
ART 02

1

Structured Visual Markers for Indoor Pathfinding
Michael Kalkusch, Thomas Lidy, Michael Knapp, Gerhard Reitmayr, Hannes Kaufmann, Dieter Schmalstieg

Vienna University of Technology, Vienna, Austria
{kalkusch|lidy|knapp}@cg.tuwien.ac.at, {reitmayr|kaufmann|schmalstieg}@ims.tuwien.ac.at

Abstract
We present a mobile augmented reality (AR) system to
guide a user through an unfamiliar building to a
destination room. The system presents a world-registered
wire frame model of the building labeled with directional
information in a see-through heads-up display, and a
three-dimensional world-in-miniature (WIM) map on a
wrist-worn pad that also acts as an input device.
Tracking is done using a combination of wall-mounted
ARToolkit markers observed by a head-mounted camera,
and an inertial tracker. To allow coverage of arbitrarily
large areas with a limited set of markers, a structured
marker re-use scheme based on graph coloring has been
developed.

1. Motivation
Many visitors of our institute have a hard time finding
their way through the complicated and poorly labeled
corridors of our office building. We considered this
situation a useful test case for a location-based service
provided through our mobile augmented reality system.
The system should guide a user on the way through the
building by showing him directions and a floor map,
based on context information (see Figure 1).
A constraint in the design of our solution was that, unlike
previous AR outdoor navigation aids, GPS is not usable
indoors, and we also did not have access to a proprietary
building-wide positioning infrastructure (such as AT&T
Cambridge’s BAT system [1]). Instead, we choose to rely
on a hybrid solution consisting of ARToolkit [2] for
optical tracking and inertial tracking combined with room
geometry information. This approach proved to be very
flexible in terms of development and of positioning the
infrastructure, but also pushes the limits of what
ARToolkit tracking can provide.

2. Related Work
Location tracking is a prerequisite for any location aware
application. In order to be able to provide the user with
services and information related to her location, a system
needs to sense or otherwise be told the current location of
the user. Augmented Reality (AR) applications require a
very accurate position tracking to register visual
information accurately with the user’s environment.
Otherwise the augmented information may be positioned
incorrectly resulting in a confusing or unusable user
interface.
There is a wealth of work related to position tracking
ranging from indoor systems covering a room size area to

Figure 1. The user is guided through the building by
the SignPost navigation system.

outdoor systems supporting the entire planet. This
diversity is also present in the accuracy of tracking
systems ranging from millimeters to several meters.
Outdoors, GPS provides global position with accuracy
between several meters and centimeters depending on
additional techniques such as broadcasting correction
signals or using the phase information of the received
signals to improve the accuracy. However, GPS requires
a direct line of sight to several satellites and therefore is
not working properly inside buildings or in areas covered
by trees or tall buildings (appropriately termed ‘city
canyons’).
Indoors, tethered tracking systems using magnetic [3],
ultrasonic [4] and optical technologies [5] achieve high
accuracy in the millimeter to centimeter range. These
systems are typically able to cover a room and require
installations of large devices or dense arrays of beacons
or sensors mounted in the covered area. Another research

ART 02

2

system [1] can cover a whole building but is not available
to the public.
Other approaches try to use local sensors and dead
reckoning techniques to compute a user’s location [6].
However these are prone to accumulation of subsequent
errors in their computations unless they are synchronized
with absolute positioning systems. Including knowledge
about the environment in the form of geometric models
and accessibility graphs [7] allows increasing the
accuracy of such approaches significantly.
A large class of tracking solutions uses computer vision
to track the movement of a camera. Some solutions place
fiducial markers [8] in the environment to achieve good
accuracy. There is also experimental work that uses
marker free vision based tracking by selecting salient
natural features in the environment [9] or comparing the
camera’s view with prerecorded imagery [10].
Our solution is relying on using a set of trained optical
markers together with additional knowledge about the
environment. This allowed us to improve the performance
of the optical tracking component by reducing the number
of markers required for a stable operation of the system.

3. Mobile Setup
Our wearable AR navigation system [14] is composed of
a notebook computer with a 1 GHz processor and an
NVidia GeForce2Go chip for accelerated 3D graphics. A
Glasstron optical stereo see-through head mounted
display is used to overlay information while providing an
unobstructed view of the environment when roaming the
building. In addition to that, a FireWire camera and
InterSense InterTrax2 inertial tracker for tracking input
are mounted to the helmet worn by the user. A wrist-
mounted tracked augmented touch pad is deployed as the
user interface for application control and monitoring.
The system runs the latest version of the Studierstube [12]
software framework. Studierstube is a user interface
management system for collaborative augmented reality,
which addresses the question of how to use three-
dimensional interaction and new media in a general work
environment, where a variety of tasks are carried out
simultaneously. It supports a variety of output devices
such as head mounted displays, projection setups and
virtual tables. It allows multi application, multi user
setups running on a distributed system. Several
applications have already been developed within
Studierstube, all of them establishing a 3D interaction
metaphor similar powerful as the desktop metaphor for
2D.

4. Tracking
In our work we used the optical tracking available from a
single camera mounted on helmet worn by the user and
prior knowledge on the structure of the building in form
of a geometric model. The camera provides input for the
ARToolkit to detect and track well-known markers that
were distributed in the environment. By combining the

relative marker locations computed by the ARToolkit and
the model of the building we can than track the user’s
movements within the environment. In addition to that we
deployed the inertial tracker to provide frequent
orientation updates whenever the optical tracking failed.
The geometric model of the building is structured into
individual rooms and the connections between these
rooms called portals. A portal can either be a real door or
an artificial separation of larger rooms into small areas in
the final model. The location of a room within a world
coordinate system completes the model. It also stores
additional information such as room names and
occupation.
In each room optical markers were mounted on the walls.
Their location was measured and added to the model (see
Figure 2). We tried to place enough markers such that at
any moment a user would perceive at least one marker.
The marker’s size determines the appropriate distance
between the user and the marker. We chose a size of 20
by 20 centimeters to allow an average distance of about
2.5 meters between the user and the walls. Such a size
worked also well if the marker was only seen at grazing
angles.

Figure 2. This is the geometric model of the 4th and 5th
floor of the building. The marker locations are
indicated by the dots. The whole setup includes 25
rooms on two floors with 25 unique markers and 40
reusable markers.

ART 02

3

4.1. Computing the user’s location within a room
For a user standing in a room, the system can track one or
more optical markers. The information received by the
tracking library gives the markers location with respect to
the camera. This information needs to be transformed to
get the local position of the user within the room (see
Figure 3). To do so we need to perform the following
calculations.

Figure 3. Four coordinate systems are involved to
compute the user's position. U is the user's position
and orientation, R0 the room coordinate system. M is
a marker’s location within that room. In order to
handle several rooms in several floors a world or
model coordinate system W0 is used.

Combining user with marker coordinate system
At each time step the optical tracking returns the position
and orientation of a marker as a transform matrix TU2M.
This describes the transformation between the local user
coordinate system and the marker’s coordinate system.
We need the user’s movement with respect to the fixed
marker, therefore we compute the inverse matrix TM2U of
the above transformation:

1
22)(−= MUUM TT

Computing user location within a room
For rendering the wire frame model and providing the
user with directional hints we need to compute the user’s
location in respect to the room’s coordinate system. The
desired matrix TU2R is calculated with the following
equation:

RMMUUR TTT 2
1

22)(o−=
The transformation TM2R is provided by the geometry file
and contains the marker position and orientation in
respect to the room origin Ro. Combining the current
user’s field of vision and the knowledge from the
navigation system, which door or portal has to be passed

next, we can supply the user with directional hints (see
Figure 8).

Transforming to world coordinate system
To be able to provide a consistent WIM we also have to
take the global rooms position into account with respect
to the world coordinate system Wo. By doing so we can
easily render the whole floor directly from the geometry
file to the WIM.
One important detail during rendering is, that rotation of
the room should always be done at the current marker
position. This improves rendering because the angular
precision of the optical tracking sometimes suffers from
jitter.
The information on the user’s position and viewing
direction is then used to compute the direction of the
indication arrow and to render the augmentation of
portal’s and the room's geometry.

4.2. Reuse of markers
To use the approach described in the former section, we
need to place a marker about every two meters and to
cover each wall of a single room with at least one marker.
Deploying markers on our floor, which covers about 25
rooms and long hallways, would require several hundred
different markers to be created and trained for the
ARToolkit recognition process. However, this is not
feasible for two reasons:

• The more markers, the higher the degree of
similarity of markers will be. Almost rotational
symmetry can become a major problem when a
large amount of markers is used. Additionally,
lighting conditions may vary often between one
room and another, or even within the same room.
All this leads to inferior recognition accuracy.
For a larger set of markers this implies a higher
number of false recognitions.

• A large set of markers increases the search space
that has to be compared by ARToolkit, which
leads to a decrease in performance. As a
consequence, it is not possible to scale the use of
ARToolkit to arbitrary large marker assemblies.

To overcome this restriction, we developed a spatial
marker partitioning-scheme that allows reusing sets of
markers within the given environment. The idea behind
this approach is that, if the tracking system knows the
user’s location, it can rule out large parts of the building
because they will not be visible to the camera. Therefore,
for two areas, which are not visible to each other, it
becomes possible to use the same set of markers. This
problem is equivalent to approaches for indoor visibility
computation based on potentially visible sets.
We use the room definition in the geometric model as the
basic element of this approach. Then we can build an
adjacent graph for all rooms using rooms as nodes and
portals between rooms as edges. In addition to the portals

ART 02

4

representing logical connections we also add further
edges that represent a line-of-sight between to rooms (see
Figure 4). We call this second graph the extended
adjacent graph.

Figure 4. The adjacent graph and the extended
adjacent graph of a part of the building. Different
rooms are indicated by different floor colors. Each
room is represented as a node. Black edges indicate a
door between two rooms, gray lines indicate a line of
sight between two rooms. In both cases disjunctive
marker sets must be used.

The next step is to generate a minimal number of disjoint
sets of markers, such that each room is assigned to a set
of markers and two criteria described next are met. This is
similar to graph coloring problems where a minimal set of
colors is used to color nodes in a graph with certain
restrictions. The following constraint must be fulfilled to
yield a useful distribution of marker sets.

• Two nodes connected in the extended adjacent
graph must have disjoint sets of markers.
Otherwise the camera tracking system cannot
decide which room the marker belongs to, if
both instances are visible from one room.

• Looking at one node all adjacent nodes in the
extended adjacent graph must have disjoint
marker sets. This constraint has to be fulfilled by
all nodes in the extended adjacent graph.
Otherwise the common node provides a point of
view that allows sighting of a marker in two
different places.

Starting with a given correct room position, the system
tracks the user within the current room and into
neighboring rooms. It can detect a room change by
comparing tracked markers with the sets of markers
assigned to the current room and its neighbors. If it
recognizes a marker from a set of a neighbor room it
assumes that the user entered this room, which then
becomes the current room. These reusable marker sets are

managed by the PartitionKit, which is described in
section 5.2.
The major task of the PartitionKit is to toggle the nodes
status between active and inactive whenever a room
change happens (see Figure 5).

Figure 5. User walks from room A (shown on the left)
to room B (shown on the right). The corresponding
adjacent graph is show, below each floor map.
Current node marked with an arrow. Inactive nodes
are drawn in gray.

The left image shows that the current node A and its
adjacent node B are marked active, when the user is in
room A, while node C and D are inactive (gray). As soon
as the user moves to room B and a room change occurs,
the PartitionKit updates the whole adjacent graph (shown
on the right side in Figure 5). Now the current room is
room B and the status of both adjacent rooms A and C are
switched to active. Note that room D is still inactive,
because there is no line of sight between room B and
room D.
We extended the scheme by placing a single globally
unique marker in every room, which can be used to re-
initialize the system in case of an error. It is also suitable
for the determination of the current room at start up. The
user just has to turn around until the system detects the
unique marker and switches into “interactive mode”. This
unique marker set is disjoint from any reusable marker
set.

4.3. Fusion
Our mobile Augmented Reality kit is also equipped with
an inertial orientation tracker providing low latency
updates on the user's head orientation. The frequency of
updates is about 100 Hz, which exceeds the update rate of
the optical tracking by an order of magnitude. Hence we
incorporate this information into the computation of the
user's viewing direction in-between measurements from
the optical tracking system. However the tracking
information is subject to drift that can lead to large errors
after a short period of time.

ART 02

5

Therefore we need to correct the measurements of the
inertial tracker (see Figure 6). This is implemented similar
to the description given by Newman et al. [13].

Figure 6. User walks towards marker shown in three
different time snap-shots (t0, t1,t2) with corresponding
angles. In time step t2, no marker is tracked and the
user‘s viewing direction is updated from the inertial
tracker.

Every time we receive a measurement by the optical
tracking system, we compute the user's true head
orientation QUserView (see Figure 3) as described in section
4.1. As long as at least one marker is in the user’s field of
view, like in Figure 6 time steps t0 and t1, the Q CurrentARview
is equal to the QUserView.

Q CurrentARview := Q Marker = Q correction o Q Inertial
Then we compute a correction orientation for the
measured inertial orientation:
 Q correction = Q Marker o (Q Inertial)-1
When no marker is visible (see Figure 6 at time step t2),
we have to rely on the inertial tracking information,
which is pure angular information. In order to improve
the tracking we use the correction term calculated, while
optical tracking worked. The correction is then applied to
any subsequent measurement of the inertial tracker to
provide a correct user orientation:

Q CurrentARview := Q correction o Q Inertial
As soon as the optical tracking starts to send new marker
data, the correction terms are recalculated and the user
position is updated.

5. Example Application
As an example application for the described tracking
system we developed SignPost - a system, which guides
the user through a building from his current position to a
selected destination room by providing the user with
appropriate information through augmented reality.
SignPost is built on the Studierstube framework and
implements the described tracking solution to get
information on the current position of the user within the
building. The OpenTracker [15] library is used to
integrate the ARToolkit tracking library, to transform the
data gained from it (and other trackers) and to forward it

over a defined interface to the Studierstube. For graphical
output via the head-mounted display OpenInventor is
used, which is part of the Studierstube framework.

Figure 7. Word-in-Miniature (WIM) model displayed on
the augmented wrist pad. The current room is
highlighted in yellow, the destination room in red and
the path in between in cyan. Three buttons below the
WIM allow the user to set a destination room, toggle
the wire frame and set the current room.

5.1. Interaction
The system continuously provides the user with two kinds
of visual feedback:

• Directional hints: Via the HMD a wire frame
model of the current room is superimposed on
top of the real scene. The application uses a
shortest path search on an adjacency graph of the
building to determine the next door/portal on the
way to the destination. The doors/portals are
always highlighted in white. In addition, a
direction arrow shows the direction to the next
door or portal (see Figure 8), indicating either to
move forward, turn left/right or to make a U-
turn. The wire frame overlay can be turned on
and off optionally by the user.

• WIM model on wrist pad: The WIM (“world in
miniature”) model always shows a full miniature
view of all rooms on the floor in order to allow
the user to determine his current position in the
building, which is always highlighted in yellow
(see Figure 7). Additionally the path to the
selected destination room is highlighted in cyan,
while the destination room itself is shown in red.
An ARToolkit marker is placed onto the wrist
pad allowing the application to track the position
of the wrist pad. Thus, the user can bring the
WIM model into his view by moving his arm
with the wrist pad in front of his eyes. As a
consequence, the WIM model does not

ART 02

6

permanently cover the screen, and the user can
decide when he wants the floor plan to be
displayed. Moreover, he can adjust the size by
moving his arm nearer to his eyes or farther
away. The wrist pad enables the user to select a
destination room as well as to toggle the wire
frame mode mentioned above.

The SignPost application uses a scene graph based on a
floor plan loaded from an OpenInventor file. In the
application actually two scene graphs are used. The first
scene graph is used for the WIM model on the wrist pad.
One whole floor is shown at a time.

Figure 8. Information overlay in the head mounted
display. Red arrow shows the direction. The name of
the current room is overlaid below the arrow. The blue
writing is part of the room geometry and coupled with
the green wire frame model of the room.

The second scene graph is used to display the wire frame
model of the current room in the head-mounted display.
Only the current room is shown and all other rooms are
disabled and not rendered. The overlaid wire frame
geometry is aligned with the real room geometry and
continuously updated, using data from optical and inertial
tracking.
Once the marker of the wrist pad gets into the user’s field
of vision the WIM is displayed and the user may interact
via the wrist pad.

5.2. Partition Kit
We extended the OpenInventor scene graph with several
nodes, which are used by our application and can also be
used by other applications. Two of these nodes are the

PartitionKit and the StationKit. Each room in the
OpenInventor scene graph is attached to a StationKit,
which contains information on the room and the
references to the marker set of that room. The PartitionKit
manages the disjunctive sets of reusable markers. Based
on the extended adjacent graph described in section 4.2
we improve the performance of the marker detection,
because only markers in the current room and the
adjacent rooms are used for detection. The major
contribution of the PartitionKit is, that it forwards
tracking events only to the nodes of the current room and
its adjacent rooms. For this part of the application we
only need the adjacent graph, but we do not need the
extended adjacent graph (see Figure 4). Without the
PartitionKit all existing markers would be compared with
the current one, which could lead to a spontaneous room
change to a different floor. This improves the fault
tolerance of the whole application.

5.3. PathFinder Algorithm
Assuming you have a number of rooms connected by
doors, it is common to handle them by means of a
directed adjacent graph. Each room is represented as a
node. An edge is inserted between two nodes, if two
rooms are connected via a door or a portal. Using a
directed graph, it is possible to map one-way doors, like
emergency exits, in the adjacent graph.
The SignPost application uses its so-called PathFinder-
component for searching the shortest path from the user’s
current position to the desired destination. After loading
the floor-plan file, the PathFinder builds an adjacent
graph based on the coherency information provided in the
file. The PathFinder determines the coordinates of the
room center and the portals. Then for each room it
calculates the distances from the room center to all the
portals of the and further from the portals to the room
centers of the subsequent rooms.
Using this adjacent graph, the PathFinder is able to
indicate whether there is a coherent path from a certain
room to another one, and how long the way is. It is most
important for our application that the PathFinder returns a
list of the rooms and portals, which have to be passed
along the path. This is done by utilizing an algorithm
based on the shortest path algorithm, which was
introduced by Dijkstra [11].
Although the PathFinder could recalculate and update the
shortest path several times per second, in the SignPost
application a new path is only calculated when a room-
change occurs. A room-change happens, whenever
ARToolkit recognizes a marker of an adjacent room. The
PathFinder always adapts the shortest path starting from
the current room. So even if the user walks the wrong
way, a new shortest path based on the user’s current
position is proposed.

ART 02

7

6. Results
The current model used for development and testing
purposes covers parts of two adjacent floors in our office
building. Data acquisition was very work intensive since
available digital maps proved insufficiently accurate for
AR applications. Initial experiences show that the scheme
works quite well, but is heavily relying on sufficient
marker density. Acceptable results require a marker every
2-3m in a hallway and at least 4 markers per room. As
can be expected, the more markers are used the less jitter
of the registered wire frame is perceived. The gaps
between the markers are avoided by using the inertial
tracker. This means that the user can continue on his way
without viewing a marker for some meters. Unfortunately
the inertial tracker sometimes starts to drift in one
direction leading the user to bear away from his path.
Heading to a wall and viewing a marker from a close
position adjusts the path shown on the users’ view to the
correct path again.

Figure 9. Mobile Setup running the SignPost
application. Augmentation of the wire frame model
and directional hints guide the user to the desired
location. User holds PIP in right hand and the WIM is
overlaid on top of it.

We found, that the degree of correct marker recognition
relies heavily on the light conditions in the rooms.
ARToolkit provides a very useful feature to address this
problem: One can assign a threshold to marker

recognition, which influences the lightness at which a
marker is recognized properly. However, in our
application we are confronted with varying light
conditions from one room to another or even in a room.
Some rooms are filled with sunlight from several
windows, other rooms are illuminated from neon lamps
and some hallways are very gloomy, especially when a
few lamps are out of order.
Consequently our application makes high demands on the
marker recognition pushing ARToolkit to its limits. We
propose an idea to address this problem in section 7.
Sometimes, markers still are confused by ARToolkit and
erroneously recognized as other markers. A solution to
this problem is provided by our marker-structuring
scheme more or less as a side-effect: Whenever
ARToolkit cannot clearly distinguish a marker from one
or more other markers, it happens that multiple marker
IDs are proposed by the system. Due to marker-
structuring (and the PartitionKit), most of the marker IDs
can be dropped – because it is sure that they are not in the
line of sight – leaving (in the majority of cases) one
marker which can be clearly identified. Thus, the
PartitionKit also helps with uniquely identifying markers,
even when a larger amount of markers is used.

7. Conclusion and Future Work
We described an autonomous Augmented Reality indoor
navigation system (see Figure 9), which makes use of
visual ARToolkit markers, thus keeping the costs of the
system rather inexpensive. The system incorporates an
elaborate marker-structuring scheme, which enables the
re-use of ARToolkit markers in rooms that are not in line
of sight. The algorithm is based on adjacent graphs,
which are also used for finding the shortest path to a
desired destination. The big advantage of our approach is,
that the total number of markers incorporated in the
recognition process is reduced to a minimum. The re-
using marker set concept in combination with the
extended adjacent graph (see section 4.2) grants a very
small total amount of markers. Thus, it is possible to
provide a whole building with only a few marker sets.
We plan to extend our digitized map to all floors of our
building as more comprehensive location based services
can be integrated into the guide with a more complete
model. For this amount of digitalization work,
professional grade surveying equipment will be
necessary, but we think the result will justify the effort.
The setup is suitable for outdoor scenes as well, and we
intend to try this soon.
As far as the lighting condition problem mentioned in
section 6 is concerned we plan to implement adaptable
thresholds, which allow assigning each room its own
threshold for marker recognition according to its prior-
known lighting.
Building the floor model is currently no comfortable task,
as one has to edit the coordinates in a text file. Right now,

ART 02

8

we make this task more convenient by providing a Map
Viewer tool, which shows the floor plan with all its
marker positions, reference points, etc. Future extensions
to make map editing more comfortable range from
working with XML files to writing a complete graphical
interaction-based Map Editor.
The quality of the tracking system could be improved by
using Kalman filters [16] to predict the user’s motion.
Based on the prediction value it should be possible to
discard erroneous measurements.
The tracking system itself should be made reusable as an
optional standalone component in the Studierstube
framework. Based on this we will be able to focus on the
application behavior and design for future location based
applications.

Acknowledgements
This work was sponsored by the Austrian Science Fund
(FWF) under contracts no. P14470-INF and START
Y193, and Vienna University of Technology by an
infrastructure lab g rant ("MARDIS"). Special thanks to
Oliver Mattausch for doing all the fantastic Japanese
markers and translating them to English and
implementing the XML to OpenInventor converter
together with Tamer Fahmy, who also initially
implemented the Pathfinding component.

Videos and pictures are available at
http://www.studierstube.org/mobile/projects/SignPost/.
For more information on the Studierstube framework see
http://www.studierstube.org/

References
[1] Addlesee, M., Curwen, R., Hodges, S., Hopper, A.,
Newman, J., Steggles, P. & Ward, A. (2001),‘A sentient
computing system’, IEEE Computer: Location-Aware
Computing .
[2] Billinghurst, M. & Kato, H. (1999), Collaborative
mixed reality, in ‘Proc. ISMR’99’, Springer Verlag,
Yokohama, Japan, pp. 261–284.
[3] F. Raab, E. Blood, T. Steiner and R. Jones. Magnetic
position and orientation tracking system. IEEE Trans. On
Aerospace and Electronic Systems, AES-15(5):709—718,
September 1979
[4] InterSense. InterSense IS-900 Wide Area Precision
Motion Tracker. http://www.isense.com/. 2002.
[5] G. Welch, G. Bishop, L. Vicci, S. Brumback, and D.
Colucci. High performance wide-area optical tracking -
the hiball tracking system. Presence: Teleoperators and
Virtual Environments 10:1. 2001.
[6] Seon-Woo Lee and Kenji Mase. Incremental Motion-
Based Location Recognition. Proc. ISWC'01. Zurich,
Switzerland, October 2001.

[7] Tobias Höllerer Drexel Hallaway, Navdeep Tinna,
Steven Feiner, „Steps Toward Accommodating Variable
Position Tracking Accuracy in a Mobile Augmented
Reality System”, Columbia University , AIMS 2001
[8] Jun Rekimoto. Matrix: A Realtime Object
Identification and Registration Method for Augmented
Reality. Proc. APCHI'98. 1998
[9] Axel Pinz. Consistent Visual Information Processing
Applied to Object Recognition, Landmark Definition, and
Real-Time Tracking. VMV'01, Stuttgart, Germany, 2001.
[10] M. Kourogi, T. Kurata and K. Sakaue. A Panorama-
based Method of Personal Positioning and Orientation
and Its Real-time Applications for Wearable Computers.
Proc. ISWC'01. Zurich, Switzerland, October 2001.
[11] Edsger W. Dijkstra, A note on two problems in
connection with graphs. Numerische Mathematik.
1:269—271, 1959
[12] Schmalstieg, D., Fuhrmann, A., Hesina, G.,
Szalavari, Z., Encarnao, L. M., Gervautz, M. &
Purgathofer, W. (2002), ‘The Studierstube augmented
reality project’, PRESENCE - Teleoperators and Virtual
Environments 11(1).
[13] Newman, J., Ingram, D. & Hopper, A. (2001),
Augmented reality in a wide area sentient environment, in
‘Proc. ISAR 2001’, IEEE, New York, New York, USA.
[14] Reitmayr, G. & Schmalstieg, D. (2001a), Mobile
collaborative augmented reality, in ‘Proc. ISAR 2001’,
IEEE, New York, New York, USA, pp. 114–123.
[15] Reitmayr, G. & Schmalstieg, D. (2001b), An open
software architecture for virtual reality interaction, in
‘Proc. VRST 2001’, ACM, Banff, Alberta, Canada, pp.
47–54.
[16] Rudolph E.Kalman (1960), “A New Approach to
Linear Filtering and Prediction Problems”, Baltimore,
Md., in ‘ASME–Journal of Basic Engineering’, 82 (Series
D): 35-45.

