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Abstract

Tracking is an indispensable part of any virtual reality and aug-
mented reality application. While the need for quality of tracking, in
particular for high performance and fidelity, has led to a large body
of past and current research, little attention is typically paid to soft-
ware engineering aspects of tracking software. To address this issue we
describe a software design and implementation that applies the pipes-
and-filter architectural pattern to provide a customizable and flexible
way of dealing with tracking data and configurations. The contribu-
tion of this work cumulates in the development of a generic data flow
network library called OpenTracker to deal specifically with tracking
data. The flexibility of the data flow network approach is demon-
strated in a set of development scenarios and prototype applications
in the area of mobile augmented reality.

1 Introduction

Tracking is an indispensable part of any virtual reality (VR) or augmented
reality (AR) application. Processing of tracking data requires operating of
devices, reading specialized network protocols, performing calculations to
fuse data from different sources and interpret it to provide multi modal in-
teraction.
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As the development of interactive applications moves beyond building
a single demonstration setup, a number of requirements appear. Different
tracking devices need to be supported because an application setup will be
updated with new devices or installed at different sites. Complex setups re-
quire more than one host computer and therefore distribute the processing of
tracking data between different software components. Experimental tracking
configurations and combinations of hardware require frequent changes to the
tracking software.

A focus of multi modal interaction in VR and AR systems is the combi-
nation of multiple tracking systems to provide novel interaction techniques
or extend the functionality of a single system. Such approaches require ap-
propriate sensor fusion of multiple systems and a flexible integration of these
systems into the application. Current software offloads these tasks to the ap-
plication instead of encapsulating them within the actual configuration used
in a setup.

Some current systems have a modular approach that allows to substitute
one type of tracking device for another. Typically, commercial VR prod-
ucts take this approach offering turn-key support for many popular tracking
and input devices, but at the cost of a limited amount of extensibility and
configuration options. In particular, they make it hard to combine existing
features in novel ways.

In contrast, research systems may offer features not found in commer-
cial systems, such as prediction or sensor fusion, but are usually limited to
their particular research domain and not intended for the end user. In such
systems, replacing a piece of hardware or changing its configuration usually
leads to rewriting a significant portion of the tracker software.

In the middle(-ware), there is a lack of tools that allow for a high degree
of customization, yet are easy to use and to extend. What is needed is
a system that allows mixing and matching of different features, as well as
simple creation and maintenance of possibly complex tracker configurations.
To address this issue we describe a software design and implementation that
applies the pipes-and-filter architectural pattern [5] to provide a customizable
and flexible way of dealing with tracking data and configurations.

1.1 Design requirements

We established a number of requirements for an independent software com-
ponent for processing tracking which were derived from the experience of re-
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searching collaborative augmented reality applications for a number of years
in the Studierstube project [17].

Device abstraction. Typically, a variety of devices provide the same or
similar data, therefore abstraction from an individual device would be bene-
ficial to the reusability and portability of an application.

Support for complex configurations. Processing input data requires more
than reading it from input devices. Calibration and registration of tracking
data is mandatory in most applications. Tracking data from different devices
can be combined to appear as a single more complex device. However, typi-
cally the combination of data from different devices is a non-trivial problem
due to different measurement modalities, update rates or error properties.

Network transparency. Collaborative and distributed applications require
network transport of tracking data. However, applications should be de-
veloped independently of the actual configuration used in any given setup.
Therefore, a dedicated tracking software layer should provide support for
network transparency.

Low overhead and latency. Applications require timely delivery of track-
ing data to reduce the end-to-end latency perceived by the user. Therefore,
any tracking software should only add minimal processing time to the overall
process.

Support for iterative development. Configurations should be simple to
author and change. Research requires frequent changes to installations and
configurations and the tracking software component should separate the ap-
plication’s core from such changes, if possible.

Simple to integrate. To ensure a broad applicability the software com-
ponent should not dictate a certain software architecture but allow for inte-
gration into different styles of application architectures. Use in both simple
main-loop driven applications and frameworks employing inversion of control
style architectures should be possible.

Allow for extensibility. Tracking hardware itself is a moving target and
new devices need to be supported by implementing new device drivers. Multi-
modal interaction requires development of new and experimental algorithms
to process input data. Both types of functionality should be simple to add
to a dedicated software component.
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1.2 OpenTracker approach

The contribution of this work is the development of a generic data flow
network library called OpenTracker to deal specifically with tracking data.
It is built on a number of key observations:

• Abstraction of recurring operations on tracking data separates applica-
tions from concrete devices and configurations and yields better code
reuse.

• Flexible arrangement of such operations simplifies experimentation with
and development of VR and AR applications.

• A dedicated configuration language allows simple authoring and con-
figuration of complex setups.

• An extensible software design supports rapid implementation of new
functionality and device support.

In a typical VR or AR application tracking data passes through a se-
ries of steps. It is generated by tracking hardware, read by device drivers,
transformed to fit the requirements of the application and send over network
connections to other hosts. Different setups and applications may require
different subsets and combinations of the steps described but the individual
steps are common among a wide range of applications. Examples of such in-
variant steps are geometric transformations, Kalman filters and data fusion
of two or more data sources.

The main concept behind OpenTracker is to break up the whole data
manipulation into these individual steps and build a data flow network of
the transformations. Moreover, it abstracts from the details of accessing and
manipulating tracking data by forming an architectural layer between the
tracking devices and the application (see Figure 1). To describe the details
of this concept, we will need some theoretical definitions which are discussed
in section 3. Details of an actual implementation are described in section
4. Some example configurations in the area of mobile augmented reality are
discussed in section 5 to demonstrate the features of OpenTracker.
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OpenTracker

Dev Dev Dev Network

Application

Figure 1: A block diagram detailing the relationship of OpenTracker with other
software components. Device drivers and network connectivity are separated
from the application sitting on top of OpenTracker.

2 Related work

Device abstraction is a standard requirement for 2D graphical user interfaces
(e.g. GKS [10]), and sometimes incorporated into 3D applications [7]. Many
interactive systems employ sophisticated event handling schemes. State
changes to attributes of scene objects are either propagated by functional de-
pendencies (e.g. routes in VRML [6], engines in Open Inventor [21]), or may
be handled by user supplied callback functions (e.g. script nodes in VRML).
These approaches inspire the architecture of OpenTracker, although none of
them deals specifically with tracker configurations.

An early example of a software toolkit dedicated to developing interactive
and immersive graphics applications is the MR Toolkit [19]. It provides
device abstraction and network transparency for tracking devices. A similar
development is the GIVEN++ toolkit [20] which supports multiple input
devices in a distributed framework.

The Virtual Reality Peripheral Network (VRPN) [22] is a C++ library
implementing device abstraction for a large number of tracking devices and
also networking support based on tracking servers and application clients. It
defines a small set of data types that can be reported by a device through
individual facets. VRCO trackd is a commercial tracking device software
framework [25]. A central server process implements device drivers and pro-
vides device abstraction and network transparency to applications that con-
nect to the server process.

All these software libraries provide device abstraction and network trans-
parency, both of which are already important features of a re-useable software
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design for interactive applications. However, they do not provide for more
advanced operations on tracking data and simple configuration thereof.

Two notable software frameworks were developed after a first publication
of our work on OpenTracker [15] and draw some inspiration from the data
flow approach presented there.

The Virtual and Augmented Reality Input Output (VARIO) framework
[18] implements a generic flow scheduling framework with distributed com-
ponents that can reside on different hosts. A central configuration process
manages the connections between components and the configuration of indi-
vidual components. Configurations are made persistent by saving and load-
ing descriptions of the connection and configuration parameters to and from
XML files.

The DWARF project [2] aims for a design concept that differs greatly
from traditional AR software designs. The basic units of the DWARF frame-
work are distributed services. A service is a process running on a stationary
or mobile computer that provides a certain piece of functionality such as
optical tracking. Services can be connected to use the functionality of other
services establishing a data flow network to achieve a more complex function.
Dedicated tracker services operate tracking devices and provide raw data to
other services which can perform additional transformations or constitute
part of an application. Configurations are created in an indirect way by
specifying properties on services that describe the conditions for connections
to be made.

VARIO and DWARF both support data flows for processing tracking
data. Both are based on a component system which models each processing
step as an individual process communicating with other processes. Such a so-
lution trades off increased flexibility for additional communication overhead.
The individual processing nodes are heavyweight and can lead to increased
latency in VR and AR applications.

The earlier related work demonstrates the need for some software design
to provide device abstraction or network transparency for developing applica-
tions. The use of data flow networks to describe processing steps of tracking
data has become a standard approach since the inception of OpenTracker.
In contrast to the later implementations OpenTracker presents a lightweight
approach that does not force a specific framework on the application. It also
provides a direct scripting approach to support simple configuration of the
data flow network.
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3 Concepts

Each unit of operation in OpenTracker is represented by a node in a data
flow graph. Nodes are connected by directed edges to describe the direction
of flow. The originating node of a directed edge is called the child whereas
the receiving node is called the parent. To allow more than simple linear
graphs, we introduce ports, references and edge types as follows.

3.1 Multiple Input Ports and References

Each node has one or more input ports and a single output port. A port is
a distinguished connection point for an edge, i.e. the node can distinguish
between events passing through different node ports. The output port of one
node is connected to any of the input ports of another node. This establishes
the flow by defining directed edges in the graph. A node receiving a new
data event via one of its inputs computes a new update for itself and sends
the new data event out via its output port.

Multiple input ports are desirable because computations typically have
more than one parameter. Dynamic transformations, for example, are para-
meterized by the value of another node and thus use the data value received
by a child to be transformed differently from the data of the parameterizing
child. Merge nodes may select part of the data of an event based on the
input port the event used. Combinations allow more complex computational
structures.

Additionally, an input port can be connected to several output ports to
provide fan-in of events. Thereby several children nodes are connected to
the same input port of a node. Upon receiving an event, the parent node
can only distinguish between the input ports, but not between the actual
children. Fan-In of several events is accomplished by serializing the events
and the parent operates on each event in turn.

Conversely, an output port can also be connected to several input ports of
other nodes to provide fan-out of events by using references within the graph.
Again the multiple connections are transparent to the node which cannot
selectively send events to only one parent, but all events are distributed
equally to all parents.

Figure 2 gives some examples of data flow graphs that can be build with
OpenTracker. Part (a) shows a simple linear graph applying a geometrical
transformation to a data source, (b) shows a node with several input ports,
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combining the received data. Part (c) is a graph using a reference node to
get a copy of the output of a node and (d) combines these features in a more
complicated graph.

a) linear graph b) multiple ports

c) reference nodes d) putting it all together

Figure 2: Visualizations of a data flow graphs as used in OpenTracker. (a)
A linear flow. (b) A node with different input ports. (c) Fan-Out of output
ports. (d) A complex example employing all features.

3.2 Edge types and time

The basic mechanism behind the data flow concept is event passing. Data
events are passed from the children nodes upward to their parents. How-
ever, not all computations fit well into this model: Algorithms that operate
on a list of tracker measurements or that compute the tracker state at an
arbitrary point in time require different types of input or output interfaces.
Examples are filtering algorithms that take a history of events into account,
or prediction algorithms that compute an expected measurement for a given
point in time.
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To support different ways of incorporating time into computations, we
also distinguish between different edge types. Edges are typed by typing the
ports of the nodes they connect. We establish the rule that only two ports of
the same type can be connected and this type is the type of the edge. There
are three edge types: event, event queue and time dependent.

event edges implement the typical event push pattern as new events are
pushed from children to their parent nodes. Each event is time stamped by
the individual node that generated it. Thus nodes can react to the temporal
aspects of tracking data. For example, a simple prediction node incorporates
the time difference between single events to correctly update its output.

event queue and time dependent edges provide a polling pattern for data
processing. These interfaces are polled by the parent node, because the data
returned is parameterized. The event queue interface represents a queue of
events and supports querying the number of stored events and retrieving
them by index. The time dependent interface can be queried by specifying
a point in time, for which the appropriate data value is returned. How this
value is calculated depends on the node’s implementation.

The latter two interfaces are used to implement nodes that perform com-
putations on a set of event values such as windowed filters or that use a point
in time as parameter such as a prediction for a given point in time. Only
specialized nodes implement these interfaces while the majority of nodes only
supports the event interface.

4 Implementation

In an actual implementation we distinguish source nodes, which are leaves in
the graph and receive their data values from external sources, filter nodes,
which are intermediate nodes and modify the values received from other
nodes, and sink nodes, which propagate data values to external outputs.

The data type passed between nodes is a complex data structure tailored
towards the requirements of AR applications and consists of a fixed set of
components (see Table 1). Although this restriction to a fixed data type
appears as an limitation, it can easily be extended or generalized because
nothing in the supporting system relies on the type of the event data.
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Component Description

position 3 component vector describing a position in space.
orientation 4 component vector describing a rotation as a quaternion.
button 16 bit integer value describing the state of 16 button.
confidence floating point value in the interval [0, 1] describing the qual-

ity of the measurement.
time time stamp giving the time of measurement.

Table 1: Components of the OpenTracker event data type.

4.1 Source Nodes

Most source nodes encapsulate a device driver that directly accesses a partic-
ular tracking device, such as a Polhemus or Ascension tracker connected to a
serial interface. Other nodes objects form bridges to complex self-contained
systems, such as the video tracking library from ARToolkit [11] or imple-
ment a DWARF service interface [3]. A third type of source node emulates
a tracker via the keyboard, access network data (see section 5.2) or simply
responds with constant values (useful for development and debugging).

The default implementation for most source nodes only provides the last
data received from either a tracking device or the network. Some source nodes
have a multi-threaded execution model to implement an efficient decoupled
simulation model [19] (e.g. , when blocking I/O must be used to poll a device).

4.2 Filter Nodes

Filter nodes receive values from one or more child nodes. Upon receiving
an update from one or more of their children, they compute their own state
based on the collected data. A non-exhaustive list of filters includes:

• Transformation filters perform geometric transformations of their chil-
dren’s values. These include pre- and post-transformations and may be
static or depend on data values received from other children. The latter
allows to modify the filtered state relative to another tracker state.

• Button filters perform boolean operations on the button state of dif-
ferent input sources to combine them into a new event value.
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• Prediction filters allow to partially compensate for lag in the measuring
and processing tracker data.

• Noise and smoothing filters are handy to deal with inherent inaccuracies
of trackers.

• Undistortion filter are necessary e.g. to linearize distortions in the mag-
netic field of a magnetic tracking device.

• Merge filters assemble new data values using different parts of the data
values of several children. Use cases include the combination of orienta-
tion from an inertial tracker with position information from an acoustic
tracker, or adding a button device to a closed tracking solution such as
Polhemus Ultratrak.

• Conversion filters are able to translate one data type into another. For
example, 2D positions from a desktop pointing device can be translated
into 3D positions by adding a constant third value.

• Clamp filter are special nonlinear transformation filters that cut off
values at user-specified extrema, for example to deliberately limit in-
teraction to a valid range.

• Confidence filters select data values from different children based on
some measure of confidence in the accuracy of the data.

4.3 Sink Nodes

Sink nodes are similar to source nodes but distribute data rather than receive
it. They include output to network multicast groups, debugging output to a
user interface or thread-safe shared memory output to integrate OpenTracker
as a library into other applications. A logging node writes the received data
into files to record a a stream of data which can be played back a correspond-
ing file source node.

4.4 Time

Time is reflected in several ways in the architecture of OpenTracker. As
described in section 3.2 the type system for edges supplies us with different
ways of dealing with time, either having an event based approach, with or
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without queueing of events, or by specifying functions of tracking data as
continuous functions of time. OpenTracker does not implement any clock
synchronization of different hosts working together in a network. There are
well established means to solve this problem such as the NTP protocol [1].

4.5 Software architecture

The intent of OpenTracker is to provide an auxiliary library that is to be
integrated into VR or AR applications. Therefore it is kept lightweight and
customizable. The library is designed as a class hierarchy of tracker objects,
implemented in C++. It is build around a small set of core classes that im-
plement the basic node interfaces, a parser that builds the runtime structure
from a configuration file and the main loop driving the event model. Any
other functionality is implemented by a set of module classes that can be
easily extended or modified.

The library is extensible through the use of an abstract NodeFactory
interface to define the class interface for creating new nodes and through the
Module class that provides an interface for processing within the main loop.
Any extension adds new node types by providing an object that implements
the NodeFactory interface. The object is added to a list of factories known
by a Context object at startup and can then create nodes of the new type as
requested by the parser. Parameters for node creation are passed in by the
parser as a generic map of key-value pairs.

To add more complex functionality such as device drivers a subclass of
Module is created and added to the list of modules known to a Context object.
The modules are called regularly during processing of the main loop. Within
these callbacks they can implement any processing and create new events.
These events are then propagated into the data flow network by associated
nodes. Events can also be read in from the network by these nodes. A
module obtains references to the nodes it is interested in by implementing
the NodeFactory interface. It acts thereby as both the creator and the active
implementation of the nodes.

There are also nodes that perform without an underlying module. Exam-
ples are filter nodes that implement geometric transformations on incoming
events and pass the transformed events to their parents.

There is no fixed interface to the integrating application in order to max-
imize flexibility. Application programmers either have to use one of the sup-
plied nodes (such as a generic call back node) or to supply their own module
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Context

Node

ConfigurationParser

NodeFactoryModule

ThreadModuleWrapperNode RefNode

Transformation TestSource TestModule

Library core

Extensions

Figure 3: Class diagram of the OpenTracker library. Blue classes are extended
to add new nodes and modules. Grey classes are examples of extensions.
Arrows with hollow heads describe derivation, other arrows associations.

implementing sink nodes as interfaces to their application. Moreover, the use
of the library main loop is not mandatory. The processing can be integrated
with the application’s main loop to avoid additional threads and synchronize
the tracking data processing more closely with the application. These design
decisions ensure that the library can adapt to the needs of any application.

Figure 3 shows a class diagram of the core classes. The class Context
implements the main loop and keeps reference of all modules and the data
flow data structure. It employs an object of class ConfigurationParser to
parse the configuration files. Actual node implementations are derived from
Node, for example the Transformation or the TestSource class. Wrapper-
Node and RefNode are special nodes that implement the port and reference
functionality. State is the default event type.

4.6 Software engineering with XML

XML, the eXtensible Markup Language[4], is a markup definition language
that allows to define hierarchical markup languages with so-called document
type definitions (DTD). With the appropriate DTD, standard XML tools
can be used to conveniently edit, type check, parse, and transform any XML
file. Thus, providing a simple DTD for describing the data flow graphs
of tracker nodes opens access to software libraries and tools that simplify
several steps of the development cycle. A visual DTD editor can be used to
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design and maintain the DTD. An XML parser [23] enforces content format
on the tracker configuration file while building the corresponding structure
in memory, thus automatically performing many of the consistency checks
that otherwise have to be hand-coded. A convenient XML editor such as
[9, 8] allows the end user to design the tracker configuration without having
to master the syntax while enforcing the correct content format, reducing
syntax and semantic errors.

Configuration files for OpenTracker are written in a dedicated XML lan-
guage defined by the DTD. Elements correspond to nodes in the dataflow
and attributes to parameters of such nodes. The parent - child relationship
of the data flow graph is directly mapped onto the parent - child relationship
of XML elements. The content model of the language enforces interface and
semantic constraints on the specified graph. As described in section 3.2 edges
and the corresponding node ports are typed and therefore restrict the pos-
sible combinations in the construction of the graph. These constraints and
others on the number of children are described in the DTD. For example,
source nodes typically do not have any children as they rely on data from
external sources to compute their own data. In contrast, confidence filters
use any number of children to compute their data value.

The reference structure is created by using unique ID attributes on el-
ements and referencing these IDs in reference elements. While children of
nodes with only one input port are directly mapped to children elements in
the XML file, multiple input ports need to be addressed differently. Children
that are connected to a specific input port are wrapped by an additional
XML element which in turn is the direct child of the node of interest. These
elements are mapped to special wrapper nodes that can be distinguished by
the node implementation. Otherwise they are transparent to the actual data
processing.

Figure 4 gives an example of such a configuration file, using all of the
features described before. The interesting constructs are highlighted and
cross linked with the corresponding nodes in the resulting data flow graph.

4.7 Data flow implementation

The implementation of the node graph and the data flow of events is directly
based on the Document Object Model (DOM, [27]) structure provided by
the XML parser library Xerces [23]. The library reads in a configuration
file and constructs a tree structure in memory representing the elements and
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<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE OpenTracker SYSTEM "opentracker.dtd">
<OpenTracker>

<configuration>
<ARToolKitConfig camera-parameter="camera_para.dat"/>

</configuration>
<ConsoleSink comment="Pip">

<StbSink station="0">
<EventTransform scale="0.001 0.001 0.001">

<ARToolKitSource tag-file="pip.tag" />
</EventTransform>

</StbSink>
</ConsoleSink>
<ConsoleSink comment="Pen">

<StbSink station="1">

<EventTransform scale="-2.1 -2 0" translation="0.14 0.1 -0.01">
<WacomGraphireSource device="1"/>

</EventTransform>

</StbSink>
</ConsoleSink>
<ConsoleSink comment="Viewpoint">

<StbSink station="2">
<EventTransform rotation="1 0 0 0">

<TestSource frequency="25"/>
</EventTransform>

</StbSink>
</ConsoleSink>

</OpenTracker>

DEF="Camera"

<EventDynamicTransform>

</EventDynamicTransform>

<TransformBase>

</TransformBase>
<Ref USE="Camera"/>

Figure 4: An example configuration file and the corresponding data flow graph.
The use of Ref nodes and multiple input ports is highlighted.

attributes and the relations between. OpenTracker reuses the in-memory
DOM tree and decorates it with instances of the node types described above.
A DOM node provides a facility to store a mapping of names to pointers to
user data and OpenTracker stores the pointer to the node instance associated
with a certain element in the configuration file in this map (see Figure 5).

Tracking events flow through the network via a push and a pull mecha-
nism. The event interface uses a push mechanism, that passes the current
event from the source nodes via any intermediary nodes to the sink nodes.
Every node calls an update method on its parent which recursively calls its
own parent’s update method after processing the event (see Figure 6(a)).
Thus, the modules associated with the source nodes only have to trigger
this event propagation by calling the update method on their source nodes.
Only a reference to the object storing the event data is passed. A node that
changes the event’s data has to provide a new instance to avoid changing an
instance that may also be used by other nodes. This instance is typically a
member of the node reused to avoid frequent allocation and deallocation of
an event object on the stack.

The event queue and time dependent interfaces use a pull mechanism. If
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ConsoleSink

InterSenseSource

MergeNode

NetworkSourceNodeDOMElement
NetworkSource

DOMElement
Merge

DOMElement
ConsoleSink

DOMElement
InterSenseSource

Figure 5: The DOM tree elements in green are decorated with the white
OpenTracker nodes. The links between the nodes are only virtual and are
inferred from the DOM structure.

NetworkSource InterSenseSource

Merge

ConsoleSink

event

event

NetworkSource InterSenseSource

Merge

ConsoleSink

getEventreturn

getEvent
return getEvent

return

(a) (b)

Figure 6: Two types of data flow in OpenTracker. (a) Events are pushed by
source nodes through the graph. (b) Events are pulled by sink nodes.

a node is queried via one of these interfaces and it requires event information
from any children nodes upstream in the network, it recursively calls the chil-
drens’ interfaces with the appropriate parameters (see Figure 6(b)). Pulling
data is typically not implemented for network nodes to avoid incurring large
delays and therefore is only happening within one process. Again all nodes
have to provide their own object instances to avoid side effects by shared
event instances.

Not all nodes implement all interfaces. The event interface is the stan-
dard case and is implemented by most nodes. The remaining interfaces are
only implemented in a small subset of nodes that use it to implement more
complex behaviors. For example, an EventQueue node stores a queue of
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the last events pushed through it and exposes the queue through the event
queue interface. Another node called Filter then uses an EventQueue node
to implement a linear filter over the last events that is triggered by any event
pushed through it.

5 Results

We continue with a description of some results showcasing the flexibility of
OpenTracker and giving an overview of some applications that were imple-
mented using it.

5.1 Rapid prototyping

Modifying and refining a user interface and its underlying tracking configu-
ration are common tasks in developing research prototypes of VR and AR
applications. During the development of a mobile system described in more
detail in section 5.3 a number of systems were created that provided different
user interfaces. The system described in this work uses a pen and a graphics
tablet as main input devices. Another version used a pair of tracked gloves
[24] and a touch pad. Here one glove mapped to the pen in the original setup
and the touch pad controlled a 2D cursor mapped into 3D to replace the
tracked graphics tablet. Therefore all applications working on the original
system could also run on the changed one. Only changes to the OpenTracker
configuration were necessary.

Using an application in different configurations also requires flexibility
within the tracking software framework. Examples are a debug scenario run-
ning on a desktop machine versus an installation using a dedicated 6DOF
tracker and head-mounted displays. Our group develops a complex aug-
mented reality application for 3D geometry education [12] working in a
laboratory setup with six inputs tracked with 6DOF. However development
mostly takes place on a desktop setup where the inputs are mapped to vir-
tual devices controlled by keyboard or mouse input. The logging features of
OpenTracker also allow to record tracking data of individual sessions which
is helps in debugging wrong behavior occurring only during certain move-
ments of the users. The tracking data can be replayed on the desktop in
real time or at accelerated speeds to provide reliable test cases and speed up
development. In all these cases only the tracking configuration is modified,
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never the application itself.

5.2 Distributed tracking

OpenTracker implements a pair of source and sink nodes that transport track-
ing events over the network. These nodes allow multiple senders and receivers
of tracking data to communicate asynchronously by using IP multicast. It is
even possible for a single host to operate as a sender and receiver at the same
time, by picking up data, then modifying it and re-sending it to the network
on another network channel. Thus, larger networks spanning multiple hosts
can be created. There are several reasons why it is desirable to share tracking
data over a network.

Multi-processing based on inexpensive PCs becomes possible with little
configuration effort. This is useful to achieve some degree of load balanc-
ing. In particular, computationally expensive functions such as filtering or
undistortion can be assigned to either sender or receiver, depending on the
computational budget. Also, network support makes it easy to span multiple
operating systems, in particular if a specific tracking device or service is only
available at one particular host.

Examples of such configurations are used in our laboratory. A dedicated
host operates the tracking device and runs some filters on the tracking data.
Individual development workstations running the actual applications receive
the data. Therefore we can update the tracking configuration without inter-
fering with the applications themselves or implement dedicated additional
transformations for each individual application in its local OpenTracker con-
figuration.

Transparent substitution of tracking devices enables to switch devices
during run-time or to use virtual devices for testing and playback of pre-
recorded or generated tracking data. For example, an outdoor mobile AR
system we built communicates with a dedicated tracking process that oper-
ates a GPS receiver and inertial tracker to provide position and orientation
information. The configuration of this process can be switched to a differ-
ent one which provides information from a user controlled simulator without
stopping the application itself.

While there is a preferred network protocol for OpenTracker, support for
additional formats can be easily implemented. Sofar, we implemented sup-
port for VRPN and DWARF allowing an OpenTracker based process to both
receive and send data to and from VRPN or DWARF based processes. Such
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Figure 7: Hardware components of the mobile AR setup.

a process could be used to perform some registration and filtering computa-
tions in an otherwise VRPN based setup.

5.3 Mobile augmented reality system

Augmented reality setups often require the integration of various different
tracking devices. We built a series of mobile AR systems to investigate mobile
collaborative applications [14]. The first iteration consisted of a PC notebook
equipped with a NVidia GeForce2Go video chip and a 1GHZ processor and
worked under Windows 2000. As an output device, we use an Sony Glasstron
see-through stereoscopic color HMD. The display is fixed to a helmet worn
by the user. Moreover, an InterSense InterTrax2 orientation sensor and a web
camera for fiducial tracking of interaction props are mounted on the helmet.
The setup is carried by the user in a backpack.

The main user interface is a pen and pad setup using a Wacom graphics
tablet and its pen. Both devices are optically tracked by the camera using
markers. The 2D position of the pen (provided by the Wacom tablet) is
incorporated into the processing to provide more accurate tracking on the
pad itself. Figure 7 gives an overview of the setup.

Tracking of the user and the interaction props is achieved by combining
data from various sources. The OpenTracker component receives data about
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the user’s head orientation from the InterTrax2 sensor to provide a coordinate
system with body stabilized position and world stabilized orientation.

Within this coordinate system the pen and pad are tracked using the
video camera mounted on the helmet and ARToolKit [11] to process the
video information. Because the video camera and the HMD are fixed to the
helmet the transformation between the cameras and the users coordinate
system is fixed and determined in a calibration step.

The pad is equipped with one marker. This is enough for standard opera-
tion, where the user holds it within her field of view to interact with 2D user
interface elements displayed on the pad. The pen, however, is equipped with
a cube featuring a marker on the five sides which are not occluded. This
allows to track the pen in almost any position and orientation. Moreover
whenever the user touches the pad with the pen the more accurate informa-
tion provided by the graphics tablet is used to set the position of the pen
with respect to the tablet.

The data flow graph describing the necessary data transformations is
shown in Figure 8. Round nodes at the top are source nodes that encapsu-
late device drivers. The round nodes at the bottom are sinks that copy the
resulting data to the AR software. Intermediate nodes receive events con-
taining tracking data, transform it and pass it on, downwards. An important
type of transformation is the relative transformation that takes input from
two different devices and interprets the location of one device relative to the
location of the other (called the base).

Different colors denote paths through the graph that describe how the
tracking data for different devices are processed. Relative transformations
are marked by cross stripes in the color of the two paths connecting. For
example, the optical pen path describes the five markers that are each trans-
formed to relate the pen point location. The results are merged, then further
transformed. After another merge with data from the graphics tablet, it is
once more transformed to the reference system established by the orientation
sensor.

Similarly, the optical pad path describes the computation to obtain the
location of the pad. As a side effect, the optical pad information is used at
one step to transform the 2D information from the graphics tablet path to
the actual pen position which is subsequently merged with the pure optical
information. Finally the white HMD location path is used to provide infor-
mation about the head location. The TestSource node’s task is to provide a
constant value which is then transformed by the orientation sensors.
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Figure 8: The data flow graph of the tracking configuration for the mobile AR
setup. Individual flows are indicated per source. The diagram was automati-
cally generated from the XML configuration description.

We would like to note that using a visual XML editor, this complex
configuration was created without writing a single line of code.

5.4 Indoor wide area tracking

To build an environment where we could test drive our mobile AR kit, we im-
plemented an indoor tracking solution to cover a floor of our building. As we
did not have access to a proprietary building-wide positioning infrastructure
(such as AT&T Cambridge’s BAT system used by Newman et al. [13]), we
choose to rely on a hybrid optical/inertial tracking solution. This approach
proved very flexible in terms of development of positioning infrastructure, but
also pushes the limits of what the used optical tracking library ARToolkit
can provide. A more detailed account can be found in [16].

To implement a wide area indoor tracking solution we resolved to use a set
of well-known markers that were distributed in the environment. Together
with a geometric model of the building that includes the location of the well-
known markers (see Figure 9) we can compute the user’s location as soon
as a marker is tracked by the optical tracking system. These models and
the location of the markers were obtained by manual measurements with a
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survey instrument.
The implemented tracking approach requires a large set of markers. It

is necessary to place a marker about every two meters and to cover each
wall of a single room with at least one marker. Deploying it in our floor
covering about 20 rooms and long hallways would require over two hundred
different markers. However, marking up a large indoor space with unique
ARToolKit markers is not feasible. The more markers, the higher the degree
of similarity of any pair of markers will be leading to false recognitions. A
large set of markers also enlarges the search space that ARToolKit has to
traverse, leading to significant decrease in performance. Consequently, the
use of ARToolKit is not feasible for large marker assemblies.

To overcome this restriction, we developed a space partitioning-scheme
that allows reusing sets of markers within the given environment. The idea
behind this approach is that, if the tracking system knows the user’s location,
it can rule out large parts of the building because they will not be visible to
the camera. Therefore, for two areas, which are not visible to each other, it
becomes possible to use the same set of markers.

To compute a possible placement of markers, the space of the model
is partitioned into a 3-dimensional cubic grid of a fixed length (see Figure
9). Then, marker patterns are assigned to the measured positions such that
the patterns are unique within each cubic cell and its 26 direct neighbors.
Basically, every cell defines a partial mapping from marker patterns to marker
positions in the environment.

The tracking computes the user’s location from a known cell and a marker
pattern observed by the camera mounted on the helmet. Because the pattern
is unique within the cell and it’s neighbors, the associated marker position
can be established and the user’s location is computed by concatenating the
marker position and the relative measurement computed by the ARToolKit
library. These computations are executed within OpenTracker by configuring
appropriate transform nodes.

The representation of the mapping from marker patterns to marker posi-
tions within the cells is implemented with the help of a special node within
OpenTracker called GroupGate. A GroupGate defines a gate that passes in-
coming events on, if enabled and stops them otherwise. A set of GroupGate
nodes is configured into an directed graph describing a neighborhood rela-
tionship. The relationship is typically symmetric but need not be. At any
point in time only one GroupGate node is denoted as active. If a GroupGate
node is active, it is enabled and all its neighboring GroupGates are enabled
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Figure 9: The diagram shows the geometric model of the floor. The red dots
denote the locations of measured markers used to track the user within the
environment. The overlayed grid marks the cells defining unique marker sets.

as well. All other nodes are disabled and will not pass events. A GroupGate
becomes active, if it is enabled and an event passes through it. Additionally,
a GroupGate also defines a second input port named override. If an event
passes through the override port, the node is also activated.

A single cell is modelled as a GroupGate and its 26 neighboring cells are
configured as neighbors. The measured data from a single marker pattern is
passed through all possible transformations for the different maker positions
it is used at. Then, each transformed data event is passed through the
GroupGate of the cell the marker position is associated with. The active
GroupGate corresponds to the cell the user is currently in. Because events
can only pass through the active GroupGate and its neighbors, data from
a marker will be used only once. Moreover the data passes only through
the GroupGate associated with the marker position of the last seen marker
activating it if necessary. Thus the activation will always shift with the user’s
movement through the set of GroupGates. Figure 10 gives an example of the
use of the GroupGate node.

The tracking needs an initial position at startup to set the first active
cell and GroupGate. A set of unique markers are used to define starting
positions on individual floors and the user can select her current position at
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Figure 10: The function of the GroupGate node. (a) A set of GroupGates
allows to select a single path from a set of paths through the graph. Only
the active GroupGate propagates events. (b) The GroupGates are in a neigh-
borhood relation. The active GroupGate’s neighbors are enabled to propagate
events as well and become active, if an event passes through them.

any time to correct any errors. Both operations simply activate the correct
GroupGate to set the current cell.

6 Conclusions and future work

OpenTracker is the first software framework to thoroughly apply the pipes-
and-filters architecture to the problem of manipulating tracking data. The
resulting advantages are twofold. The high-level language introduced to con-
figure the processing of tracking data simplifies experimental and exploratory
programming of data manipulations. Describing the configuration in a ded-
icated language renders it also more accessible to automated methods such
as generating a certain configuration.

The layered architecture that OpenTracker enforces on the overall appli-
cation provides a clear cut interface between the application logic and the
functions required to deal with tracking devices. A number of issues ap-
pearing in relation with tracking devices such as calibration and registration,
network transparency or fusion of input data can be dealt with in a way
that is transparent to the application. Decoupling the application specific
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functionality from the device layer also furthers reuse of the application in
the context of different tracking systems. While the existing nodes in Open-
Tracker will not cover the requirements of every application, the extensibility
guarantees that new functions can be implemented rather easily. By extend-
ing OpenTracker rather than hard-coding the application, new functionality
can be reused and is not locked into a single application.

The current OpenTracker implementation has a set of shortcomings. The
data type processed is a fixed structure tailored towards a specific application.
An extension to different data structures will enable multi-modal process-
ing of input data and expand application area of the OpenTracker concept.
Runtime reconfiguration of the tracking graph would allow a number of in-
teresting applications. A dedicated tracking configuration tool can build up
a configuration based on user input and simplify setting up an AR system.
Auto-calibration of a running system becomes possible and would improve
the registration errors of the computer generated images transparently and
without intervention by a human operator. These issues are addressed in the
next generation of OpenTracker which is under active development.

A more ambitions research direction is Ubiquitous Tracking [26] which
aims to provide an ubiquitous infrastructure service to AR applications. An
application can register with a UbiTrack service and request tracking infor-
mation on objects it is interested in. The service would then automatically
compute a configuration based on the available tracking devices and send
it to the application. The next version of OpenTracker will then use the
configuration to provide the required tracking data to the application. The
actual tracking devices and required configuration would be transparent to
the application and could change at runtime as required.
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