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Abstract 
We present a mobile augmented reality (AR) system to 
guide a user through an unfamiliar building to a 
destination room. The system presents a world-registered 
wire frame model of the building labeled with directional 
information in a see-through heads-up display, and a 
three-dimensional world-in-miniature (WIM) map on a 
wrist-worn pad that also acts as an input device. 
Tracking is done using a combination of wall-mounted 
ARToolkit markers observed by a head-mounted camera, 
and an inertial tracker. To allow coverage of arbitrarily 
large areas with a limited set of markers, a structured 
marker re-use scheme based on graph coloring has been 
developed. 

1. Motivation 
Many visitors of our institute have a hard time finding 
their way through the complicated and poorly labeled 
corridors of our office building. We considered this 
situation a useful test case for a location-based service 
provided through our mobile augmented reality system. 
The system should guide a user on the way through the 
building by showing him directions and a floor map, 
based on context information (see Figure 1).  
A constraint in the design of our solution was that, unlike 
previous AR outdoor navigation aids, GPS is not usable 
indoors, and we also did not have access to a proprietary 
building-wide positioning infrastructure (such as AT&T 
Cambridge’s BAT system [1]). Instead, we choose to rely 
on a hybrid solution consisting of ARToolkit [2] for 
optical tracking and inertial tracking combined with room 
geometry information. This approach proved to be very 
flexible in terms of development and of positioning the 
infrastructure, but also pushes the limits of what 
ARToolkit tracking can provide. 

2. Related Work 
Location tracking is a prerequisite for any location aware 
application. In order to be able to provide the user with 
services and information related to her location, a system 
needs to sense or otherwise be told the current location of 
the user. Augmented Reality (AR) applications require a 
very accurate position tracking to register visual 
information accurately with the user’s environment. 
Otherwise the augmented information may be positioned 
incorrectly resulting in a confusing or unusable user 
interface.  
There is a wealth of work related to position tracking 
ranging from indoor systems covering a room size area to 
 

 
Figure 1. The user is guided through the building by 
the SignPost  navigation system. 

outdoor systems supporting the entire planet. This 
diversity is also present in the accuracy of tracking 
systems ranging from millimeters to several meters. 
Outdoors, GPS provides global position with accuracy 
between several meters and centimeters depending on 
additional techniques such as broadcasting correction 
signals or using the phase information of the received 
signals to improve the accuracy. However, GPS requires 
a direct line of sight to several satellites and therefore is 
not working properly inside buildings or in areas covered 
by trees or tall buildings (appropriately termed ‘city 
canyons’).  
Indoors, tethered tracking systems using magnetic [3], 
ultrasonic [4] and optical technologies [5] achieve high 
accuracy in the millimeter to centimeter range. These 
systems are typically able to cover a room and require 
installations of large devices or dense arrays of beacons 
or sensors mounted in the covered area. Another research 
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system [1] can cover a whole building but is not available 
to the public. 
Other approaches try to use local sensors and dead 
reckoning techniques to compute a user’s location [6]. 
However these are prone to accumulation of subsequent 
errors in their computations unless they are synchronized 
with absolute positioning systems. Including knowledge 
about the environment in the form of geometric models 
and accessibility graphs [7] allows increasing the 
accuracy of such approaches significantly. 
A large class of tracking solutions uses computer vision 
to track the movement of a camera. Some solutions place 
fiducial markers [8] in the environment to achieve good 
accuracy. There is also experimental work that uses 
marker free vision based tracking by selecting salient 
natural features in the environment [9] or comparing the 
camera’s view with prerecorded imagery [10]. 
Our solution is relying on using a set of trained optical 
markers together with additional knowledge about the 
environment. This allowed us to improve the performance 
of the optical tracking component by reducing the number 
of markers required for a stable operation of the system.  

3. Mobile Setup 
Our wearable AR navigation system [14] is composed of 
a notebook computer with a 1 GHz processor and an 
NVidia GeForce2Go chip for accelerated 3D graphics.  A 
Glasstron optical stereo see-through head mounted 
display is used to overlay information while providing an 
unobstructed view of the environment when roaming the 
building. In addition to that, a FireWire camera and 
InterSense InterTrax2 inertial tracker for tracking input 
are mounted to the helmet worn by the user. A wrist-
mounted tracked augmented touch pad is deployed as the 
user interface for application control and monitoring.  
The system runs the latest version of the Studierstube [12] 
software framework. Studierstube is a user interface 
management system for collaborative augmented reality, 
which addresses the question of how to use three-
dimensional interaction and new media in a general work 
environment, where a variety of tasks are carried out 
simultaneously. It supports a variety of output devices 
such as head mounted displays, projection setups and 
virtual tables. It allows multi application, multi user 
setups running on a distributed system. Several 
applications have already been developed within 
Studierstube, all of them establishing a 3D interaction 
metaphor similar powerful as the desktop metaphor for 
2D.  

4. Tracking 
In our work we used the optical tracking available from a 
single camera mounted on helmet worn by the user and 
prior knowledge on the structure of the building in form 
of a geometric model. The camera provides input for the 
ARToolkit to detect and track well-known markers that 
were distributed in the environment. By combining the 

relative marker locations computed by the ARToolkit and 
the model of the building we can than track the user’s 
movements within the environment. In addition to that we 
deployed the inertial tracker to provide frequent 
orientation updates whenever the optical tracking failed. 
The geometric model of the building is structured into 
individual rooms and the connections between these 
rooms called portals. A portal can either be a real door or 
an artificial separation of larger rooms into small areas in 
the final model. The location of a room within a world 
coordinate system completes the model. It also stores 
additional information such as room names and 
occupation. 
In each room optical markers were mounted on the walls. 
Their location was measured and added to the model (see 
Figure 2). We tried to place enough markers such that at 
any moment a user would perceive at least one marker. 
The marker’s size determines the appropriate distance 
between the user and the marker. We chose a size of 20 
by 20 centimeters to allow an average distance of about 
2.5 meters between the user and the walls. Such a size 
worked also well if the marker was only seen at grazing 
angles. 
 

 
Figure 2. This is the geometric model of the 4th and 5th 
floor of the building. The marker locations are 
indicated by the dots. The whole setup includes 25 
rooms on two floors with 25 unique markers and 40 
reusable markers. 
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4.1. Computing the user’s location within a room 
For a user standing in a room, the system can track one or 
more optical markers. The information received by the 
tracking library gives the markers location with respect to 
the camera. This information needs to be transformed to 
get the local position of the user within the room (see 
Figure 3). To do so we need to perform the following 
calculations. 
 

 
Figure 3. Four coordinate systems are involved to 
compute the user's position. U is the user's position 
and orientation, R0 the room coordinate system.  M is 
a marker’s location within that room. In order to 
handle several rooms in several floors a world or 
model coordinate system W0 is used. 

 
Combining user with marker coordinate system 
At each time step the optical tracking returns the position 
and orientation of a marker as a transform matrix TU2M. 
This describes the transformation between the local user 
coordinate system and the marker’s coordinate system. 
We need the user’s movement with respect to the fixed 
marker, therefore we compute the inverse matrix TM2U of 
the above transformation: 

1
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Computing user location within a room 
For rendering the wire frame model and providing the 
user with directional hints we need to compute the user’s 
location in respect to the room’s coordinate system. The 
desired matrix TU2R is calculated with the following 
equation: 

RMMUUR TTT 2
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The transformation TM2R is provided by the geometry file 
and contains the marker position and orientation in 
respect to the room origin Ro. Combining the current 
user’s field of vision and the knowledge from the 
navigation system, which door or portal has to be passed 

next, we can supply the user with directional hints (see 
Figure 8). 
 
Transforming to world coordinate system 
To be able to provide a consistent WIM we also have to 
take the global rooms position into account with respect 
to the world coordinate system Wo. By doing so we can 
easily render the whole floor directly from the geometry 
file to the WIM.  
One important detail during rendering is, that rotation of 
the room should always be done at the current marker 
position. This improves rendering because the angular 
precision of the optical tracking sometimes suffers from 
jitter. 
The information on the user’s position and viewing 
direction is then used to compute the direction of the 
indication arrow and to render the augmentation of 
portal’s and the room's geometry.  

4.2. Reuse of markers 
To use the approach described in the former section, we 
need to place a marker about every two meters and to 
cover each wall of a single room with at least one marker. 
Deploying markers on our floor, which covers about 25 
rooms and long hallways, would require several hundred 
different markers to be created and trained for the 
ARToolkit recognition process. However, this is not 
feasible for two reasons: 

• The more markers, the higher the degree of 
similarity of markers will be. Almost rotational 
symmetry can become a major problem when a 
large amount of markers is used. Additionally, 
lighting conditions may vary often between one 
room and another, or even within the same room. 
All this leads to inferior recognition accuracy. 
For a larger set of markers this implies a higher 
number of false recognitions. 

• A large set of markers increases the search space 
that has to be compared by ARToolkit, which 
leads to a decrease in performance. As a 
consequence, it is not possible to scale the use of 
ARToolkit to arbitrary large marker assemblies. 

To overcome this restriction, we developed a spatial 
marker partitioning-scheme that allows reusing sets of 
markers within the given environment. The idea behind 
this approach is that, if the tracking system knows the 
user’s location, it can rule out large parts of the building 
because they will not be visible to the camera. Therefore, 
for two areas, which are not visible to each other, it 
becomes possible to use the same set of markers. This 
problem is equivalent to approaches for indoor visibility 
computation based on potentially visible sets. 
We use the room definition in the geometric model as the 
basic element of this approach. Then we can build an 
adjacent graph for all rooms using rooms as nodes and 
portals between rooms as edges. In addition to the portals 
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representing logical connections we also add further 
edges that represent a line-of-sight between to rooms (see 
Figure 4). We call this second graph the extended 
adjacent graph. 
 

 
Figure 4. The adjacent graph and the extended 
adjacent graph of a part of the building. Different 
rooms are indicated by different floor colors. Each 
room is represented as a node. Black edges indicate a 
door between two rooms, gray lines indicate a line of 
sight between two rooms. In both cases disjunctive 
marker sets must be used.  

The next step is to generate a minimal number of disjoint 
sets of markers, such that each room is assigned to a set 
of markers and two criteria described next are met. This is 
similar to graph coloring problems where a minimal set of 
colors is used to color nodes in a graph with certain 
restrictions. The following constraint must be fulfilled to 
yield a useful distribution of marker sets.  

• Two nodes connected in the extended adjacent 
graph must have disjoint sets of markers. 
Otherwise the camera tracking system cannot 
decide which room the marker belongs to, if 
both instances are visible from one room. 

• Looking at one node all adjacent nodes in the 
extended adjacent graph must have disjoint 
marker sets. This constraint has to be fulfilled by 
all nodes in the extended adjacent graph. 
Otherwise the common node provides a point of 
view that allows sighting of a marker in two 
different places. 

 
Starting with a given correct room position, the system 
tracks the user within the current room and into 
neighboring rooms. It can detect a room change by 
comparing tracked markers with the sets of markers 
assigned to the current room and its neighbors. If it 
recognizes a marker from a set of a neighbor room it 
assumes that the user entered this room, which then 
becomes the current room. These reusable marker sets are 

managed by the PartitionKit, which is described in 
section 5.2. 
The major task of the PartitionKit is to toggle the nodes 
status between active and inactive whenever a room 
change happens (see Figure 5).   
 

 
Figure 5. User walks from room A (shown on the left) 
to room B (shown on the right). The corresponding 
adjacent graph is show, below each floor map. 
Current node marked with an arrow. Inactive nodes 
are drawn in gray. 

The left image shows that the current node A and its 
adjacent node B are marked active, when the user is in 
room A, while node C and D are inactive (gray). As soon 
as the user moves to room B and a room change occurs, 
the PartitionKit updates the whole adjacent graph (shown 
on the right side in Figure 5). Now the current room is 
room B and the status of both adjacent rooms A and C are 
switched to active. Note that room D is still inactive, 
because there is no line of sight between room B and 
room D.  
We extended the scheme by placing a single globally 
unique marker in every room, which can be used to re-
initialize the system in case of an error. It is also suitable 
for the determination of the current room at start up. The 
user just has to turn around until the system detects the 
unique marker and switches into “interactive mode”. This 
unique marker set is disjoint from any reusable marker 
set.  
 

4.3. Fusion 
Our mobile Augmented Reality kit is also equipped with 
an inertial orientation tracker providing low latency 
updates on the user's head orientation. The frequency of 
updates is about 100 Hz, which exceeds the update rate of 
the optical tracking by an order of magnitude. Hence we 
incorporate this information into the computation of the 
user's viewing direction in-between measurements from 
the optical tracking system. However the tracking 
information is subject to drift that can lead to large errors 
after a short period of time.  
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Therefore we need to correct the measurements of the 
inertial tracker (see Figure 6). This is implemented similar 
to the description given by Newman et al. [13]. 
 

 
Figure 6. User walks towards marker shown in three 
different time snap-shots (t0, t1,t2) with corresponding 
angles. In time step t2, no marker is tracked and the 
user‘s viewing direction is updated from the inertial 
tracker. 

Every time we receive a measurement by the optical 
tracking system, we compute the user's true head 
orientation QUserView  (see Figure 3) as described in section 
4.1. As long as at least one marker is in the user’s field of 
view, like in Figure 6 time steps t0 and t1, the Q CurrentARview  
is equal to  the  QUserView. 

Q CurrentARview :=   Q Marker = Q correction  o  Q Inertial 
Then we compute a correction orientation for the 
measured inertial orientation: 
   Q correction = Q Marker  o  (Q Inertial )-1  
When no marker is visible (see Figure 6 at time step t2), 
we have to rely on the inertial tracking information, 
which is pure angular information. In order to improve 
the tracking we use the correction term calculated, while 
optical tracking worked. The correction is then applied to 
any subsequent measurement of the inertial tracker to 
provide a correct user orientation: 

Q CurrentARview :=   Q correction  o  Q Inertial 
As soon as the optical tracking starts to send new marker 
data, the correction terms are recalculated and the user 
position is updated. 

5. Example Application 
As an example application for the described tracking 
system we developed SignPost - a system, which guides 
the user through a building from his current position to a 
selected destination room by providing the user with 
appropriate information through augmented reality. 
SignPost is built on the Studierstube framework and 
implements the described tracking solution to get 
information on the current position of the user within the 
building. The OpenTracker [15] library is used to 
integrate the ARToolkit tracking library, to transform the 
data gained from it (and other trackers) and to forward it 

over a defined interface to the Studierstube. For graphical 
output via the head-mounted display OpenInventor is 
used, which is part of the Studierstube framework.  

 
Figure 7. Word-in-Miniature (WIM) model displayed on 
the augmented wrist pad. The current room is 
highlighted in yellow, the destination room in red and 
the path in between in cyan. Three buttons below the 
WIM allow the user to set a destination room, toggle 
the wire frame and set the current room. 

5.1. Interaction 
The system continuously provides the user with two kinds 
of visual feedback: 

• Directional hints: Via the HMD a wire frame 
model of the current room is superimposed on 
top of the real scene. The application uses a 
shortest path search on an adjacency graph of the 
building to determine the next door/portal on the 
way to the destination. The doors/portals are 
always highlighted in white. In addition, a 
direction arrow shows the direction to the next 
door or portal (see Figure 8), indicating either to 
move forward, turn left/right or to make a U-
turn. The wire frame overlay can be turned on 
and off optionally by the user. 

• WIM model on wrist pad: The WIM (“world in 
miniature”) model always shows a full miniature 
view of all rooms on the floor in order to allow 
the user to determine his current position in the 
building, which is always highlighted in yellow 
(see Figure 7). Additionally the path to the 
selected destination room is highlighted in cyan, 
while the destination room itself is shown in red. 
An ARToolkit marker is placed onto the wrist 
pad allowing the application to track the position 
of the wrist pad. Thus, the user can bring the 
WIM model into his view by moving his arm 
with the wrist pad in front of his eyes. As a 
consequence, the WIM model does not 
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permanently cover the screen, and the user can 
decide when he wants the floor plan to be 
displayed. Moreover, he can adjust the size by 
moving his arm nearer to his eyes or farther 
away.   The wrist pad enables the user to select a 
destination room as well as to toggle the wire 
frame mode mentioned above. 

The SignPost application uses a scene graph based on a 
floor plan loaded from an OpenInventor file. In the 
application actually two scene graphs are used. The first 
scene graph is used for the WIM model on the wrist pad. 
One whole floor is shown at a time. 
 

 

Figure 8. Information overlay in the head mounted 
display. Red arrow shows the direction. The name of 
the current room is overlaid below the arrow. The blue 
writing is part of the room geometry and coupled with 
the green wire frame model of the room. 

The second scene graph is used to display the wire frame 
model of the current room in the head-mounted display. 
Only the current room is shown and all other rooms are 
disabled and not rendered. The overlaid wire frame 
geometry is aligned with the real room geometry and 
continuously updated, using data from optical and inertial 
tracking.  
Once the marker of the wrist pad gets into the user’s field 
of vision the WIM is displayed and the user may interact 
via the wrist pad. 
 

5.2. Partition Kit 
We extended the OpenInventor scene graph with several 
nodes, which are used by our application and can also be 
used by other applications. Two of these nodes are the 

PartitionKit and the StationKit. Each room in the 
OpenInventor scene graph is attached to a StationKit, 
which contains information on the room and the 
references to the marker set of that room. The PartitionKit 
manages the disjunctive sets of reusable markers. Based 
on the extended adjacent graph described in section 4.2 
we improve the performance of the marker detection, 
because only markers in the current room and the 
adjacent rooms are used for detection. The major 
contribution of the PartitionKit is, that it forwards 
tracking events only to the nodes of the current room and 
its adjacent rooms. For this part of the application we 
only need the adjacent graph, but we do not need the 
extended adjacent graph (see Figure 4). Without the 
PartitionKit all existing markers would be compared with 
the current one, which could lead to a spontaneous room 
change to a different floor. This improves the fault 
tolerance of the whole application.  

5.3. PathFinder Algorithm 
Assuming you have a number of rooms connected by 
doors, it is common to handle them by means of a 
directed adjacent graph. Each room is represented as a 
node. An edge is inserted between two nodes, if two 
rooms are connected via a door or a portal. Using a 
directed graph, it is possible to map one-way doors, like 
emergency exits, in the adjacent graph.  
The SignPost application uses its so-called PathFinder-
component for searching the shortest path from the user’s 
current position to the desired destination. After loading 
the floor-plan file, the PathFinder builds an adjacent 
graph based on the coherency information provided in the 
file. The PathFinder determines the coordinates of the 
room center and the portals. Then for each room it 
calculates the distances from the room center to all the 
portals of the and further from the portals to the room 
centers of the subsequent rooms. 
Using this adjacent graph, the PathFinder is able to 
indicate whether there is a coherent path from a certain 
room to another one, and how long the way is. It is most 
important for our application that the PathFinder returns a 
list of the rooms and portals, which have to be passed 
along the path. This is done by utilizing an algorithm 
based on the shortest path algorithm, which was 
introduced by Dijkstra [11]. 
Although the PathFinder could recalculate and update the 
shortest path several times per second, in the SignPost 
application a new path is only calculated when a room-
change occurs. A room-change happens, whenever 
ARToolkit recognizes a marker of an adjacent room. The 
PathFinder always adapts the shortest path starting from 
the current room. So even if the user walks the wrong 
way, a new shortest path based on the user’s current 
position is proposed. 
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6. Results 
The current model used for development and testing 
purposes covers parts of two adjacent floors in our office 
building. Data acquisition was very work intensive since 
available digital maps proved insufficiently accurate for 
AR applications. Initial experiences show that the scheme 
works quite well, but is heavily relying on sufficient 
marker density. Acceptable results require a marker every 
2-3m in a hallway and at least 4 markers per room. As 
can be expected, the more markers are used the less jitter 
of the registered wire frame is perceived. The gaps 
between the markers are avoided by using the inertial 
tracker. This means that the user can continue on his way 
without viewing a marker for some meters. Unfortunately 
the inertial tracker sometimes starts to drift in one 
direction leading the user to bear away from his path. 
Heading to a wall and viewing a marker from a close 
position adjusts the path shown on the users’ view to the 
correct path again. 
 

 
Figure 9. Mobile Setup running the SignPost 
application. Augmentation of the wire frame model 
and directional hints guide the user to the desired 
location. User holds PIP in right hand and the WIM is 
overlaid on top of it.  

We found, that the degree of correct marker recognition 
relies heavily on the light conditions in the rooms. 
ARToolkit provides a very useful feature to address this 
problem: One can assign a threshold to marker 

recognition, which influences the lightness at which a 
marker is recognized properly. However, in our 
application we are confronted with varying light 
conditions from one room to another or even in a room. 
Some rooms are filled with sunlight from several 
windows, other rooms are illuminated from neon lamps 
and some hallways are very gloomy, especially when a 
few lamps are out of order. 
Consequently our application makes high demands on the 
marker recognition pushing ARToolkit to its limits. We 
propose an idea to address this problem in section 7. 
Sometimes, markers still are confused by ARToolkit and 
erroneously recognized as other markers.  A solution to 
this problem is provided by our marker-structuring 
scheme more or less as a side-effect: Whenever 
ARToolkit cannot clearly distinguish a marker from one 
or more other markers, it happens that multiple marker 
IDs are proposed by the system. Due to marker-
structuring (and the PartitionKit), most of the marker IDs 
can be dropped – because it is sure that they are not in the 
line of sight – leaving (in the majority of cases) one 
marker which can be clearly identified. Thus, the 
PartitionKit also helps with uniquely identifying markers, 
even when a larger amount of markers is used. 
 

7. Conclusion and Future Work 
We described an autonomous Augmented Reality indoor 
navigation system (see Figure 9), which makes use of 
visual ARToolkit markers, thus keeping the costs of the 
system rather inexpensive. The system incorporates an 
elaborate marker-structuring scheme, which enables the 
re-use of ARToolkit markers in rooms that are not in line 
of sight. The algorithm is based on adjacent graphs, 
which are also used for finding the shortest path to a 
desired destination. The big advantage of our approach is, 
that the total number of markers incorporated in the 
recognition process is reduced to a minimum. The re-
using marker set concept in combination with the 
extended adjacent graph (see section 4.2) grants a very 
small total amount of markers. Thus, it is possible to 
provide a whole building with only a few marker sets. 
We plan to extend our digitized map to all floors of our 
building as more comprehensive location based services 
can be integrated into the guide with a more complete 
model. For this amount of digitalization work, 
professional grade surveying equipment will be 
necessary, but we think the result will justify the effort. 
The setup is suitable for outdoor scenes as well, and we 
intend to try this soon. 
As far as the lighting condition problem mentioned in 
section 6 is concerned we plan to implement adaptable 
thresholds, which allow assigning each room its own 
threshold for marker recognition according to its prior-
known lighting. 
Building the floor model is currently no comfortable task, 
as one has to edit the coordinates in a text file. Right now, 
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we make this task more convenient by providing a Map 
Viewer tool, which shows the floor plan with all its 
marker positions, reference points, etc. Future extensions 
to make map editing more comfortable range from 
working with XML files to writing a complete graphical 
interaction-based Map Editor.  
The quality of the tracking system could be improved by 
using Kalman filters [16] to predict the user’s motion. 
Based on the prediction value it should be possible to 
discard erroneous measurements. 
The tracking system itself should be made reusable as an 
optional standalone component in the Studierstube 
framework. Based on this we will be able to focus on the 
application behavior and design for future location based 
applications. 
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