
Interactive Context-Driven Visualization Tools for Augmented Reality

Erick Mendez*
Graz University of Technology

Institute for Computer Graphics and
Vision, Inffeldgasse 16a

Graz, 8010, Austria

Denis Kalkofen†
Graz University of Technology

Institute for Computer Graphics and
Vision, Inffeldgasse 16a

Graz, 8010, Austria

Dieter Schmalstieg‡
Graz University of Technology

Institute for Computer Graphics and
Vision, Inffeldgasse 16a

Graz, 8010, Austria

Figure 1 Examples of how Context Sensitive Magic Lenses affect objects of a scene differently depending on their context.

On these two images the lenses are shown as semi transparent. On the left image rendering styles are changed or
transformations are added to the objects depending on their contextual information and the intersection with the lens. The right

image shows a lens that renders differently the vessel trees of a liver depending on their type and the lens intersection.

ABSTRACT
In this article we present an interaction tool, based on the Magic
Lenses technique, that allows a 3D scene to be affected
dynamically given contextual information, for example, to support
information filtering. We show how elements of a scene graph are
grouped by context in addition to hierarchically, and, how this
enables us to locally modify their rendering styles. This research
has two major contributions, the use of context sensitivity with 3D
Magic Lenses in a scene graph and the implementation of
multiple volumetric 3D Magic Lenses for Augmented Reality
setups. We have developed our tool for the Studierstube
framework which allows us doing rapid prototyping of Virtual
and Augmented Reality applications. Some application directions
are shown throughout the paper. We compare our work with other
methods, highlight strengths and weaknesses and finally discuss
research directions for our work.

CR Categories

H.5.1 [Multimedia Information Systems]: Artificial, augmented,
and virtual realities; H.5.2 [User Interfaces]: Interaction styles;
I.3.6 [Methodology and Techniques]: Interaction techniques; I.3.7
[Three-Dimensional Graphics and Realism]: Virtual reality.

Keywords

Interaction techniques for MR/AR; Real-time rendering

1 INTRODUCTION
Visualization and interaction tools are important topics in
Augmented Reality (AR) research.*†‡The goal of AR displays is
usually to present abstract or otherwise hidden information linked
to the real world. Frequently, this additional information may
cause a visual overload in the user’s field of view. As a relief,
information filtering techniques have been investigated [10]. The
general idea of information filtering is to modify the appearance
of virtual scene objects based on user-defined context parameters,
typically fading out uninteresting scene objects to reduce display
clutter.

While [10] applies the filtering globally to all scene objects,
Magic Lenses are filters that modify the presentation of scene
objects in a locally bounded area. Magic Lenses can be used to
reveal hidden information, to enhance data of interest, or to
suppress distracting information. They were first introduced as a
user interface tool in 2D [3], and later extended to 3D [17]. While
the effect of a lens is locally bounded, it is applied globally to all
scene objects.

The effect of multiple lenses can be aggregated by overlapping
multiple lenses, but this does not allow applying the effects only
to certain individual scene objects or groups of scene objects. For
example, a composite effect of enlarging all scene objects of type
A by 10% while rendering all scene objects of type B semi-
transparently cannot be composed from a lens that enlarges
everything by 10% and a lens that renders everything semi-
transparently. Moreover, overlapping 3D lenses have, up to now,

* mendez@icg.tu-graz.ac.at
† kalkofen@icg.tu-graz.ac.at
‡ schmalstieg@icg.tu-graz.ac.at

only been shown in screen space, not in object space, which
further limits the types of effects that can be produced.

In this paper, we introduce the notion of 3D context sensitive
Magic Lenses (CSML), which overcome these deficiencies. Every
scene object’s rendering style is defined as a function of an
arbitrary set of user-defined context parameters. These parameters
are contained in a group with other arbitrary information, such as
object type or membership in a certain branch of the scene graph.
We permit multiple overlapping Magic Lenses in both screen and
object space, in both convex and concave arrangements. Position
and extent of the Magic Lenses, the type and arrangement of
objects in the scene graph, and the mapping from context
parameters to rendering style are completely independent,
allowing to mix and match tools from this toolset even at runtime
– the only requirement is that all used components agree on a
common set of context parameter descriptors.

For example, as shown in Figure 1 (left), objects have been
assigned to different context families and their rendering styles
change depending to which family they belong and the
intersection with the lens. Another example is in Figure 1 (right)
where a liver model is presented. Notice that the portions of the
vessel trees that intersect the lens are rendered in either blue or
red depending on whether it is an artery or a vein.

In general terms, the main contribution of context sensitive
Magic Lenses is that they provide powerful information filtering
for arbitrary complex scenes, without most of the limiting
assumptions of previous work in that area. Specifically, these
lenses are completely general in terms of their shape, number, and
effect on the visualization. Our main interest lies on outdoor AR
applications, which draw from a rich database of virtual objects
associated with real world coordinates or entities, and can change
dynamically. Therefore, hard-coded visualization behaviors are
not a satisfactory option. Although designed for AR setups, the
same Magic Lens techniques can be applied to purely virtual
scenes.

2 RELATED WORK

2.1. Information Filtering and Context
Researchers from Columbia University and NRL [10] studied
techniques for information filtering in AR environments. They
based their work on the focus-nimbus technique described by
Benford and Fahlen [2]. One of the motivations for this work is
the overload of information common to AR setups. An example
depicting the possible position of snipers in an urban environment
was used to demonstrate the advantages of this technique. Their
filtering technique is applied on a global scale to the entirety of
the scene and, as far as it can be seen from the article, it cannot be
localized.

2.2. 3D Magic Lenses Rendering
Viega et al. developed flat and volumetric Magic Lenses for 3D
environments [17]. An interesting discussion takes place in the
rendering technique of flat lenses, and how multiple lenses can be
combined. However, overlapping volumetric lenses are not
discussed.

An elegant algorithm for the rendering of 3D Magic Lenses was
presented by Ropinski and Hinrichs [15]. This technique uses
multi-pass rendering to achieve the effect of a Magic Lens. This
algorithm requires a dual depth buffer, which is not available in
today’s hardware. Everitt [6] proposed using the shadow buffer as
a solution. In contrast, we use a variant of the algorithm in [15]
implemented using Cg fragment shaders.

2.3. Magic Lenses as Interaction Tools
Looser et al. [12] presented an interesting work that mixed the use
of lenses and semantic information. The interaction techniques
discussed in their paper are magnification, object selection and
information filtering. The notion of “semantic zooming” is
interesting, but very little information is provided on how the
objects are enriched with this semantic information. It seems that
the used lens will only determine the area where the object can be
rendered, but not its rendering style.

Methods for decoupling rendering styles from cutaway objects
were researched by Diepstraten et al. [5]. Particularly interesting
in this work are the drawing styles, such as sawtooth-shaped
cutaway geometries, and the fact that basic semantic information
is given to the objects (classified as inside and outside). Cutaway
geometries are coupled with the objects to be cut, which limits the
objects to be convex.

Wang et al. [18] from Stony Brook University described a
framework for volumetric lenses, mostly focusing in volumetric
data. This tool allowed them to apply a number of free-style
lenses, which, conveniently emphasized specifics parts of the
visualized data without loosing the overall context. It must be
noted that this work uses context as the overall visual relationship
of the displayed data with its surroundings. Arbitrary subsets of
data in the same set (such as bones or tissue in an MRI scan)
cannot be treated differently.

2.4. X-Ray Vision
A number of articles have studied the rules of correctly displaying
X-Ray vision, many of them dealing with techniques to properly
provide depth information [9], [10]. Some developments, like the
present, have focused on interactive tools for displaying X-Ray
vision. In 2004 work was carried out at UCSB for the interactive
display of X-Ray vision [1]. A number of interesting techniques
were presented, some of which we considered during the
development of our current work.

Later, the same group at UCSB presented some encouraging
research for cutaway views, and how to give better depth
information to the user [4]. These cutaway views have been used
in 3D environments before by [5], and [7], this last research also
studied other kinds of techniques for presenting occluded
information such as ghosting or object removal. Many of these
techniques can also be achieved by the work presented in this
paper, and in Section 5 we will show some application examples.

3 BACKGROUND: CONTEXT SENSITIVE SCENE GRAPH
Context-sensitive traversal of scene graphs was introduced in a
previous publication by our group [14]. The Magic Lens
techniques presented in this paper builds on this work, so its
important points are summarized here for convenience.

A set of context parameters is maintained throughout the
traversal of a scene graph. This allows parameterizing and
repurposing sub graphs in various ways. The context parameters
are maintained as part of the state of the scene graph traversal,
which makes them independent of the scene graph structure. The
context parameters are modeled as an associative array of key-
value pairs, where the values are either strings or pointers to sub
graphs.

By using pointers as parameters, such template sub graphs can
be inserted multiple times during the traversal. In contrast to a
conventional directed acyclic graph structure, the binding of child
nodes to their parents happens very late, during the traversal itself,
so the nodes can be changed for each traversal and provide a very
flexible way of assembling complex scene graphs. Transparent

caching of the traversal outcome in display lists ensures that
rendering performance is not adversely affected.

The context sensitive scene graph traversal shifts the
complexity of managing multiple representations from the
application code to the scene graph itself. Rather than writing
application code to modify the scene graph or change rendering
parameters based on user interaction, the application only needs to
change the context parameters for high level control of the visual
effects.

The scene graph will adapt the visual appearance of its
contained objects to dynamically changing requirements, and,
even compose sub graphs on the fly. A particular visual
representation is simply an instance of a template sub graph
combined with a specific choice of context parameters.
Combinations of content and visual interpretation are created
during traversal only, which is the actual moment in time they are
required.

By combining the context sensitive traversal with the multi-
pass rendering technique described in [15], Magic Lenses can be
used to define context parameters which are used to influence the
appearance of objects on a pixel by pixel basis.

4 ALGORITHM AND IMPLEMENTATION
The CSML tools described in this paper were implemented as an
extension to the Studierstube [16] framework, which uses Coin§, a
re-implementation of Open Inventor [19].

As was mentioned in Section 2.2 we use a modified version of
the algorithm by Ropinski. This algorithm, however, was targeted
to only one Magic Lens. Therefore, we had to further extend it to
allow multiple intersecting lenses. Although we have designed an
algorithm for multiple Magic lenses, given the power that a
context sensitive scene-graph brings, many of the applications can
be solved by the use of only one Magic Lens. Therefore, we have
split our algorithm into two forms, one that deals with a single
Magic Lens and one that accepts multiple lenses. Our current
implementation adapts automatically between the two algorithms
depending on the number of lenses encountered in the graph.

4.1. Background: Ropinski’s Algorithm
Ropinski’s algorithm [15] consists of three rendering passes:

 First, it renders only fragments behind and next to the lens
 Second, it renders only fragments inside the lens
 Third, it renders only fragments in front and next to the

lens

These steps mean that every object that wants to be affected by

the lens needs to be rendered three times. Passes 1 and 2 require
two depth tests for distinguishing the fragments falling behind and
inside the lens, respectively. In the second pass the style changes
are applied.

4.2. Algorithm Single Magic Lens
Instead of using a shadow or stencil buffer, we rely on Cg
fragment programs [13] combined with floating point textures to
overcome the lack of two depth tests. This means that the Magic
Lens will have one texture associated that stores its depth
information. In subsequent rendering passes this texture will be
used by all other objects to determine if they fall inside the lens or
not. A more formal description of the algorithm follows.

§ http://www.coin3D.org

Let T be the texture that will hold the depth information of the
Magic Lens L. We denote C as a string representing our context
information and O as a group of 3D objects. Then let Sj={O,C}
the jth group composed of a set of objects and their context
information, where j={0..m}.

When L is encountered in the graph:

 First, we render it such that the depth values of its back
faces are stored in the red channel of T

 Next, we render it such that the depth values of its front
faces are stored in the green channel of T

Then, for every Sj encountered in the graph:

 The first pass uses the depth information stored in T to
render only those fragments lying behind and next to L

 The second pass uses the depth information stored in T to
render only those fragments lying inside L

 The third pass uses the depth information stored in T to
render only those fragments lying in front and next to L

4.3. Algorithm Multiple Magic Lenses
In this extended algorithm, one texture is used per lens to store its
depth information. In subsequent rendering passes, these textures
are used by all other objects to determine if they fall inside a lens
or not. A more formal description of the algorithm follows.

Let Ti be the texture that will hold the depth information of the
Magic Lens Li, and let D be a common texture that will hold the
back depth values of all Li, where i={1..n}. We denote C as a
string representing our context information and O as a group of
3D objects. Then let Sj={O,C} the jth group composed of a set of
objects and their context information, where j={0..m}.

For every Li encountered in the graph:

 First, we render it such that the depth values of its back
faces are stored in the red channel of Ti

 Next, we render it such that the depth values of its front
faces are stored in the green channel of Ti

 Then we render it such that the depth values of its back
faces are stored in the common texture D such that farthest
back faces are kept and all others are ignored

Then, for every Sj encountered in the graph:

 The first pass uses the depth information stored in the
common texture D to render only those fragments lying
behind and next to all Li

 The following n passes use the depth information stored in
every Ti to render only those fragments lying inside Li

 The last pass renders the entire object relying only in the
traditional depth test

It must be noted that these algorithms do not consider any

contextual information attached to the objects. This is because
contextual information is added as a part of a sub graph of the
scene during traversal, as will be explained in the following
section. A special situation occurs when we define a behavior for
intersecting lenses, for this we need to check all the possible
intersections of the lenses, and add those as extra rendering
passes. Additionally, we must also check that every object renders
inside a lens only, without rendering on intersecting regions. For
this mechanism the last part of our algorithm for object rendering
is modified as follows.

For every Sj encountered in the graph:

 The first pass uses the depth information stored in the
common texture D to render only those fragments lying
behind and next to all Li

 The following n passes use the depth information stored in
every Ti to render only those fragments lying inside Li
ignoring lenses intersections

 The following 1
1

2

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
−

=

n

k k
n

 passes use the depth

information in every Ti to render only those fragments
lying on every possible lens intersection. Here, k is the
number of possible lenses involved in an intersection, and
n is the number of lenses in the graph

 The last pass renders the entire object relying only on the
traditional depth test.

This solution creates a high number of rendering passes, in

particular if no information about which lenses should be
combined is available. However, in most practical cases, the
expected combination of lenses will be known. Our current
implementation handles multiple lenses, but the default case is
that the effect of intersections depends on the order of the lenses
in the scene graph (the first lens is dominant, see Figure 5). The
implementation allows handling specific intersection cases
correctly if the user desires it (see Figure 6), but the increased
number of rendering passes slows down the rendering. We plan an
optimized fully generation intersection method as future work.

4.4. Implementation
We provide the details of the implementation considering

multiple Magic Lenses, however, as mentioned before, if only one
Magic Lens is encountered in the graph, the algorithm falls back
to the design that considers only one lens. Our implementation
builds on Coin, an object-oriented scene-graph, which can be
easily extended by adding new node classes. Magic Lens and
objects enriched with context information are thus an extension to
Coin which naturally blends in to Coin’s runtime object
management system. In particular, Coin’s built-in scripting
language (the precursor to VRML) automatically supports user-
defined nodes and allows convenient prototyping.

A context family of objects is defined by all those objects that
have the same context information. However, these objects do not
have to belong to the same part of the scene graph hierarchy, i.e.,
they can be scattered throughout the scene-graph and still be
jointly affected by a CSML according to the context family they
belong to. Every context family has a unique name and defines a
specific rendering style that will be used when fragments of its
objects are inside or outside a CSML.

We created three new Coin nodes:

 SoCSMLFamilies, which sets the appropriate rendering
style for every context family

 SoCSMLLens, which holds the convex shape that defines
the region of our Magic Lens

 SoCSMLScene, which holds a group of objects and the
context family they belong to

In the following we give a more detailed description on these
nodes based on their scripting interface.

4.4.1. SoCSMLFamilies
This node allows the definition of the rendering styles for the
context families of objects. For example:

SoCSMLFamilies {
 Family “alpha”
 lensName [“RedPainter”, “BluePainter”]
 style [USE Red, USE Blue]
}

Here, all the pixels of the objects of the family “alpha” will be
rendered as Red when they are inside the Magic Lens called
“RedPainter”, whereas all those pixels of the same family that fall
inside “BluePainter” will be rendered as blue. The style
definitions referred to by the “USE” keyword are actually
references to sub graphs of arbitrary complexity, containing any
form of rendering effect possible in Coin.

4.4.2. SoCSMLLens
This node accepts an arbitrary sub graph as a geometric
description of the Magic Lens. For example:

SoCSMLLens {
 Name “RedPainter”
 Content Sphere { radius 2 }
}

Here, a sphere of radius 2 will act as a Magic Lens, the name
assigned to this lens is “RedPainter”. Notice that the content must
be convex, but can be of an arbitrary complexity.

4.4.3. SoCSMLScene
This node accepts an arbitrary sub graph as content and a string
that acts as our context information. When scene graph traversal
happens, this node builds a scene graph on the fly with the
rendering styles defined for this context family for the pixels that
lie inside and outside the lens. For example:

SoCSMLScene {
 Family “alpha”
 Content Cube {}
}

Here, a single cube is the only part of our CSML Scene and it
has been assigned as part of the “alpha” family. Notice also, that,
although here a single shape was assigned as the content, this can
actually be a more complex sub graph.

Conceptually, the Magic Lenses affect the rendering style of the
objects, but in practice, is the objects, inside a CSML Scene, that
determine which family they belong to, which enables them to
build the sub graph according to their contextual information. The
Magic Lenses in the end only define the regions where the
rendering styles are changed.

For efficiency issues, we use frame buffer objects for the
sharing of the texture between the Magic Lens and the group of
objects with contextual information. To reduce the aliasing
artifacts we use floating point textures to store the regions of the
lenses. Other techniques such as super sampling may be employed
to further reduce the artifacts. Similarly to [15] and [17], our
Magic Lens must be convex in image space. However, like in
[15], the lenses can be arbitrarily complex and can be combined to
form concave assemblies from individual convex shapes.

The multiple passes required by every CSML Scene are
achieved by building a sub graph with multiple references to the
content sub graph to be rendered. In the particular passes where
specific styles must be applied to pixels falling inside the lens, we
build the sub graph with the information associated with the

respective context family. Figure 2 shows how a CSML Scene is
built during traversal. The parameterization of the sub graphs is
based on the context sensitivity mechanism outlined in [14].
Notice that the sub graph is referenced multiple times independent
of the number of objects inside it. This sub graph is constructed
with the sequential traversal of the style sub graph (defined by the
CSML Families) and the content sub graph (given to the CSML
Scene). The style sub graph precedes the content sub graph and
can therefore influence its appearance. In the case that multiple
Magic Lenses are in the graph, the same content sub graph will be
rendered with different style sub graphs. In this sense, the style
sub graph, which is provided separately, can be seen as a style
parameter to CSML Scene rendering.

Figure 2 Overview of how a CSML Scene is built from a

given content (grey triangle in circle) in the multiple lenses setup.
For every lens, the content is traversed once, preceeded by the

corresponding style (triangle) of its context family with the
appropriate defined style. Every style sub graph (dotted triangle)

represents the information defined by the context family.

It is important to note that the style parameters are completely

arbitrary sub graphs, and can incorporate any standard or user
defined features of Coin. The styles are thus not constrained to
simple color or transparency changes.

Figure 3 An example scene graph that illustrates how the

context families do not need to be hierarchically grouped and yet
they are affected by the lens given their context information.

An illustration with a sample scene graph is shown in Figure 3.

Here we show how the context families do not need to be
hierarchically grouped, and yet, because of context sensitivity,
they are correctly affected by the Magic Lens. A 2D conceptual
view of how context sensitivity can affect objects in a complex
scene is presented in Figure 4. In this illustration those pixels of
the objects that fall inside the lens (grey semi transparent square)
are rendered with a specific style parameter, depending on which
context family they belong to. The objects in the image are not
grouped in sub graphs, but they are grouped by context.

We do not restrict our style parameters to contain only
appearance modifiers, but they are allowed to contain arbitrary
information, which may include, for example, transformations.
However, there is an inherent difference between affecting the
material properties of an object and, for example, adding
transformations. While the appearance state is overwritten every
time new material nodes are placed in the graph, transformations,
on the other hand, are concatenated (see Figure 5). Therefore, a
special treatment must be made when two or more lenses intersect
and the style parameter for at least one of them was set to add a
transformation. Whenever this happens, the CSML Scene sub
graph must consider not only objects falling inside a Magic Lens
region, but also those falling inside the intersection of two or
more Magic Lenses. We have already presented a solution for this
problem in Section 4.3 that adds, for every lens intersection, an
additional branch to our CSML Scene sub graph treating the
objects differently (see Figure 6).

These additional branches must compose their style sub graph
from a grouping of the style sub graphs of the involved lenses in
the intersection. We detect the intersection of the lenses by
checking whether a fragment from the CSML Scene falls inside
more than one of the textures of the Magic Lenses at the same
time.

Figure 4 A conceptual 2D view on how a Context Sensitive

Magic Lens affects a complex scene. All those fragments
intersected by the lens are rendered differently, regardless of their
position in the graph, affecting not only the rendering style but all

aspects that can be composed as a sub graph.

Transparency always presents issues in interactive applications.

Several techniques have been studied to overcome this problem
[6]. While our technique can efficiently make use of, for example,
alpha blending with one lens in the scene, the behavior turns more
complex when multiple lenses come into play. This is a result
from that we do not restrain the position of the lenses in our graph
and that they can be mixed in the hierarchy of the scene. To solve
this problem, we require a small modification of the last rendering
pass, to allow the objects in the scene to check whether they are
effectively outside every lens area (given by the textures).

Figure 5 Example of wrong styling of an object in the
intersecting area of two Context Sensitive Magic Lenses

Figure 6 Example of correct styling in the intersecting area of

two Context Sensitive Magic Lenses

This technique may decrease the rendering speed only slightly

because no extra rendering passes are necessary. However, it can
be deactivated by user request. Also, it must be noted that, when
this technique is used, the last pass checks the effective outside
regions of all the lenses, and consequently, the first rendering pass
becomes redundant and can be deactivated (by the removal of the
first branch of the sub graph). Since rendering order of the lenses
is controlled by the user, this gives us the power to control the
order of the style parameters in an scenario where multiple lenses
intersect. However, when it comes to transparent content inside a
lens, an arbitrary lens order forces us to use an order independent
rendering strategy such as screen door.

It must be remarked that this transparency issue occurs only
when multiple lenses are in the scene graph, and therefore, does
not affect the algorithm for a single lens.

5 RESULTS AND APPLICATION DIRECTIONS
We have envisioned a number of applications that can be
addressed by the use of CSML. Following, some practical
examples are given. The images shown throughout this article
where generated on a Windows PC with 3GHz CPU and NVidia
GeForce 7800GT. As tracking systems, we used ARToolkitPlus**
and ARTTrack††. The geographical data of downtown Graz was
extracted from a GE Smallworld database, provided by our
partner company Grintec GesmbH. Liver and vessel tree models
where taken from a surgery planning system‡‡.

We distinguish two cases - applications that can be solved by
using a single Magic Lens, and applications with special
requirements which require multiple Magic Lenses.

5.1.1. Modeling of an X-ray vision tunnel
An obvious use for Magic Lenses is that of X-Ray vision. At
UCSB an interaction tool for X-Ray vision was developed by
Bane and Höllerer [1]. Two approaches were centrally addressed,
volume and room based. In particular the volume approach could
be addressed by the use of CSML. The authors describe a tool that
creates a virtual tunnel in the field of view of the user. The
rendering style of the objects is then affected if they intersect this
virtual tunnel.

This work uses the concept of layers, where objects can belong
to a “class” which determines whether an object is displayed or
not. However, it appears that objects are not affected differently
when they intersect the tunnel tool. In other words, the context
given to the objects by the use of the layers does not include the
intersection with the lens.

We have designed a similar concept of the tunnel tool that
makes use of CSML. In Figure 7 we present a conceptual diagram
of how the lens is used. One scenario for this concept is that all
objects falling inside the lens are made semi-transparent by

** http://studierstube.icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php
†† http://www.ar-tracking.de/
‡‡ http://liverplanner.tu-graz.ac.at

adding them all to the same context family. However, to truly
exploit context sensitivity, objects should be affected depending
on their context family. For example, the outside walls of a
building that fall inside the lens will be made semi transparent,
whereas interior objects such as furniture are rendered in a
standard color (blue), while objects of higher importance such as
characters are highlighted (red).

As the camera moves or the X-Ray plane moves, those pixels of
the objects falling inside the lens are affected accordingly. In
Figure 8 we show a screenshot example of this concept.

Figure 7 A conceptual diagram of how a single Context
Sensitive Magic Lens can be used to mimic an X-Ray vision

tunnel.

Figure 8 An X-Ray vision tunnel-like technique implemented

with Context Sensitive Magic Lenses.

5.1.2. Context Sensitive X-Ray Tool
Naturally, our X-Ray tool does not have to be attached to the
viewing frustum and can be instead moved and adjusted
interactively by the user. On Figure 1 (right) the user holds a
tracked Magic Lens in front of a liver model prop. By intersecting
the lens with the liver, the user is able to see the vessel trees inside
the liver. In particular, the vessel trees are differently colored, in
red or blue, while the parenchyma of the liver, which falls inside
the lens, is made transparent.

Figure 9 An example of localized visual disambiguation of a

liver’s vessel trees using Context Sensitive Magic Lenses.

Figure 10 An example of how a Context Sensitive Magic Lens can be used for localized visual disambiguation. On the left most image a
scaled model of downtown Graz is overlaid with power lines and gas pipes, as can be seen it is an ambiguous representation. On the centre
image, gas pipes have been colored red in the whole scene. On the right most image, the style rendering change has been localized to be

inside the lens geometry. This is possible with a context rich scene graph. The blue foam models where created from real geographical data at
a scale of 1:250. The power and gas data, similarly, comes from the same real dataset.

5.1.3. Localized Visual Disambiguation
In a dense AR scene, augmentations can often be ambiguous. This
is the case of Figure 10 (left) where multiple families of objects
with very different semantics are represented in a similar style.
Gas and electricity pipes have been rendered on top of the video
input. Given the geometrical similarity of both types of objects, it
is impossible to tell them apart.

In this case, a common technique to disambiguate these objects
is by changing their color (middle image), or some other type of
rendering style change. Conventionally, such color-coding is
applied to the entire scene. CSML offers the opportunity to
selectively apply the disambiguation. Users can place a lens in a
specific area (Figure 10 right) where they want to disambiguate
objects, without affecting the whole of the scene.

Another example of this application is shown in Figure 9 where
two types of vessel trees are overlaid on top of a liver model.
These two vessel types are visually similar, but can be locally
disambiguated by intersecting them with a Magic Lens and
changing their rendering style accordingly.

5.1.4. Cutaway Volumes and Ghosting
Feiner and Seligman discussed a number of techniques to satisfy
visibility constrains in dynamic 3D illustrations [7]. Three
techniques were mainly discussed: object removal, ghosting, and
cutaway. Of these, the last two can also be modeled by CSML.

Figure 11 Examples of ghosts, cutaways and occluding

objects with Context Sensitive Magic Lenses. On the right a top
view of the objects and camera position.

In Figure 11 (left) an example of ghosting and cutaway is

shown. We define four families of objects, non-occludable,
ghosts, cutaways and occluding. Those objects belonging to the
family of ghosts will be made semi transparent when falling in the
line of sight between a non-occludable object and the camera.

Figure 12 A lens used with the bounding box of a more

complex object.

Similarly objects belonging to the family of cutaways will not

be displayed and occluding objects will be shown without any
rendering style modification. This can be achieved by
dynamically creating a lens that is formed from the back faces of
the non-occludable object and the near plane of the viewing
frustum. This design is similar to the concept of the X-Ray vision
tunnel presented before. However, as we mentioned, our lenses
must be convex, which limits the shape of the non-occludable
object. This can be solved by splitting the concave shapes into
multiple convex shapes. However, a simpler solution is to create
the Magic Lens shape from the back faces of the bounding box of
the non-occludable object as illustrated in Figure 12, alternatively
the convex hull of the object can also be used.

As can be seen, in the cutaway objects the depth information is
lost, even though the object is in front of the non-occludable
object (Figure 11 right). As a remedy, Coffin and Höllerer [4]
proposed the use of Constructive Solid Geometry (CSG)
operations. We are considering this for future work.

5.1.5. Information Revealing
As described by Bier et al., two more possibilities of the use of
Magic Lenses are to enhance data of interest and to reveal hidden
information. These two behaviors can simultaneously be achieved
with CSML.

For example, in Figure 13 we show a real model overlaid with
3D representation of buildings, between them, power lines (green)
and gas pipes (red) are presented (in this case, for illustration
purposes, we use mock-ups). A lens has been placed in the scene
intersecting the pipes and the virtual buildings. Those pixels of the
buildings that fall inside the lens are cutaway, allowing revealing
the information behind them. In turn, the pipes are enhanced with
more detailed information on their structure.

Figure 13 A Context Sensitive Magic Lens is used to enhance
the information of some objects (details on pipes structures) and

to present hidden information (by object cutaway of the buildings).

5.1.6. Visual Feedback
Object selection tools are amongst the most used interaction
techniques in virtual environments. They allow users to
manipulate objects in the scene. This is usually done regardless of
their distance to the position of the user. One of the problems with
selection tools is how to give feedback to users about what objects
have been selected, or what parts of an object have been selected.

For example, the aperture selection tool, developed by Forsberg
in 1996 [8], allowed the user to select a set of objects in the scene
with a “cone-like” object. Many projects have adopted this
technique for selection of objects at a certain distance of the user.
However, visual feedback about the selection is usually done by
displaying a bounding box around the whole selected object, or by
rendering the selection tool with a certain transparency.

This limited precision of the selection feedback can be
overcome by CSML. By defining the aperture cone as a Magic
Lens, the exact portion of the object that is selected by the
aperture can be visually highlighted. This technique can of course
be combined with the conventional bounding box technique if
desired.

5.2. Applications of Multiple Magic Lenses
For many of the AR applications, the use of only one Magic Lens
will be sufficient, however, a specific set of applications will
require the use of multiple lenses. In this section we outline a few
examples in which by using multiple context sensitive 3D Magic
Lenses, we are able to apply different rendering styles to a single
object depending on which lens it intersects.

5.2.1. Multiple Lenses X-ray tunnel
An extended implementation of the X-ray tunnel technique [1]
treats the adjacent areas in the user’s viewing frustum differently.
A similar assembly is presented in Figure 14 where multiple
lenses are attached to the viewing frustum. Every CSML Scene
can now define the specific behavior it will present when
intersecting each of the three presented lenses. This technique in
combination with that described by Feiner and Seligmann for
dynamic illustrations [7] can prove to be a powerful way of
displaying X-ray vision, as objects intersecting the lenses will
change their rendering style given their own contextual
information which can be interpreted as Ghosting or Cutaway.

Figure 14 A conceptual diagram on how multiple Context
Sensitive Magic Lenses can be used to mimic an X-ray vision

tunnel.

5.2.2. Interactive Disambiguation
A single context sensitive 3D Magic Lens can be used to aid the
understanding of a scene, by visualizing different parts in easily
distinguishable styles. Sometimes, however, the structure of an
object assembly is so dense and spatially complex, that, to
understand the three dimensional scenario in detail, an interaction
with more than one lens will be needed.

For example, in Figure 15, the user wants to explore the
location and the geometric relationship of the tumors and of both
of the two main vessel trees of a liver. To find the tumors, first the
user searches for them by interactively intersecting the entire
scene with a lens. This lens renders the tumors in green, while at
the same time it renders the vessels in transparent Figure 15(A).
Up to here, this shows how a single lens can be used to search for
objects in a scene. To furthermore find out about the relationship
of the tumors and its surrounding vessels, two more lenses are
added that each affect only one of these vessel trees Figure
15(B)(C). By moving the lenses through the scene the user can
interactively visualize parts of the vessel trees Figure 15(D). Such
an interaction helps in developing a mental map of the
geometrical relationship between the vessel trees and the tumors,
which in the end gives a better understanding of the 3D scene.

6 SUMMARY AND FUTURE WORK
The idea of CSML came from working with highly complex AR
scenes such as geo-data models, where global information
filtering does either too little or too much for the desired effect.
The heterogeneity of our complex scene graphs precluded the use
of traditional 3D Lenses, because every special case for every
object family would have to be hard-coded. As a solution, we
have introduced context-sensitive behavior for Magic Lenses to
enhance usability and rapid prototyping of interactive 3D
environments.

The use of context sensitivity in a scene graph permits dynamic
creation of sub graphs during traversal [14]. This mechanism
shifts the complexity of multiple rendering styles from the
application code to the scene graph data structure. While this
makes scene graph design more complex, it can mostly be
overcome in larger practical applications by automating the
generation of scene graphs through translators and script
generators rather than handcrafting the data.

Figure 15 Example of an exploration of a tumor and its surrounding vessels trees, aided by four different context sensitive 3d magic

lenses. For a better understanding of the scene, all involved lenses are shown by its silhouette.
A) shows two tumors and the liver’s hepatic and portal vessel tree, rendered with the same style applied

B) by intersecting with the first lens, the tumors falling inside the lens’ volume are rendered in green, while both vessel trees turn transparent
C) intersections of one of the vessel trees with the second lens will be rendered in blue – notice: the tumors are not affected by the second

lens and therefore still rendered in green
D) with the aid of a third lens, we are able to render parts of the liver’s second vessel tree in red

E) a fourth lens is substituting the second and third lenses
F) same as (E) but intersecting the entire scene

As was shown in Section 5, a wide variety of applications can
be addressed by CSML. In particular, we are pursuing the idea of
X-ray vision tool and information revealing.

By allowing a number of Lenses to intersect, we must also
define the order of effects applied. As mentioned in Section 4.3 in
our current implementation the style applied depends on the
combination of the style sub graphs of all intersecting lenses.
However, we are currently working on an algorithm to reduce the
number of rendering passes. Since this is a closely related
problem, we are, at the same time, developing Boolean
operations.

To provide the user with better depth information, Coffin et al.
[4] suggest the use of CSG operations. However, interactive CSG
rendering is itself a multi-pass technique and not trivially
integrated with CSML. We intend to address this as future work.

Finally, CSML is freely available under GPL as part of the
Studierstube framework (http://www.studierstube.org).

ACKNOWLEDGEMENTS
Our thanks go to Grintec GesmbH for providing data for the
localized visual disambiguation example. We thank also
Alexander Bornik and Thomas Pock for the segmentation data of
the liver and its vessel trees and to Markus Grabner for the
invaluable help with CG programming. This research was funded

in part by FWF (Y193), FFG (BRIDGE 811000) and the
European Union (European Union MRTN-CT-2004-512400).

REFERENCES
[1] Bane Ryan and Höllerer Tobias, “Interactive tools for virtual x-ray
vision in mobile augmented reality,” In proceedings International
Symposium on Mixed and Augmented Reality, 2004, pp. 231-239
[2] Benford S. and Fahlen L. E., “A Spatial Model of Interaction in
Large Virtual Environments,” In Proceedings of the Third European
Conference on CSCW, 1993, pp. 107
[3] Bier Eric, Stone Maureen, Pier Ken, Buxton William, DeRose Tony,
“Toolglass and Magic Lenses: the see-through interface,” In proceedings
SIGGRAPH 1993, pp. 73-80
[4] Coffin Chris and Höllerer Tobias, “Interactive Perspective Cut-away
Views for General 3D Scenes” In Proceedings of 3DUI 2006: The First
IEEE Symposium on 3D User Interfaces. Technote, Alexandria, VA, Mar
25–26, 2006
[5] Diepstraten J., Weiskopf D., and Ertl T., “Interactive cutaway
illustrations,” In Procceedings of Eurographics, 2003, pp. 523-532
[6] Everitt Cass, “Interactive order-independent transparency,”
Technical report, NVIDIA Corporation, May 2001
[7] Feiner Steven, Seligmann Dorée, “Cutaways and ghosting: satisfying
visibility constraints in dynamic 3D illustrations,” The Visual Computer
8(5&6) , 1992, pp. 292-302
[8] Forsberg Andrew, Herndon Kenneth, Zeleznik Robert, “Aperture
Based Selection for Immersive Virtual Environments,” In proceedings
ACM Symposium on User Interface Software and Technology 1996, pp.
95-96

[9] Fuhrmann A., Hesina G., Faure F., Gervautz M., “Occlusion in
collaborative augmented environments,” Computers & Graphics 23, 1999,
pp. 809-819
[10] Furmanski C., Azuma R., Daily M., “Augmented-Reality
Visualizations Guided by Cognition: Perceptual Heuristics for Combining
Visible and Obscured Information,” International Symposium on Mixed
and Augmented Reality, 2002, pp. 215-224
[11] Höllerer T., Feiner S., Hallaway D., Bell B., Lanzagorta M., Brown
D., Julier S., Baillot Y., Rosenblum L., “User Interface Management
Techniques for Collaborative Mobile Augmented Reality,” In Computers
and Graphics 25, 2001, pp. 799-810
[12] Looser J., Billinghurst M., Cockburn A., “Through the looking glass:
the use of lenses as an interface tool for Augmented Reality interfaces,” In
Proceedings of the 2nd international conference on Computer graphics and
interactive techniques in Australasia and SouthEast Asia (Graphite 2004).
15-18th June, Singapore, 2004, ACM Press, New York, New York, pp.
204-211
[13] W. Mark, R. S. Glanville, K. Akeley, M. Kilgard. Cg: A system for
programming graphics hardware in a C-like language. Proceedings
SIGGRAPH 1993.

[14] Reitmayr Gerhard, Schmalstieg Dieter, "Flexible Parameterization of
Scene Graphs," In proceedings IEEE Virtual Reality Conference 2005
(VR'05), 2005, pp. 51-58
[15] Ropinski Timo and Hinrichs Klaus, “Real-Time Rendering of 3D
Magic Lenses having arbitrary convex Shapes,” In proceedings
International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision, 2004, pp. 379-386
[16] Schmalstieg, D., Fuhrmann, A., Hesina, G., Szalavari, Z.,
Encarnação, L. M., Gervautz, M., and Purgathofer, W. (2002). The
Studierstube Augmented Reality Project. PRESENCE - Teleoperators and
Virtual Environments, 11(1).
[17] Viega John, Conway Matthew, Williams George, Pausch Randy,
“3D Magic Lenses,” In proceedings ACM Symposium on User Interface
Software and Technology, 1996, pp. 51-58
[18] Wang L., Zhao Y., Mueller K., Kaufman A., “The Magic Volume
Lens: An Interactive Focus+Context Technique for Volume Rendering,”,
In IEEE Visualization, 2005
[19] Strauss, P. and Carey, R. (1992). An object oriented 3D graphics
toolkit. In Proc. SIGGRAPH'92.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

