windows CE. While these three platforms are fully
programmable, they are mutually incompatible, which
makes the design of cross-platform software extremely
challenging. Even within multiple device models
supporting the same operating system, small

incompatibilities, in particular concerning low-level
hardware features prevent an acceptable level of binary
compatibility, and frequently require recompilation even
after minor code modifications.

5 ARToolKitPlus
For the last 3 years have we developed ARToolKitPlus, a
tracking library specifically targeted at mobile devices.
Although originally based on ARToolKit, the current
version of ARToolKitPlus shares almost no code with its
ancestor ARToolKit. To our knowledge ARToolKitPlus is
unique on mobile devices in terms of performance,
supported platforms and features. Sections 5.1 to 5.10
describe in detail how the aforementioned restrictions are
met to make ARToolKitPlus a practical tracking solution
on handheld devices. ARToolKitPlus is freely available2
under the GPL open source license.

5.1 Fixed point

The lack of an FPU is probably the single, most important
issue for floating point intensive software on mobile
phones and PDAs. To determine the time spent on floating
point operations, custom code instrumentation was applied
to reveal the most prominent bottlenecks. Tests showed
that floating-point usage slowed down especially the pose
estimation part of ARToolKit on mobile devices.
Replacing the native C float data-type with a system-wide
C++ class (emulating all operations with fixed point
arithmetic) failed due to strongly varying requirements on
precision and numeric range along the pipeline. Instead
many functions had to be re-implemented using hand-
written fixed point code after determining local range and
precision requirements.

5.2 Pixel formats

Supporting the native pixel formats of phone cameras is
crucial for high performance tracking. Converting to a
common format costs too much performance, especially
due to the severe memory bandwidth limitations on these
devices. Some camera formats already provide data in a
format that is ideal for tracking, such as the YUV12 format
common on phones. YUV12 stores luminance (Y) at full
resolution (8-bits), followed by two chrominance
components (UV) at half resolution (effectively 2-bits
each). Naturally 8-bit luminance images provide a suitable
format for pose tracking from back-and-white markers
while minimizing memory footprint. In contrast, formats
such as RGB565 require the use of lookup tables for fast
format conversion.

5.3 Id-markers

ARToolKit uses template matching of the 2D image
surrounded by a black border after quantizing the image to
a matrix of programmer-specified resolution.
Unfortunately this restricts the amount of concurrently
usable markers at run-time considerably due to increasing

2 http://studierstube.icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php

ARToolKitPlus for Pose Tracking on Mobile Devices

costs of searching in the image database: N visible and M
known markers require 4*M*N template matching
operations. ARToolKitPlus introduced binary marker
patterns (similar to those of ARTag) which implicitly
encode the marker’s id with built-in forward error
correction (CRC). Detection of id-markers is always faster
than for template-markers since no image matching is
required. Currently ARToolKitPlus supports up to 4096 id-
markers. More markers could be supported at the cost of
decreasing the id-detection robustness.

Id markers offer several more advantages over template
markers (besides better performance): Although
ARToolKit allows the user to choose almost any image for
marker patterns, most users still choose their patterns out
the small set of markers that comes with the ARToolKit
distribution. With id-markers, the user does not have to
provide marker images, but can freely choose any marker
from a fixed set of 4096 patterns. In contrast to template
markers, the user is not required to train ARToolKitPlus
with new patterns since any valid marker is implicitly
known to the system. The encoded id is highly redundant
and is therefore robust against 90° rotation steps, which is
a natural problem with square template markers.

5.4 Automatic thresholding

In stationary setups lighting can often be controlled to
provide well balanced brightness throughout the complete
environment of interest. In mobile setups, which can easily
span several rooms, floors or even combined
indoor/outdoor areas, tracking must adapt to changing
lighting conditions. Although many cameras possess auto-
gain features today, the final image brightness can still
vary heavily which causes severe problems with constant
threshold values. Global thresholding, the typical solution
for this problem, is computationally too expensive and
therefore not suitable for embedded platforms.

Instead ARToolKitPlus includes a simple, yet very
effective heuristic for automatic thresholding (see Figure
3) which imposes no measurable performance loss. Instead
of looking at the whole image, only the last seen marker is
considered. After a marker was found, the median of all
extracted marker pixels is calculated and used as a
threshold for the next image to process. If the heuristic
fails because no marker is found, ARToolKitPlus
randomizes the threshold in such a case for every new

frame until a new marker is detected. Empirical tests show
that after a marker gets lost it takes only a few frames to
find a new, working threshold.

Figure 3: Automatic thresholding for tracking in
extremely dark environments.

5.5 Vignetting

Some cameras in mobile phones today exhibit strong
vignetting (see left image in Figure 4). Thresholding such
an image with an image-wide constant value results in an
image as can be seen in the middle picture of Figure 4. If a
marker is close to the border in such an image, it will
overlap with the dark areas that were classified as black
and the marker would therefore not be detected anymore.
To prevent this, ARToolKitPlus provides a simple
vignetting compensation feature: The user can specify a
radial fall-off from the centre of the image to the corners.
This fall-off is specified numerically rather than using an
image mask in order to minimize memory bandwidth
usage. After activating vignetting compensation even
strongly tampered images are thresholded correctly (see
right picture in Figure 4). Vignetting compensation adds
only a minimal performance penalty.

5.6 Camera calibration

Precise camera calibration is crucial for accurate 6DOF
optical pose tracking. ARToolKitPlus supports the original

Figure 4: Vignetting. Left: original camera image. Middle: constant thresholding. Right: thresholding with vignetting
compensation.

ARToolKitPlus for Pose Tracking on Mobile Devices

ARToolKit calibration tool as well as the more accurate
and more convenient to use GML MatLab Camera
Calibration Toolbox3. To calibrate a mobile phone’s
camera, the user has to take several pictures of a checker
board (see Figure 5), which allows then semi-automatic
camera calibration on the PC.

Figure 5: Checker board for semi-automatic camera
calibration using the MATLAB camera calibration
toolbox.

Precise lens undistortion is usually computationally
expensive. ARToolKitPlus can use a lookup table to
speedup this process. Since even the generation of this
lookup table can take up to 10 seconds on low-end devices,
it can be cached using the phone’s file storage. When
ARToolKitPlus searches for the cached lookup table at
start-up, it either loads it or automatically creates and
stores it for the next start-up.

5.7 Portability

As already mentioned in section 4.2, today’s mobile
phones run a wide variety of system software. Hence,
portability is of high concern. ARToolKitPlus does not
include code for camera access or 3D rendering. Its only
interfaces for data I/O are a pixel buffer for image input
and 4x4 floating point matrices (compatible with the
OpenGL matrix format) for tracking results output. It is
therefore only limited by the amount of supported input
pixel formats. ARToolKitPlus is implemented in pure C++
and is consequently highly portable. Currently Windows
XP, Windows CE, Symbian and Linux are supported
which covers the majority of today’s development and
target devices. While a Java port would extend the range of
supported mobile devices considerably, our informal
experiments have shown that the performance of Java on
today’s mobile phones does not allow interactive frame
rates.

3 GML MatLab Camera Calibration Toolbox: http://research.
graphicon.ru/calibration/gml-matlab-camera-calibration-toolbox.html

5.8 Custom memory management

Memory is not just a scarce hardware resource on mobile
devices but often restricted even further due to deficiencies
in mobile operating systems. It is therefore crucial to
provide application developers with maximum control over
memory de/allocation. Hence all memory management in
ARToolKitPlus can be customized by the user. On most
platforms ARToolKitPlus uses the standard memory
de/allocation functions per default. On Windows CE
ARToolKitPlus’ memory manager allocates memory
outside the process’ memory slot thereby keeping this
scarce resource available for DLLs and unmanaged
memory allocations. Since ARToolKitPlus’ memory
footprint is fix and known at compile-time, the
requirements for such a custom memory manager are
minimal.

5.9 Optimizations

Over the years, many optimizations were applied to
ARToolKitPlus. Besides rewriting major parts of floating
point intensive code with fixed point counterparts,
ARToolKitPlus makes heavy usage of inline expansion
and pre-processor techniques. E.g. we use the pre-
processor to generate separate functions for each supported
pixel format, which allows switching between those
formats at runtime with no performance penalty.

ARToolKitPlus uses lookup tables wherever possible.
The pose estimation algorithm intensively uses
trigonometric functions that were accelerated with sine and
cosine lookup tables. The lens undistortion method of
ARToolKitPlus is specified using higher order
polynomials which introduce high computational costs at
runtime and were therefore replaced by a lookup table too.
Matrix fitting requires perspective projection, including
(fixed point) divisions which are not implemented in
hardware on most ARM CPUs. Replacing these divisions
with another lookup table resulted in further significant
speedups.

Lookup tables can usually not provide the same exact
results as algorithmic methods. Special care was taken to
always provide enough accuracy so that final results are
indistinguishable.

5.10 Robust Planar Pose Tracking

Although the focus of ARToolKitPlus is on mobile
devices, improvements for desktop-based setups were
added too. The “Robust Planar Pose Tracking” (RPP)
algorithm [9] by Schweighofer et al. provides improved
pose estimation quality with less jitter and improved
robustness. RPP takes into account that two local minima
exist for the pose estimation error function and specifically
deals with these two errors to always find the optimal
solution.

The RPP algorithm was ported to C++ and added to
ARToolKitPlus’ set of pose estimators, running well on
standard PCs. Unfortunately, due to the high numerical
precision requirements of this algorithm, a fixed point port
suitable for mobile devices is currently not feasible.

ARToolKitPlus for Pose Tracking on Mobile Devices

6 ARToolKitPlus data flow
ARToolKitPlus can be seen as a data flow system where
image data enter on one side and pose matrices exit on the
other end. On its way data passes through several sub-
sections which can be configured independently by the
user at start-up. Figure 6 shows a simplified version of this
data flow. In each section exactly one algorithm is
executed.

Pixel data can be passed into ARToolKitPlus in six
different formats ranging from 32-bit formats such as
RGBA over 24-bit and 16-bit RGB formats down to 8-bit
greyscale. Per default, pixel data is thresholded with a
constant value that remains unchanged as long as the user
does not change it manually. Alternatively ARToolKitPlus
can use its automatic thresholding feature to select a better
threshold value for the next image. Both variants can be
combined with the vignetting compensation algorithm (see
Figure 4).

ARToolKitPlus supports three types of marker
detection: Template matching compares the marker’s
interior area against images in the internal database loaded
at start-up. Alternatively users can activate one of two ID-
based marker detection algorithms: While “Simple ID”
supports only up to 512 markers, the more advanced BCH
encoding allows up to 4096 markers.

Next, all detected markers are undistorted. The
distortion parameter evaluation can either be performed for
all pixels of the markers’ edges at runtime or using a look-
up table that is created or loaded at start-up. Users can also
select to bypass the undistortion at all which should only
be done if the image itself is undistorted before it is passed
to ARToolKitPlus.

In the final step the poses of all valid markers are
estimated. In the default settings ARToolKitPlus uses
floating point code for the standard single- and multi-
marker tracking algorithms on PCs and the fixed-point
counter parts on embedded devices. The Robust Planar
Pose estimator is only available in floating point and
therefore not suitable for embedded platforms.

7 Performance
To test ARToolKitPlus’ performance for practical
applicability, we benchmarked it on several handheld
devices. ARToolKitPlus is primarily CPU bound. So even
though all these devices run Windows CE, they represent a

good overview of what is currently available on the
market. Additionally we ran the benchmarks on a PC as a
comparison of the processing power on handhelds to a
typical PC-based setup. Since several of these devices are
available under different brands, we also list the OEMs’
code names. All builds were created using the Microsoft
ARM and x86 compilers with full optimization activated
(/Ox). Where possible we used the Intel compiler suite to
compare different compilers. Benchmarks were performed
on the following devices:

 i-mate SP5 (codename HTC Tornado) is a typical
smartphone with a 200 MHz Texas Instruments
OMAP850 CPU.

 HTC MTeoR (codename HTC Breeze) is a fast
Smartphone device with a 300MHz Samsung
S3C2442 CPU.

 HTC TyTN (codename HTC Hermes) is a PocketPC
phone with a 400MHz Samsung S3C2442 CPU.

 Gizmondo is a mobile gaming console with an nVidia
GoForce 4500 3D chip (not used in the benchmark), a
built-in camera and a Samsung S3C2440 400 MHz
CPU.

 T-Mobile MDA Pro (codename HTC Universal) is a
high-end PocketPC phone with an Intel XScale
PXA270 CPU running at 520MHz.

 Dell Axim X51v is a high-end PocketPC PDA with an
Intel 2700G 3D chip (not used in the benchmark) and
an Intel XScale PXA270 CPU running at 624MHz.

 Intel 2 GHz Core Duo represents a standard PC-
based setup. On this device we ran ARToolKitPlus
with regular floating point code.

We tested three different scenarios: one using single

marker tracking and two using multi-marker tracking. In
ARToolKit and ARToolKitPlus multi-marker tracking is
implemented by first tracking all markers separately, then
combining all tracking results and finally optimizing for
the complete set. Because of the last step, tracking a multi-
marker set with N visible markers is considerably slower
than tracking N independent markers.

Due to the aforementioned optimizations, the current
version of ARToolKitPlus is roughly 50 times faster on
mobile devices than the initial port. Consequently, as can
be seen in Table 1, single marker tracking represents no
major bottleneck on any of the tested devices. It is
interesting to notice that with single marker tracking the

Figure 6: Simplified data flow in ARToolKitPlus. In each block, one algorithm is executed.

ARToolKitPlus for Pose Tracking on Mobile Devices

Intel compiler gains some speed advantage over the
Microsoft compiler on those CPUs which can run that
code. (Non-Intel CPUs required disabling some
optimization flags of the Intel compiler or the generated
code would not run).

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

180,00

200,00

SP5 MTeoR Gizmondo TyTN MDA Pro X51v

fr
am

es
 p

er
 s

ec
on

d

fps at full speed
fps at 100MHz

Figure 7: Frames per second for single marker tracking on
embedded devices (less is better).

Multi-marker tracking puts a severe burden on the

processing power of today’s mobile devices. While
tracking a multi-marker set with four visible markers still
performs satisfactory on most devices, the cost for tracking
ten visible markers is too high for acceptable frame-rates –
considering that tracking is only a one small part of a
practical application. It is interesting to notice that on all
embedded devices the code generated with the Intel
compiler performs worse than the code generated with the
MS compiler, which is in contrast to the results of single
marker tracking. The reason for this behaviour is not
revealed yet.

Almost all smartphones and PDAs today use ARM
based CPUs. Furthermore, ARToolKitPlus is almost fully
CPU bound and hardly memory-bandwidth bound at all.
Hence it is not surprising that the tracking performance on
the devices in this benchmark increases linear with the
CPUs’ clock rates. As can be seen in Figure 7, all devices
process 31.12 (+/- 1.76) frames per second at a normalized
speed of 100 MHz.

Lessons learned
From our experience with pose tracking and Augmented
Reality in general on mobile devices we arrived at the
following set of guidelines and lessons learned:

 Sequential vs. parallel: Even though ARM CPUs
usually do not have parallel execution units, many
operations such as reading the camera or waiting for
network reply can be successfully accelerated using
multi-threading because they are I/O bound.

 Camera resolution: Some high-end phones can
deliver video streams at resolutions up to 640x480
pixels. In practice though, other than when using high
quality PC cameras, there is only a minimal
improvement in tracking quality. The reasons for this
are the low quality lenses and camera sensors with
high noise levels.

 Multi-marker tracking: Using high quality cameras
on PCs allows stable single marker tracking. Larger
markers can sometimes compensate for the lower
image quality of mobile phone cameras, but user
interface designs often prevent this. Multi-marker
tracking provides highly stable tracking – at the
expense of higher computational costs though.

 Id-based markers: With a growing number of
markers known to the tracking system, the process of
template matching can seriously degrade overall
performance. Id-based markers do not share this
weakness and are always faster to detect than template
markers.

 Camera pixel formats: Several pixel formats already
provide ideal access to the image data for
ARToolKitPlus. E.g. as described in Section 5.2, the
YUV12 pixel format stores the image in gray values
which allows faster tracking, even though the image
must be converted to RGB for displaying video
background anyway.

 Compilers: As shown in Section 7 some compilers
can increase tracking speed in certain situations. In
older versions of ARToolKitPlus which contained
more floating point code, speedups up to 70% were
noticed. Unfortunately these compilers are often
expensive and generated code only works on specific
CPUs.

 Single Marker Multi Marker (4 markers) Multi Marker (10 markers)
Device MS compiler Intel compiler MS compiler Intel compiler MS compiler Intel compiler

i-mate SP5 14.8 ms 13.3 ms 66.4 ms 78.4 ms 234.1 ms 273.8 ms
HTC MTeoR 10.2 ms n/a 44.6 ms n/a 153.3 ms n/a

Gizmondo 8.5 ms n/a 34.5 ms n/a 122.7 ms n/a
HTC TyTN 8.3 ms n/a 34.9 ms n/a 128.1 ms n/a
MDA Pro 6.2 ms 6.0 ms 24.1 ms 29.5 ms 83.4 ms 99.1 ms
Dell X51v 5.4 ms 5.1 ms 20.7 ms 23.25 ms 69.8 ms 81.2 ms

PC 0.55 ms 0.43 ms 6.26 ms 2.77 ms 17.53 ms 8.3 ms

Table1: Benchmarks performed on images with one, four and ten markers. The latter two images were tracked with a
multi-marker set of 12 markers of which four and ten were visible.

ARToolKitPlus for Pose Tracking on Mobile Devices

 Developing on the PC, final testing on the device:
Debugging on embedded devices is cumbersome and
on some platforms such as Symbian not possible
without expensive tools. Doing as much work as
possible on the PC should be preferred since it results
in faster development cycles and often even cleaner
code due to the increased portability requirements.

8 Future work
We believe that tracking performance of ARToolKitPlus
reached a level where no significant improvements are
expected to happen from optimizations alone. Instead we
want to concentrate on features that fundamentally
improve the tracking quality in the future. In particular, the
current method for edge detection is a major weakness of
ARToolKit and ARToolKitPlus. In the future we plan to
add more powerful edge detection and reconstruction
modes that should work better in difficult lighting
conditions even allowing partially occluded markers.
Moreover, we intend to experiment with a combination of
fiducial marker tracking and selective natural feature
tracking based on fast feature detectors.

In the future, more phones will include multimedia CPU
extensions with capabilities such as video encoding and
decoding, which could be used for computationally
expensive image space operations such as precise pixel
flow detection. Currently these functions are usually not
accessible due to unavailable vendor-specific APIs. We
therefore welcome the upcoming OpenKODE4 initiative
that will provide a common standard for programming
mobile phone hardware.

9 Acknowledgements
The authors want to thank Hirokazu Kato and Mark
Billinghurst for the development of ARToolKit and
making it publicly available under the GPL license. Some
parts of this work were inspired by ARTag developed by
Mark Fiala. A big thank you goes to Thomas Pintaric who
wrote the MATLAB camera model support and ported the
RPP to C++ for integration into ARToolKitPlus. We
would also like to thank all users of ARToolKitPlus who
fixed bugs and contributed patches for new platforms. This
project was funded in part by Austrian Science Fund FWF
under contracts no. L32-N04 and Y193.

4 OpenKODE: http://www.khronos.org/openkode

References

[1] Mark Fiala, ARTag, An Improved Marker System
Based on ARToolkit. National Research Council
Canada, Publication Number: NRC: 47419, 2004.

[2] Wolfang Friedrich, ARVIKA - augmented reality for
development, production and service. Proceedings of
International Symposium on Mixed and Augmented Reality
(ISMAR), 2002. pages 3-4, 2002, Germany.

[3] Anders Henrysson, Mark Billinghurst, Mark Ollila.
Face to Face Collaborative AR on Mobile Phones.
Proceedings International Symposium on Augmented and
Mixed Reality (ISMAR’05), pages 80-89, 2005, Austria.

[4] Hirokazu Kato, Mark Billinghurst. Marker Tracking
and HMD Calibration for a video-based Augmented
Reality Conferencing System. Proceedings of the 2nd
International Workshop on Augmented Reality (IWAR 99).
pages 85-94, 1999, USA.

[5] Mathias Möhring, Christian Lessig, Oliver Bimber.
Video See-Through AR on Consumer Cell Phones.
Proceedings of International Symposium on Augmented and
Mixed Reality (ISMAR'04), pages 252-253, 2004, USA

[6] Jun Rekimoto. Matrix: A Realitime Object Identi-
fication and Registration Method for Augmented
Reality. Proceedings of Asia Pacific Computer-Human
Interaction (APCHI) 1998, pages 63-68, 1998, Japan

[7] Jun Rekimoto, Yuji Ayatsuka. CyberCode: designing
augmented reality environments with visual tags.
Proceedings of Designing Augmented Reality Environments
(DARE) 2000, pages 1-10, 2000, Denmark.

[8] Michael Rohs, Beat Gfeller. Using Camera-Equipped
Mobile Phones for Interacting with Real-World
Objects. Advances in Pervasive Computing, Austrian
Computer Society (OCG), pp. 265-271, Austria, 2004.

[9] Gerald Schweighofer, Axel Pinz. Robust Pose
Estimation from a Planar Target. IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 28, no. 12,
pp. 2024-2030, 2006.

[10] Daniel Wagner, Dieter Schmalstieg. First Steps
Towards Handheld Augmented Reality. Proceedings of
the 7th International Conference on Wearable Computers
(ISWC 2003), pages 127-135, 2003, USA.

[11] Xiang Zhang, Yakup Genc, Nassir Navab. Mobile
computing and industrial augmented reality for real-
time data access. Proceedings of Emerging Technologies
and Factory Automation (ETFA), 2001, pages 583-588,
2001, France.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

