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Figure 1 Examples of how Context Sensitive Magic Lenses affect objects of a scene differently depending on their context. 

On these two images the lenses are shown as semi transparent. On the left image rendering styles are changed or 
transformations are added to the objects depending on their contextual information and the intersection with the lens. The right 

image shows a lens that renders differently the vessel trees of a liver depending on their type and the lens intersection. 
 

 
ABSTRACT 
In this article we present an interaction tool, based on the Magic 
Lenses technique, that allows a 3D scene to be affected 
dynamically given contextual information, for example, to support 
information filtering. We show how elements of a scene graph are 
grouped by context in addition to hierarchically, and, how this 
enables us to locally modify their rendering styles. This research 
has two major contributions, the use of context sensitivity with 3D 
Magic Lenses in a scene graph and the implementation of 
multiple volumetric 3D Magic Lenses for Augmented Reality 
setups. We have developed our tool for the Studierstube 
framework which allows us doing rapid prototyping of Virtual 
and Augmented Reality applications. Some application directions 
are shown throughout the paper. We compare our work with other 
methods, highlight strengths and weaknesses and finally discuss 
research directions for our work. 
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1 INTRODUCTION 
Visualization and interaction tools are important topics in 
Augmented Reality (AR) research.*†‡The goal of AR displays is 
usually to present abstract or otherwise hidden information linked 
to the real world. Frequently, this additional information may 
cause a visual overload in the user’s field of view. As a relief, 
information filtering techniques have been investigated [10]. The 
general idea of information filtering is to modify the appearance 
of virtual scene objects based on user-defined context parameters, 
typically fading out uninteresting scene objects to reduce display 
clutter. 

While [10] applies the filtering globally to all scene objects, 
Magic Lenses are filters that modify the presentation of scene 
objects in a locally bounded area. Magic Lenses can be used to 
reveal hidden information, to enhance data of interest, or to 
suppress distracting information. They were first introduced as a 
user interface tool in 2D [3], and later extended to 3D [17]. While 
the effect of a lens is locally bounded, it is applied globally to all 
scene objects. 

The effect of multiple lenses can be aggregated by overlapping 
multiple lenses, but this does not allow applying the effects only 
to certain individual scene objects or groups of scene objects. For 
example, a composite effect of enlarging all scene objects of type 
A by 10% while rendering all scene objects of type B semi-
transparently cannot be composed from a lens that enlarges 
everything by 10% and a lens that renders everything semi-
transparently. Moreover, overlapping 3D lenses have, up to now, 
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only been shown in screen space, not in object space, which 
further limits the types of effects that can be produced. 

In this paper, we introduce the notion of 3D context sensitive 
Magic Lenses (CSML), which overcome these deficiencies. Every 
scene object’s rendering style is defined as a function of an 
arbitrary set of user-defined context parameters. These parameters 
are contained in a group with other arbitrary information, such as 
object type or membership in a certain branch of the scene graph. 
We permit multiple overlapping Magic Lenses in both screen and 
object space, in both convex and concave arrangements. Position 
and extent of the Magic Lenses, the type and arrangement of 
objects in the scene graph, and the mapping from context 
parameters to rendering style are completely independent, 
allowing to mix and match tools from this toolset even at runtime 
– the only requirement is that all used components agree on a 
common set of context parameter descriptors. 

For example, as shown in Figure 1 (left), objects have been 
assigned to different context families and their rendering styles 
change depending to which family they belong and the 
intersection with the lens. Another example is in Figure 1 (right) 
where a liver model is presented. Notice that the portions of the 
vessel trees that intersect the lens are rendered in either blue or 
red depending on whether it is an artery or a vein. 

In general terms, the main contribution of context sensitive 
Magic Lenses is that they provide powerful information filtering 
for arbitrary complex scenes, without most of the limiting 
assumptions of previous work in that area. Specifically, these 
lenses are completely general in terms of their shape, number, and 
effect on the visualization. Our main interest lies on outdoor AR 
applications, which draw from a rich database of virtual objects 
associated with real world coordinates or entities, and can change 
dynamically. Therefore, hard-coded visualization behaviors are 
not a satisfactory option. Although designed for AR setups, the 
same Magic Lens techniques can be applied to purely virtual 
scenes. 

2 RELATED WORK 

2.1. Information Filtering and Context 
Researchers from Columbia University and NRL [10] studied 
techniques for information filtering in AR environments. They 
based their work on the focus-nimbus technique described by 
Benford and Fahlen [2]. One of the motivations for this work is 
the overload of information common to AR setups. An example 
depicting the possible position of snipers in an urban environment 
was used to demonstrate the advantages of this technique. Their 
filtering technique is applied on a global scale to the entirety of 
the scene and, as far as it can be seen from the article, it cannot be 
localized. 

2.2. 3D Magic Lenses Rendering 
Viega et al. developed flat and volumetric Magic Lenses for 3D 
environments [17]. An interesting discussion takes place in the 
rendering technique of flat lenses, and how multiple lenses can be 
combined. However, overlapping volumetric lenses are not 
discussed. 

An elegant algorithm for the rendering of 3D Magic Lenses was 
presented by Ropinski and Hinrichs [15]. This technique uses 
multi-pass rendering to achieve the effect of a Magic Lens. This 
algorithm requires a dual depth buffer, which is not available in 
today’s hardware. Everitt [6] proposed using the shadow buffer as 
a solution. In contrast, we use a variant of the algorithm in [15] 
implemented using Cg fragment shaders. 

2.3. Magic Lenses as Interaction Tools 
Looser et al. [12] presented an interesting work that mixed the use 
of lenses and semantic information. The interaction techniques 
discussed in their paper are magnification, object selection and 
information filtering. The notion of “semantic zooming” is 
interesting, but very little information is provided on how the 
objects are enriched with this semantic information. It seems that 
the used lens will only determine the area where the object can be 
rendered, but not its rendering style. 

Methods for decoupling rendering styles from cutaway objects 
were researched by Diepstraten et al. [5]. Particularly interesting 
in this work are the drawing styles, such as sawtooth-shaped 
cutaway geometries, and the fact that basic semantic information 
is given to the objects (classified as inside and outside). Cutaway 
geometries are coupled with the objects to be cut, which limits the 
objects to be convex. 

Wang et al. [18] from Stony Brook University described a 
framework for volumetric lenses, mostly focusing in volumetric 
data. This tool allowed them to apply a number of free-style 
lenses, which, conveniently emphasized specifics parts of the 
visualized data without loosing the overall context. It must be 
noted that this work uses context as the overall visual relationship 
of the displayed data with its surroundings. Arbitrary subsets of 
data in the same set (such as bones or tissue in an MRI scan) 
cannot be treated differently. 

2.4. X-Ray Vision 
A number of articles have studied the rules of correctly displaying 
X-Ray vision, many of them dealing with techniques to properly 
provide depth information [9], [10]. Some developments, like the 
present, have focused on interactive tools for displaying X-Ray 
vision. In 2004 work was carried out at UCSB for the interactive 
display of X-Ray vision [1]. A number of interesting techniques 
were presented, some of which we considered during the 
development of our current work.  

Later, the same group at UCSB presented some encouraging 
research for cutaway views, and how to give better depth 
information to the user [4]. These cutaway views have been used 
in 3D environments before by [5], and [7], this last research also 
studied other kinds of techniques for presenting occluded 
information such as ghosting or object removal. Many of these 
techniques can also be achieved by the work presented in this 
paper, and in Section 5 we will show some application examples. 

3 BACKGROUND: CONTEXT SENSITIVE SCENE GRAPH 
Context-sensitive traversal of scene graphs was introduced in a 
previous publication by our group [14]. The Magic Lens 
techniques presented in this paper builds on this work, so its 
important points are summarized here for convenience. 

A set of context parameters is maintained throughout the 
traversal of a scene graph. This allows parameterizing and 
repurposing sub graphs in various ways. The context parameters 
are maintained as part of the state of the scene graph traversal, 
which makes them independent of the scene graph structure. The 
context parameters are modeled as an associative array of key-
value pairs, where the values are either strings or pointers to sub 
graphs. 

By using pointers as parameters, such template sub graphs can 
be inserted multiple times during the traversal. In contrast to a 
conventional directed acyclic graph structure, the binding of child 
nodes to their parents happens very late, during the traversal itself, 
so the nodes can be changed for each traversal and provide a very 
flexible way of assembling complex scene graphs. Transparent 



caching of the traversal outcome in display lists ensures that 
rendering performance is not adversely affected. 

The context sensitive scene graph traversal shifts the 
complexity of managing multiple representations from the 
application code to the scene graph itself. Rather than writing 
application code to modify the scene graph or change rendering 
parameters based on user interaction, the application only needs to 
change the context parameters for high level control of the visual 
effects. 

The scene graph will adapt the visual appearance of its 
contained objects to dynamically changing requirements, and, 
even compose sub graphs on the fly. A particular visual 
representation is simply an instance of a template sub graph 
combined with a specific choice of context parameters. 
Combinations of content and visual interpretation are created 
during traversal only, which is the actual moment in time they are 
required. 

By combining the context sensitive traversal with the multi-
pass rendering technique described in [15], Magic Lenses can be 
used to define context parameters which are used to influence the 
appearance of objects on a pixel by pixel basis. 

4 ALGORITHM AND IMPLEMENTATION 
The CSML tools described in this paper were implemented as an 
extension to the Studierstube [16] framework, which uses Coin§, a 
re-implementation of Open Inventor [19]. 

As was mentioned in Section 2.2 we use a modified version of 
the algorithm by Ropinski. This algorithm, however, was targeted 
to only one Magic Lens. Therefore, we had to further extend it to 
allow multiple intersecting lenses. Although we have designed an 
algorithm for multiple Magic lenses, given the power that a 
context sensitive scene-graph brings, many of the applications can 
be solved by the use of only one Magic Lens. Therefore, we have 
split our algorithm into two forms, one that deals with a single 
Magic Lens and one that accepts multiple lenses. Our current 
implementation adapts automatically between the two algorithms 
depending on the number of lenses encountered in the graph. 

4.1. Background: Ropinski’s Algorithm 
Ropinski’s algorithm [15] consists of three rendering passes: 

 First, it renders only fragments behind and next to the lens 
 Second, it renders only fragments inside the lens 
 Third, it renders only fragments in front and next to the 

lens 
 
These steps mean that every object that wants to be affected by 

the lens needs to be rendered three times. Passes 1 and 2 require 
two depth tests for distinguishing the fragments falling behind and 
inside the lens, respectively. In the second pass the style changes 
are applied. 

4.2. Algorithm Single Magic Lens 
Instead of using a shadow or stencil buffer, we rely on Cg 
fragment programs [13] combined with floating point textures to 
overcome the lack of two depth tests. This means that the Magic 
Lens will have one texture associated that stores its depth 
information. In subsequent rendering passes this texture will be 
used by all other objects to determine if they fall inside the lens or 
not. A more formal description of the algorithm follows. 

                                                 
§ http://www.coin3D.org  

Let T be the texture that will hold the depth information of the 
Magic Lens L. We denote C as a string representing our context 
information and O as a group of 3D objects. Then let Sj={O,C} 
the jth group composed of a set of objects and their context 
information, where j={0..m}. 

 
When L is encountered in the graph: 

 First, we render it such that the depth values of its back 
faces are stored in the red channel of T 

 Next, we render it such that the depth values of its front 
faces are stored in the green channel of T 

 
Then, for every Sj encountered in the graph: 

 The first pass uses the depth information stored in T to 
render only those fragments lying behind and next to L 

 The second pass uses the depth information stored in T to 
render only those fragments lying inside L 

 The third pass uses the depth information stored in T to 
render only those fragments lying in front and next to L 

4.3. Algorithm Multiple Magic Lenses 
In this extended algorithm, one texture is used per lens to store its 
depth information. In subsequent rendering passes, these textures 
are used by all other objects to determine if they fall inside a lens 
or not. A more formal description of the algorithm follows. 

Let Ti be the texture that will hold the depth information of the 
Magic Lens Li, and let D be a common texture that will hold the 
back depth values of all Li, where i={1..n}. We denote C as a 
string representing our context information and O as a group of 
3D objects. Then let Sj={O,C} the jth group composed of a set of 
objects and their context information, where j={0..m}. 

 
For every Li encountered in the graph: 

 First, we render it such that the depth values of its back 
faces are stored in the red channel of Ti 

 Next, we render it such that the depth values of its front 
faces are stored in the green channel of Ti 

 Then we render it such that the depth values of its back 
faces are stored in the common texture D such that farthest 
back faces are kept and all others are ignored 

 
Then, for every Sj encountered in the graph: 

 The first pass uses the depth information stored in the 
common texture D to render only those fragments lying 
behind and next to all Li 

 The following n passes use the depth information stored in 
every Ti to render only those fragments lying inside Li 

 The last pass renders the entire object relying only in the 
traditional depth test 

 
It must be noted that these algorithms do not consider any 

contextual information attached to the objects. This is because 
contextual information is added as a part of a sub graph of the 
scene during traversal, as will be explained in the following 
section. A special situation occurs when we define a behavior for 
intersecting lenses, for this we need to check all the possible 
intersections of the lenses, and add those as extra rendering 
passes. Additionally, we must also check that every object renders 
inside a lens only, without rendering on intersecting regions. For 
this mechanism the last part of our algorithm for object rendering 
is modified as follows. 



 
For every Sj encountered in the graph: 

 The first pass uses the depth information stored in the 
common texture D to render only those fragments lying 
behind and next to all Li 

 The following n passes use the depth information stored in 
every Ti to render only those fragments lying inside Li 
ignoring lenses intersections 

 The following 1
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information in every Ti to render only those fragments 
lying on every possible lens intersection. Here, k is the 
number of possible lenses involved in an intersection, and 
n is the number of lenses in the graph 

 The last pass renders the entire object relying only on the 
traditional depth test. 

 
This solution creates a high number of rendering passes, in 

particular if no information about which lenses should be 
combined is available. However, in most practical cases, the 
expected combination of lenses will be known. Our current 
implementation handles multiple lenses, but the default case is 
that the effect of intersections depends on the order of the lenses 
in the scene graph (the first lens is dominant, see Figure 5). The 
implementation allows handling specific intersection cases 
correctly if the user desires it (see Figure 6), but the increased 
number of rendering passes slows down the rendering. We plan an 
optimized fully generation intersection method as future work. 

4.4. Implementation 
We provide the details of the implementation considering 

multiple Magic Lenses, however, as mentioned before, if only one 
Magic Lens is encountered in the graph, the algorithm falls back 
to the design that considers only one lens. Our implementation 
builds on Coin, an object-oriented scene-graph, which can be 
easily extended by adding new node classes. Magic Lens and 
objects enriched with context information are thus an extension to 
Coin which naturally blends in to Coin’s runtime object 
management system. In particular, Coin’s built-in scripting 
language (the precursor to VRML) automatically supports user-
defined nodes and allows convenient prototyping. 

A context family of objects is defined by all those objects that 
have the same context information. However, these objects do not 
have to belong to the same part of the scene graph hierarchy, i.e., 
they can be scattered throughout the scene-graph and still be 
jointly affected by a CSML according to the context family they 
belong to. Every context family has a unique name and defines a 
specific rendering style that will be used when fragments of its 
objects are inside or outside a CSML. 

 
We created three new Coin nodes: 

 SoCSMLFamilies, which sets the appropriate rendering 
style for every context family 

 SoCSMLLens, which holds the convex shape that defines 
the region of our Magic Lens 

 SoCSMLScene, which holds a group of objects and the 
context family they belong to 

In the following we give a more detailed description on these 
nodes based on their scripting interface. 

4.4.1. SoCSMLFamilies 
This node allows the definition of the rendering styles for the 
context families of objects. For example: 

SoCSMLFamilies { 
 Family “alpha” 
 lensName [ “RedPainter”, “BluePainter” ] 
 style [ USE Red, USE Blue ] 
} 

Here, all the pixels of the objects of the family “alpha” will be 
rendered as Red when they are inside the Magic Lens called 
“RedPainter”, whereas all those pixels of the same family that fall 
inside “BluePainter” will be rendered as blue. The style 
definitions referred to by the “USE” keyword are actually 
references to sub graphs of arbitrary complexity, containing any 
form of rendering effect possible in Coin.  

4.4.2. SoCSMLLens 
This node accepts an arbitrary sub graph as a geometric 
description of the Magic Lens. For example: 

SoCSMLLens { 
 Name “RedPainter” 
 Content Sphere { radius 2 } 
} 

Here, a sphere of radius 2 will act as a Magic Lens, the name 
assigned to this lens is “RedPainter”. Notice that the content must 
be convex, but can be of an arbitrary complexity. 

4.4.3. SoCSMLScene 
This node accepts an arbitrary sub graph as content and a string 
that acts as our context information. When scene graph traversal 
happens, this node builds a scene graph on the fly with the 
rendering styles defined for this context family for the pixels that 
lie inside and outside the lens. For example: 

SoCSMLScene { 
 Family “alpha” 
 Content Cube {} 
} 

Here, a single cube is the only part of our CSML Scene and it 
has been assigned as part of the “alpha” family. Notice also, that, 
although here a single shape was assigned as the content, this can 
actually be a more complex sub graph. 

Conceptually, the Magic Lenses affect the rendering style of the 
objects, but in practice, is the objects, inside a CSML Scene, that 
determine which family they belong to, which enables them to 
build the sub graph according to their contextual information. The 
Magic Lenses in the end only define the regions where the 
rendering styles are changed.  

For efficiency issues, we use frame buffer objects for the 
sharing of the texture between the Magic Lens and the group of 
objects with contextual information. To reduce the aliasing 
artifacts we use floating point textures to store the regions of the 
lenses. Other techniques such as super sampling may be employed 
to further reduce the artifacts. Similarly to [15] and [17], our 
Magic Lens must be convex in image space. However, like in 
[15], the lenses can be arbitrarily complex and can be combined to 
form concave assemblies from individual convex shapes.  

The multiple passes required by every CSML Scene are 
achieved by building a sub graph with multiple references to the 
content sub graph to be rendered. In the particular passes where 
specific styles must be applied to pixels falling inside the lens, we 
build the sub graph with the information associated with the 



respective context family. Figure 2 shows how a CSML Scene is 
built during traversal. The parameterization of the sub graphs is 
based on the context sensitivity mechanism outlined in [14]. 
Notice that the sub graph is referenced multiple times independent 
of the number of objects inside it. This sub graph is constructed 
with the sequential traversal of the style sub graph (defined by the 
CSML Families) and the content sub graph (given to the CSML 
Scene). The style sub graph precedes the content sub graph and 
can therefore influence its appearance. In the case that multiple 
Magic Lenses are in the graph, the same content sub graph will be 
rendered with different style sub graphs. In this sense, the style 
sub graph, which is provided separately, can be seen as a style 
parameter to CSML Scene rendering.  

 

 
Figure 2 Overview of how a CSML Scene is built from a 

given content (grey triangle in circle) in the multiple lenses setup. 
For every lens, the content is traversed once, preceeded by the 

corresponding style (triangle) of its context family with the 
appropriate defined style. Every style sub graph (dotted triangle) 

represents the information defined by the context family. 
 
It is important to note that the style parameters are completely 

arbitrary sub graphs, and can incorporate any standard or user 
defined features of Coin. The styles are thus not constrained to 
simple color or transparency changes.  

 

 
Figure 3 An example scene graph that illustrates how the 

context families do not need to be hierarchically grouped and yet 
they are affected by the lens given their context information. 

 
An illustration with a sample scene graph is shown in Figure 3. 

Here we show how the context families do not need to be 
hierarchically grouped, and yet, because of context sensitivity, 
they are correctly affected by the Magic Lens. A 2D conceptual 
view of how context sensitivity can affect objects in a complex 
scene is presented in Figure 4. In this illustration those pixels of 
the objects that fall inside the lens (grey semi transparent square) 
are rendered with a specific style parameter, depending on which 
context family they belong to. The objects in the image are not 
grouped in sub graphs, but they are grouped by context. 

We do not restrict our style parameters to contain only 
appearance modifiers, but they are allowed to contain arbitrary 
information, which may include, for example, transformations. 
However, there is an inherent difference between affecting the 
material properties of an object and, for example, adding 
transformations. While the appearance state is overwritten every 
time new material nodes are placed in the graph, transformations, 
on the other hand, are concatenated (see Figure 5). Therefore, a 
special treatment must be made when two or more lenses intersect 
and the style parameter for at least one of them was set to add a 
transformation. Whenever this happens, the CSML Scene sub 
graph must consider not only objects falling inside a Magic Lens 
region, but also those falling inside the intersection of two or 
more Magic Lenses. We have already presented a solution for this 
problem in Section 4.3 that adds, for every lens intersection, an 
additional branch to our CSML Scene sub graph treating the 
objects differently (see Figure 6). 

These additional branches must compose their style sub graph 
from a grouping of the style sub graphs of the involved lenses in 
the intersection. We detect the intersection of the lenses by 
checking whether a fragment from the CSML Scene falls inside 
more than one of the textures of the Magic Lenses at the same 
time.  

 

 
Figure 4 A conceptual 2D view on how a Context Sensitive 

Magic Lens affects a complex scene. All those fragments 
intersected by the lens are rendered differently, regardless of their 
position in the graph, affecting not only the rendering style but all 

aspects that can be composed as a sub graph. 
 
Transparency always presents issues in interactive applications. 

Several techniques have been studied to overcome this problem 
[6]. While our technique can efficiently make use of, for example, 
alpha blending with one lens in the scene, the behavior turns more 
complex when multiple lenses come into play. This is a result 
from that we do not restrain the position of the lenses in our graph 
and that they can be mixed in the hierarchy of the scene. To solve 
this problem, we require a small modification of the last rendering 
pass, to allow the objects in the scene to check whether they are 
effectively outside every lens area (given by the textures).  

 

 
Figure 5 Example of wrong styling of an object in the 
intersecting area of two Context Sensitive Magic Lenses 

 



 
Figure 6 Example of correct styling in the intersecting area of 

two Context Sensitive Magic Lenses 
 
This technique may decrease the rendering speed only slightly 

because no extra rendering passes are necessary. However, it can 
be deactivated by user request. Also, it must be noted that, when 
this technique is used, the last pass checks the effective outside 
regions of all the lenses, and consequently, the first rendering pass 
becomes redundant and can be deactivated (by the removal of the 
first branch of the sub graph). Since rendering order of the lenses 
is controlled by the user, this gives us the power to control the 
order of the style parameters in an scenario where multiple lenses 
intersect. However, when it comes to transparent content inside a 
lens, an arbitrary lens order forces us to use an order independent 
rendering strategy such as screen door.  

It must be remarked that this transparency issue occurs only 
when multiple lenses are in the scene graph, and therefore, does 
not affect the algorithm for a single lens. 

5 RESULTS AND APPLICATION DIRECTIONS 
We have envisioned a number of applications that can be 
addressed by the use of CSML. Following, some practical 
examples are given. The images shown throughout this article 
where generated on a Windows PC with 3GHz CPU and NVidia 
GeForce 7800GT. As tracking systems, we used ARToolkitPlus** 
and ARTTrack††. The geographical data of downtown Graz was 
extracted from a GE Smallworld database, provided by our 
partner company Grintec GesmbH. Liver and vessel tree models 
where taken from a surgery planning system‡‡. 

We distinguish two cases - applications that can be solved by 
using a single Magic Lens, and applications with special 
requirements which require multiple Magic Lenses. 

5.1.1. Modeling of an X-ray vision tunnel 
An obvious use for Magic Lenses is that of X-Ray vision. At 
UCSB an interaction tool for X-Ray vision was developed by 
Bane and Höllerer [1]. Two approaches were centrally addressed, 
volume and room based. In particular the volume approach could 
be addressed by the use of CSML. The authors describe a tool that 
creates a virtual tunnel in the field of view of the user. The 
rendering style of the objects is then affected if they intersect this 
virtual tunnel. 

This work uses the concept of layers, where objects can belong 
to a “class” which determines whether an object is displayed or 
not. However, it appears that objects are not affected differently 
when they intersect the tunnel tool. In other words, the context 
given to the objects by the use of the layers does not include the 
intersection with the lens. 

We have designed a similar concept of the tunnel tool that 
makes use of CSML. In Figure 7 we present a conceptual diagram 
of how the lens is used. One scenario for this concept is that all 
objects falling inside the lens are made semi-transparent by 
                                                 
** http://studierstube.icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php 
†† http://www.ar-tracking.de/ 
‡‡ http://liverplanner.tu-graz.ac.at 

adding them all to the same context family. However, to truly 
exploit context sensitivity, objects should be affected depending 
on their context family. For example, the outside walls of a 
building that fall inside the lens will be made semi transparent, 
whereas interior objects such as furniture are rendered in a 
standard color (blue), while objects of higher importance such as 
characters are highlighted (red). 

As the camera moves or the X-Ray plane moves, those pixels of 
the objects falling inside the lens are affected accordingly. In 
Figure 8 we show a screenshot example of this concept. 

 

 
Figure 7 A conceptual diagram of how a single Context 
Sensitive Magic Lens can be used to mimic an X-Ray vision 

tunnel. 
 

 
Figure 8 An X-Ray vision tunnel-like technique implemented 

with Context Sensitive Magic Lenses. 

5.1.2. Context Sensitive X-Ray Tool 
Naturally, our X-Ray tool does not have to be attached to the 
viewing frustum and can be instead moved and adjusted 
interactively by the user. On Figure 1 (right) the user holds a 
tracked Magic Lens in front of a liver model prop. By intersecting 
the lens with the liver, the user is able to see the vessel trees inside 
the liver. In particular, the vessel trees are differently colored, in 
red or blue, while the parenchyma of the liver, which falls inside 
the lens, is made transparent.  

 

 
Figure 9 An example of localized visual disambiguation of a 

liver’s vessel trees using Context Sensitive Magic Lenses. 



 
Figure 10 An example of how a Context Sensitive Magic Lens can be used for localized visual disambiguation. On the left most image a 
scaled model of downtown Graz is overlaid with power lines and gas pipes, as can be seen it is an ambiguous representation. On the centre 
image, gas pipes have been colored red in the whole scene. On the right most image, the style rendering change has been localized to be 

inside the lens geometry. This is possible with a context rich scene graph. The blue foam models where created from real geographical data at 
a scale of 1:250. The power and gas data, similarly, comes from the same real dataset. 

 

5.1.3. Localized Visual Disambiguation 
In a dense AR scene, augmentations can often be ambiguous. This 
is the case of Figure 10 (left) where multiple families of objects 
with very different semantics are represented in a similar style. 
Gas and electricity pipes have been rendered on top of the video 
input. Given the geometrical similarity of both types of objects, it 
is impossible to tell them apart. 

In this case, a common technique to disambiguate these objects 
is by changing their color (middle image), or some other type of 
rendering style change. Conventionally, such color-coding is 
applied to the entire scene. CSML offers the opportunity to 
selectively apply the disambiguation. Users can place a lens in a 
specific area (Figure 10 right) where they want to disambiguate 
objects, without affecting the whole of the scene. 

Another example of this application is shown in Figure 9 where 
two types of vessel trees are overlaid on top of a liver model. 
These two vessel types are visually similar, but can be locally 
disambiguated by intersecting them with a Magic Lens and 
changing their rendering style accordingly. 

5.1.4. Cutaway Volumes and Ghosting 
Feiner and Seligman discussed a number of techniques to satisfy 
visibility constrains in dynamic 3D illustrations [7]. Three 
techniques were mainly discussed: object removal, ghosting, and 
cutaway. Of these, the last two can also be modeled by CSML. 

 

  
Figure 11 Examples of ghosts, cutaways and occluding 

objects with Context Sensitive Magic Lenses. On the right a top 
view of the objects and camera position. 

 
In Figure 11 (left) an example of ghosting and cutaway is 

shown. We define four families of objects, non-occludable, 
ghosts, cutaways and occluding. Those objects belonging to the 
family of ghosts will be made semi transparent when falling in the 
line of sight between a non-occludable object and the camera.  

 

 
Figure 12 A lens used with the bounding box of a more 

complex object. 
 
Similarly objects belonging to the family of cutaways will not 

be displayed and occluding objects will be shown without any 
rendering style modification. This can be achieved by 
dynamically creating a lens that is formed from the back faces of 
the non-occludable object and the near plane of the viewing 
frustum. This design is similar to the concept of the X-Ray vision 
tunnel presented before. However, as we mentioned, our lenses 
must be convex, which limits the shape of the non-occludable 
object. This can be solved by splitting the concave shapes into 
multiple convex shapes. However, a simpler solution is to create 
the Magic Lens shape from the back faces of the bounding box of 
the non-occludable object as illustrated in Figure 12, alternatively 
the convex hull of the object can also be used. 

As can be seen, in the cutaway objects the depth information is 
lost, even though the object is in front of the non-occludable 
object (Figure 11 right). As a remedy, Coffin and Höllerer [4] 
proposed the use of Constructive Solid Geometry (CSG) 
operations. We are considering this for future work. 

5.1.5. Information Revealing 
As described by Bier et al., two more possibilities of the use of 
Magic Lenses are to enhance data of interest and to reveal hidden 
information. These two behaviors can simultaneously be achieved 
with CSML.  

For example, in Figure 13 we show a real model overlaid with 
3D representation of buildings, between them, power lines (green) 
and gas pipes (red) are presented (in this case, for illustration 
purposes, we use mock-ups). A lens has been placed in the scene 
intersecting the pipes and the virtual buildings. Those pixels of the 
buildings that fall inside the lens are cutaway, allowing revealing 
the information behind them. In turn, the pipes are enhanced with 
more detailed information on their structure. 

 



 
Figure 13 A Context Sensitive Magic Lens is used to enhance 
the information of some objects (details on pipes structures) and 

to present hidden information (by object cutaway of the buildings). 

5.1.6. Visual Feedback 
Object selection tools are amongst the most used interaction 
techniques in virtual environments. They allow users to 
manipulate objects in the scene. This is usually done regardless of 
their distance to the position of the user. One of the problems with 
selection tools is how to give feedback to users about what objects 
have been selected, or what parts of an object have been selected. 

For example, the aperture selection tool, developed by Forsberg 
in 1996 [8], allowed the user to select a set of objects in the scene 
with a “cone-like” object. Many projects have adopted this 
technique for selection of objects at a certain distance of the user. 
However, visual feedback about the selection is usually done by 
displaying a bounding box around the whole selected object, or by 
rendering the selection tool with a certain transparency. 

This limited precision of the selection feedback can be 
overcome by CSML. By defining the aperture cone as a Magic 
Lens, the exact portion of the object that is selected by the 
aperture can be visually highlighted. This technique can of course 
be combined with the conventional bounding box technique if 
desired. 

5.2. Applications of Multiple Magic Lenses  
For many of the AR applications, the use of only one Magic Lens 
will be sufficient, however, a specific set of applications will 
require the use of multiple lenses. In this section we outline a few 
examples in which by using multiple context sensitive 3D Magic 
Lenses, we are able to apply different rendering styles to a single 
object depending on which lens it intersects. 

5.2.1. Multiple Lenses X-ray tunnel 
An extended implementation of the X-ray tunnel technique [1] 
treats the adjacent areas in the user’s viewing frustum differently. 
A similar assembly is presented in Figure 14 where multiple 
lenses are attached to the viewing frustum. Every CSML Scene 
can now define the specific behavior it will present when 
intersecting each of the three presented lenses. This technique in 
combination with that described by Feiner and Seligmann for 
dynamic illustrations [7] can prove to be a powerful way of 
displaying X-ray vision, as objects intersecting the lenses will 
change their rendering style given their own contextual 
information which can be interpreted as Ghosting or Cutaway. 

 

 
Figure 14 A conceptual diagram on how multiple Context 
Sensitive Magic Lenses can be used to mimic an X-ray vision 

tunnel. 
 

5.2.2. Interactive Disambiguation 
A single context sensitive 3D Magic Lens can be used to aid the 
understanding of a scene, by visualizing different parts in easily 
distinguishable styles. Sometimes, however, the structure of an 
object assembly is so dense and spatially complex, that, to 
understand the three dimensional scenario in detail, an interaction 
with more than one lens will be needed. 

For example, in Figure 15, the user wants to explore the 
location and the geometric relationship of the tumors and of both 
of the two main vessel trees of a liver. To find the tumors, first the 
user searches for them by interactively intersecting the entire 
scene with a lens. This lens renders the tumors in green, while at 
the same time it renders the vessels in transparent Figure 15(A). 
Up to here, this shows how a single lens can be used to search for 
objects in a scene. To furthermore find out about the relationship 
of the tumors and its surrounding vessels, two more lenses are 
added that each affect only one of these vessel trees Figure 
15(B)(C). By moving the lenses through the scene the user can 
interactively visualize parts of the vessel trees Figure 15(D). Such 
an interaction helps in developing a mental map of the 
geometrical relationship between the vessel trees and the tumors, 
which in the end gives a better understanding of the 3D scene. 

6 SUMMARY AND FUTURE WORK 
The idea of CSML came from working with highly complex AR 
scenes such as geo-data models, where global information 
filtering does either too little or too much for the desired effect. 
The heterogeneity of our complex scene graphs precluded the use 
of traditional 3D Lenses, because every special case for every 
object family would have to be hard-coded. As a solution, we 
have introduced context-sensitive behavior for Magic Lenses to 
enhance usability and rapid prototyping of interactive 3D 
environments. 

The use of context sensitivity in a scene graph permits dynamic 
creation of sub graphs during traversal [14]. This mechanism 
shifts the complexity of multiple rendering styles from the 
application code to the scene graph data structure. While this 
makes scene graph design more complex, it can mostly be 
overcome in larger practical applications by automating the 
generation of scene graphs through translators and script 
generators rather than handcrafting the data. 

 



 

 
Figure 15 Example of an exploration of a tumor and its surrounding vessels trees, aided by four different context sensitive 3d magic 

lenses. For a better understanding of the scene, all involved lenses are shown by its silhouette.  
A) shows two tumors and the liver’s hepatic and portal vessel tree, rendered with the same style applied  

B) by intersecting with the first lens, the tumors falling inside the lens’ volume are rendered in green, while both vessel trees turn transparent 
C) intersections of one of the vessel trees with the second lens will be rendered in blue – notice: the tumors are not affected by the second 

lens and therefore still rendered in green  
D) with the aid of a third lens, we are able to render parts of  the liver’s second vessel tree in red  

E) a fourth lens is substituting the second and third lenses 
F) same as (E) but intersecting the entire scene 

 
 

As was shown in Section 5, a wide variety of applications can 
be addressed by CSML. In particular, we are pursuing the idea of 
X-ray vision tool and information revealing. 

By allowing a number of Lenses to intersect, we must also 
define the order of effects applied. As mentioned in Section 4.3 in 
our current implementation the style applied depends on the 
combination of the style sub graphs of all intersecting lenses. 
However, we are currently working on an algorithm to reduce the 
number of rendering passes. Since this is a closely related 
problem, we are, at the same time, developing Boolean 
operations. 

To provide the user with better depth information, Coffin et al. 
[4] suggest the use of CSG operations. However, interactive CSG 
rendering is itself a multi-pass technique and not trivially 
integrated with CSML. We intend to address this as future work. 

Finally, CSML is freely available under GPL as part of the 
Studierstube framework (http://www.studierstube.org). 
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