
UNCORRECTED P
ROOF

Computers & Graphics 0 (]]]]) ]]]–]]]

Technical section

Real-time view-dependent image warping to correct non-linear
distortion for curved virtual showcase displays

Oliver Bimbera,*,1, Bernd Fr .ohlicha, Dieter Schmalstiegb, L. Miguel Encarna@*aoc

aBauhaus University Weimar, BauhausstraX e 11, 99423 Weimar, Germany
bVienna University of Technology, Favoritenstrasse 9-11/188, A-1040 Vienna, Austria

cFraunhofer Center for Research in Computer Graphics, 321 South Main St., Providence, RI 02903, USA

Abstract

We present a quadtree-based selective refinement algorithm for real-time, view-dependent image warping used to

present images with mirror displays that require a non-linear predistortion. The algorithm applies two-pass rendering,

and recursively generates and selectively refines the underlying image grid with locally adapted levels of detail. Each

discrete level of detail is determined by computing and evaluating the displacement error on the image plane within the

image space of the mirror optics. The algorithm generates and refines only those image portions that contain visible

information by considering an oriented convex container of the rendered scene. While display specific details of the

algorithm are explained based on the more complex case of a particular mirror display, the Virtual Showcase its general

functionality is valid for other non-linear displays.

r 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Display algorithms; Viewing algorithms; Hierarchy and geometric transformations; Augmented and virtual realities

1. Introduction and contribution

Displays that require a non-linear predistortion to

present undistorted images on non-planar surfaces (e.g.

[1–3]) or to neutralize optical distortion (e.g. [4–6])

usually apply multi-pass rendering techniques. Projec-

tive textures [7] or uniform grids are used to deform the

image generated during the first pass before it is

displayed as a texture map during the final pass.

However, these approaches do not consider the error

generated from a piecewise linear texture interpolation

to adapt the underlying geometry.

For instance, curved mirror displays that stereosco-

pically produce three-dimensional images generally do

not predistort the graphics before they are displayed.

Yet, some systems apply additional optics, such as

lenses, to stretch or undistort the reflected image (e.g.

[8,9]). However, these devices constrain the observer to a

single point of view or to very restricted viewing zones.

For the Virtual Showcase mirror display [4] a view-

dependent rendering is required to support freely

moving observers. The existing image warping algo-

rithms for curved Virtual Showcases predistort a

uniform image grid and consequently do not consider

the local error that is generated from a piecewise linear

texture interpolation. These algorithms can only pro-

duce an acceptable image quality within a significantly

large amount of rendering time.

The algorithm presented in this article improves the

uniform image warping techniques for curved Virtual

Showcases by defining an appropriate error metric

and implementing a quadtree-based selective refinement

method that generates adapted local levels of detail.

It attempts to approaches to produce a predefined

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

3B2v7:51c
GML4:3:1 CAG : 1223 Prod:Type:COM

pp:1214ðcol:fig::NILÞ
ED:SusanKoshy

PAGN: kesiya SCAN: Ani

*Corresponding author. Tel.: +49-3643-58-3724; fax: +49-

3643-58-3707.

E-mail addresses: oliver.bimber@medien.uni-weimar.de

(O. Bimber), bernd.froehlich@medien.uni-weimar.de (B. Fr.ohlich),

dieter@cg.tuwien.ac.at (D. Schmalstieg), me@crcg.edu

(L.M. Encarna@*ao).
1Formerly at: Fraunhofer Center for Research in Computer

Graphics, USA.

0097-8493/02/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0097-8493(03)00087-6



UNCORRECTED P
ROOF

image quality within a minimum amount of rendering

time.

While display specific details of our algorithm are

explained based on the Virtual Showcase display, its

general functionality is valid for other non-linear

displays, such as for curved projection-based systems.

2. Background

In [4] a new mirror display is presented—the Virtual

Showcase. It consists of two main parts: the actual

showcase covered with a half-silvered mirror coating

and a stereoscopic graphics display underneath that is

reflected towards the observer. By making use of optical

see-through technology, it allows the three-dimensional

graphical augmentation of real artifacts placed inside

the Virtual Showcase and supports multiple tracked

users looking at the Virtual Showcase from different

sides. This functionality is supported by the fact that the

Virtual Showcase has the same form factor as a real

showcase traditionally used for museum exhibits.

Our cone-like prototype is particularly intriguing (cf.

Fig. 1). It consists of a single convex curved mirror

sheet, which provides an edge-free and seamless

surround view onto the displayed artifact. Nevertheless,

curved mirrors introduce a curvilinear optical deforma-

tion of the reflected image.

An image-based two-pass rendering method has been

presented in [4], which warps a generated image by

projecting it individually for each pixel (cf. Fig. 2): First,

an image of the showcase’s virtual content is generated

from the observer’s point of view using a traditional on-

axis perspective projection (cf. Fig. 2-left). This image is

geometrically approximated by a simple uniformly

tessellated grid that is transformed into the current

viewing frustum in such a way that it is positioned

perpendicular to the optical axis. Next, the grid vertices

are transformed with respect to the viewpoint and the

mirror optics and projected onto the display surface (cf.

Fig. 2-center). Finally, the image that was generated

during the first pass is mapped onto the warped grid

using texture mapping and bi- or tri-linear texture

filtering during the second pass (cf. Fig. 2-right). This

process is repeated for multiple individual viewpoints

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

Fig. 2. The image-based two-pass rendering method that is used with a uniform tessellated image gird.

Fig. 1. A head-tracked user (left) observes a warped image (right) inside the Virtual Showcase.

O. Bimber et al. / Computers & Graphics 0 (]]]]) ]]]–]]]2

CAG : 1223



UNCORRECTED P
ROOF

when stereoscopic viewing and/or multiple observers

need to be supported.

3. Motivation

If image warping is applied for a non-linear predis-

tortion, the required grid resolution of the underlying

image geometry depends on the degree of curvilinearity

that is introduced by the display (e.g. caused by the

properties of a mirror, a lens, or a projection surface).

Pixels within the triangles of the warped image mesh are

linearly approximated during rasterization (i.e. after the

second rendering pass). Thus, some image portions

stretch the texture while others compress it. This results

in different local image resolutions.

If, on the one hand, the geometric resolution of an

applied uniform grid is too coarse, texture artifacts are

generated during rasterization (cf. Fig. 11a). This

happens because a piecewise bi- or tri-linear interpola-

tion within large triangles is only a crude approximation

to neutralize the curvilinear optical transformations. If,

on the other hand, the grid is oversampled to make the

interpolation sections smaller (cf. Fig. 11b), interactive

frame rates cannot be achieved.

In addition to the speed of the first rendering pass, the

performance of view-dependent multi-pass methods

depends mainly on the complexity of the image

geometry that influences geometric transformation times

and on the image resolution that influences texture

transfer and filter times.

This article focuses on the image geometry. We

introduce a selective refinement method that generates

image grids with appropriate local grid resolutions on

the fly. This method avoids oversampling and the

occurrence of artifacts within the final image. Note that

we do not consider a level-of-detail refinement of the

scene geometry that is rendered during the first pass.

Although this would also reveal an additional speedup

for the overall rendering process, it is out of the scope

of this article. The interested reader may be referred to

the extensive work that has been done in this area

(e.g. [10–16]).

The main difficulty for a selective refinement method

that supports mirror displays is that in contrast to

simpler screens, a displacement error that defines the

refinement criterion has to be computed within the

image space of the mirror optics, rather than in the

screen space of the display. For convexly curved mirrors,

this requires fast and precise numerical methods. For

displays that do not contain view-dependent optical

components (e.g. curved screens), these computations

are much simpler because analytical methods or look-up

tables can be used to determine the error within the

object space (e.g. the screen space).

While Section 5 first presents our image triangulation

approach, Section 6 outlines the general recursive grid

generation algorithm. Section 7 describes our main

generation and refinement criteria, and how to efficiently

compute them to achieve interactive framerates. Since

the computations of the refinement criteria are partially

display specific, some components are explained using

the example of the cone-shaped Virtual Showcase.

Finally, Section 8 presents the results that have been

achieved for our example, and Section 9 outlines the

display specific components of the algorithm and

describes how they can be adapted for other displays.

4. Related work

The presented work is influenced by two major areas

of computer graphics and visualization research and

development. Developers of different types of displays

need to predistort images in order to compensate for

distortion caused by the particular display. On the other

hand, the real-time visualization and transformation of

complex geometry requires the introduction of areas of

interest and corresponding different levels of detail in

the rendering process. The following sub-sections out-

line the related work in both areas.

4.1. Warping for displays

Most traditional displays are designed as centered

optical systems. The optics used for head-mounted

displays (HMDs), for instance, are normally placed

perpendicular on the optical axis (on-axis) and conse-

quently allows for an efficient predistortion to correct

geometrical aberrations during rendering. Rolland and

Hopkins [17] describe a polygon-warping technique as

one possible distortion correction method for HMDs.

Since the optical distortion for HMDs is constant, a

two-dimensional lookup table is precomputed that maps

projected vertices of the virtual objects’ polygons to their

predistorted location on the image plane. This approach

requires subdividing polygons that cover large areas on

the image plane. Instead of predistorting the polygons of

projected virtual objects, the projected image itself can

be predistorted, as described by Watson and Hodges [5],

to achieve a higher rendering performance.

Several projection-based displays apply multi-pass

rendering and image warping to present undistorted

images on non-planar and off-axis surfaces. Raskar et al.

[3], for instance, apply projective textures [7] and three-

pass rendering to seamlessly project images onto static

real surfaces. Subsequently, Bandyopadhyay et al. [1]

demonstrated the same approach for movable surfaces.

Yang et al. [6] propose to warp uniform grids in

combination with multipass rendering to support multi-

ple roughly aligned projectors displaying a unified high-

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

O. Bimber et al. / Computers & Graphics 0 (]]]]) ]]]–]]] 3

CAG : 1223



UNCORRECTED P
ROOF

resolution image onto a planar surface. Van Belle et al.

[2] integrate geometric predistortion methods that apply

image warping into the projector hardware.

Projecting undistorted images with zero-parallax onto

planar or non-trivial static (i.e. movable but not deform-

able) surfaces does not require a view-dependent

warping however, even though the generation of the

image content might be view dependent.

In contrast to the display approaches described above

predistortion for non-centered off-axis displays that

possibly integrate additional elements such as curved

mirrors or lenses, into the optical path do require a view-

dependent image generation and warping. This is also

the case for curved Virtual Showcases.

4.2. Level of detail rendering

Recent advances in level-of-detail (LOD) rendering

take advantage of temporal coherence to adaptively

refine geometry between subsequent frames. Especially,

terrain-rendering algorithms locally enhance terrain

models by considering viewing parameters.

Hoppe introduced progressive meshes [11] and a later

developed a view-dependent refinement algorithm for

progressive meshes [12,13]. Given a complex triangle

mesh, Hoppe first pregenerates a coarse representation

called base mesh by applying a series of edge collapse

operations. A sequence of precomputed vertex split

operations that are inverse to the corresponding edge

collapse operations can then be applied to the base

mesh’s regions of interest to successively refine them.

The selection of the appropriate vertex split operations

is based on his refinement criteria. Lindstrom [15]

describes a method that generates a view-dependent

and continuous LOD of height fields dynamically in

real-time, instead of precomputing a coarse base mesh

and a sequence of refinement steps. He hierarchically

subdivides a regular height field into a quad-tree of

discrete grid blocks with individual LODs. Beginning

with the highest LOD, Lindstrom locally applies a two-

step surface simplification method: he first determines

which discrete LOD is needed for a particular region by

applying a coarse block-based simplification, and then

performs a fine-grained re-triangulation of each LOD

model in which vertices can be removed. To satisfy

continuity among the different LODs, Lindstrom

considers vertex dependencies at the block boundaries.

The main difference between both methods is that

Lindstrom performs a dynamic simplification of high-

resolution height fields for domains in R2 during

rendering. Lindstrom’s mesh definition provides an

implicit hierarchical LOD structure. Hoppe applies

refinement steps to low-resolution LODs of arbitrary

meshes during rendering. His mesh definition is more

general and does not require an implicit hierarchical

LOD structure. Consequently, the refinement steps and

the low-resolution base mesh have to be precomputed.

In addition, he applies triangulated irregular networks

(TINs) for triangulation, rather than regular grids. Note

that these two types of refinement methods may be

representative for related techniques.

Since our image grid can also be parameterized in R2

and provides an implicit hierarchical LOD structure,

multiple LODs or appropriate refinement steps do not

need to be precomputed but can be efficiently deter-

mined on the fly. This is similar to Lindstrom’s

approach. However, simplifying a high-resolution mesh

instead of refining a low-resolution mesh would require

to re-transform all grid vertices of the highest LOD after

a change of the viewpoint occurred. This is very

inefficient, since for the type of displays that we consider,

viewpoint changes normally happen at each frame.

In contrast to the static geometry that is assumed in

Lindstrom’s and Hoppe’s case our image-grid geometry

is not constant but dynamically deforms with a moving

viewpoint. Consequently, the geometry within all LODs

dynamically changes as well.

Therefore, we propose a method that dynamically

deforms the image geometry within the required LODs

while selectively refining the lowest-resolution base mesh

during rendering. The method aims at minimizing the

displacement error of the image portions, the complexity

of the image geometry and consequently the number of

vertex transformations and triangles to be rendered.

5. Image triangulation

Instead of transforming and rendering a uniform

high-resolution mesh, we start from the coarsest

geometry representation and successively refine it locally

until certain refinement criteria are satisfied. Due to the

well-defined structure of our image grid, all possible

global or discrete LODs can be computed at runtime—

including the highest, which is the uniform high-

resolution representation of the mesh itself.

Fig. 3 illustrates our quadtree-based image triangula-

tion approach, which is similar to Lindstrom’s triangu-

lation method for height fields [15]. While Fig. 3-left

shows an unrefined patch at LOD n; Fig. 3-right shows
the same patch at LOD n þ 1 with lower LOD

neighbors. Given a highest LOD of m; we chose an
indexed ð2m þ 1Þ � ð2m þ 1Þ matrix structure to store the
grid vertices.

For illustration purposes we want to differentiate

between the following types of patch vertices:

* L-vertices are vertices at the corners of a patch (e.g. at

indices ½i; j�; ½i; l�; ½k; l� and ½k; j� in Fig. 3-left);
* X-vertices are vertices at the center of a patch (e.g. at

index ½ðk � iÞ=2; ðl � jÞ=2� in Fig. 3-left);

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

O. Bimber et al. / Computers & Graphics 0 (]]]]) ]]]–]]]4

CAG : 1223



UNCORRECTED P
ROOF

* T-vertices are vertices that split the patch edges after

refinement (e.g. at indices ½i; ðl � jÞ=2�; ½k; ðl � jÞ=2�;
½ðk � iÞ=2; l�; and ½ðk � iÞ=2; j� in Fig. 3-right).

To refine a patch, it is divided into four sub-patches

by computing the corresponding four T-vertices, as well

as the four X-Vertices that lie inside the sub-patches.

Note that the matrix structure is in our particular case

equivalent to a quad-tree data structure. To ensure

consistency during rasterization, the T-vertices have to

be connected to their neighboring X-vertices wherever a

LOD transition occurs, for example at all four neighbors

of the refined patch, as shown in the example illustrated

in Fig. 3-right.

Due to the well-defined matrix structure that contains

the image grid, the following conditions are given:

(i) A clear relationship between the X-vertices and T-

vertices exists: X-vertices can never be T-vertices,

and vice versa.

(ii) Each patch has definite L-vertices, T-vertices and

X-vertices, whose indices can always be computed.

(iii) Each X-vertex can be explicitly assigned to a single

patch at a specific LOD.

(iv) Each T-Vertex can be explicitly assigned to exactly

one or two adjacent patches at the same LOD.

The triangulation methods described above require

continuous level-of-detail transitions [16]. This implies

that neighboring patches do not differ by more than one

LOD.

6. Recursive grid refinement

The objective of this step is to generate an image grid

that provides a sufficient local grid resolution (i.e.

appropriate discrete LODs) to avoid artifacts within

the rasterized texture that would result from under-

sampling, as well as oversampling.

The following pseudo-code illustrates our approach to

recursively refine a grid patch, which initially is

equivalent to the lowest LOD (i.e. the patch at the

lowest LOD is outlined by the L-vertices at the four

corners of the image geometry):

Algorithm 1. Recursive grid refinement.

RecursiveGridRefinementði; j; k; lÞ
1: begin

2: a ¼ ðk � iÞ=2; b ¼ ðl � iÞ=2
3: if GeneratePatchð½i; j�; ½i; l�; ½k; l�; ½k; j�; ½a; b�Þ
4: begin

5: TransformPatchVerticesð½i; j�; ½i; l�; ½k; l�; ½k; j�; ½a; b�Þ
6: P ¼ P,f½i; j; k; l�g
7: if RefineFurtherð½i; j�; ½i; l�; ½k; l�; ½k; j�; ½a; b�Þ
8: begin

9: RecursiveGridRefinementði; j; a; bÞ
10: RecursiveGridRefinementða; j; k; bÞ
11: RecursiveGridRefinementði; b; a; lÞ
12: RecursiveGridRefinementða; b; k; lÞ
13: if jo2m þ 1 TC½a; j�þ ¼ 1

14: if ko2m þ 1 TC½k; b�þ ¼ 1

15: if l > 1 TC½a; l�þ ¼ 1

16: if l > 1 TC½i; b�þ ¼ 1

17: end

18: end

19: end

The patch that has to be refined is stored at indices

i; j; k; l within our matrix structure. Condition (ii) allows
us to locate the position of the patch-individual X-vertex

at indices a; b (line 2). First, we evaluate whether or not a
patch has to be generated at all (line 3). The conditions

that are implemented within the GeneratePatch function

will be discussed in Section 7.1. The four L-vertices and

the X-vertex are transformed from the image plane to

the display surface (line 5)—as outlined in Section 2 and

described in detail in [4]. For the Virtual Showcase the

image plane is located within the image space of the

mirror optics. In this case, these mappings composite the

vertex individual model-view transformations to neu-

tralize reflection and refraction, as well as the projection

transformation that maps a vertex onto the display

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

Fig. 3. Triangulation of unrefined patch at LOD n (left), and triangulation of refined patch at LOD n þ 1 with resolution transitions

(right).

O. Bimber et al. / Computers & Graphics 0 (]]]]) ]]]–]]] 5

CAG : 1223



UNCORRECTED P
ROOF

surface. Note that vertices are only transformed once—

even if the recursive refinement function addresses them

multiple times. This is realized by attaching a marker

flag to each vertex. A reference to the transformed patch

is stored in patch set P by adding the patch’s indices to P

(line 6). In line 7, we call a function that evaluates the

transformed patch based on predefined refinement

criteria and decides whether or not this patch has to

be further refined. Our main refinement criterion is

described in Sections 7.2–7.4. If this decision is positive,

the patch is divided into four equal sub-patches and the

refinement function is recursively called for all of these

sub-patches (lines 9–12). Note that condition (ii) also

allows us to determine the indices of the patch’s four

T-vertices, which become L-vertices of the sub-patches

in the next LOD. Consequently, the GeneratePatch and

the RefineFurther functions represent the exit conditions

for the recursion.

In Section 5.1 we said that T-vertices have to be

connected to their neighboring X-vertices whenever an

LOD transition occurs to ensure consistency during

rasterization. To detect LOD transitions, we attach a

counter (TC) to each T-vertex. This counter is incre-

mented by 1, each time the corresponding T-vertex is

addressed during the recursive refinement (lines 13–16).

Note that the if-conditions ensure a correct behavior of

the counter at the image geometry’s boundaries. Due to

condition (iv) each counter can have one of the

following three values:

* 0: indicates that the T-vertex is located at a boundary

edge of the image geometry or it is contained by a

discrete LOD that is higher than the required one for

the corresponding region.
* 1: indicates a LOD transition between the two

neighboring patches that—with respect to condition

(iv)—belong to the T-vertex.
* 2: indicates no resolution transition between the two

neighboring patches that belong to the T-vertex.

After the image grid has been completely generated,

all patches that are referred to in P are rendered with

appropriate texture coordinates during the second

rendering pass. Thereby, the counters of the patch’s

four T-vertices are evaluated. Depending on their values,

either one or two triangles are rendered for each

counter. These triangles form the final patch. Counter

values of 0 or 2 indicate no LOD transition between

adjacent patches. Consequently, a single triangle can be

rendered, which is spanned by the T-vertex’s neighbor-

ing two L-vertices and the patch’s X-vertex, illustrated

in Fig. 3-right. A counter value of 1, however, indicates

a LOD transition. According to Section 5.1, two

triangles have to be rendered that are spanned by the

T-vertex itself, the two neighboring L-vertices and the

X-vertex of the adjacent patch, illustrated in Fig. 3-left.

7. Generation and refinement criteria

This section discusses the patch generation and

refinement criteria that are implemented within the

GeneratePatch and RefineFurther functions. The input

for these functions is the four L-vertices, as well as the

X-vertex of a patch. They deliver the Boolean value true

if the patch has to be generated, transformed, rendered

or further refined, or false if this is not the case.

The GeneratePatch function that supports an appro-

priate image clipping, and an evaluation criterion that

considers the scene’s convex container is described in

Section 7.1.

In general, the RefineFurther function can represent a

Boolean concatenation of multiple refinement criteria,

such as maximal patch size, angular deformation, etc.

An important refinement criterion for LOD methods is

the screen space error. Since the computations of this

displacement error are display specific, we describe an

important variation of the screen space error that can be

applied for convex mirror displays—the image space

error. This error is explained in greater detail in Sections

7.2–7.4.

7.1. Spatial limits

The multi-pass rendering method that is described in

Section 2 uses the scene’s bounding sphere to determine

the parameters of the symmetric viewing frustum and

the image size (cf. Fig. 2-left). Since all image generation

methods assume a rectangular image shape that is

adapted to today’s screen shapes, the bounding sphere

provides enough information to determine the rectan-

gular image size.

Bounding spheres, however, are only rough approx-

imations of the scene’s extensions and consequently

cover a fairly large amount of void space. This

void space results in grid patches on the image plane

whose texture does not contain visible color informa-

tion.

To speed up our method, we aim at avoiding these

patches while creating the image grid. This implies that

these patches are not transformed and refined during the

RecursiveGridRefinement algorithm and that they are

not rendered during the second rendering pass. As a

result our algorithm generates and renders an image grid

that is not rectangular but dynamically approximates

the silhouette of the scene as perceived from the

observer’s perspective. A condition that causes the

recursion to exit in these cases is implemented within

the GeneratePatch function: We evaluate a tighter

convex container, such as an oriented convex hull or a

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

O. Bimber et al. / Computers & Graphics 0 (]]]]) ]]]–]]]6

CAG : 1223



UNCORRECTED P
ROOF

bounding box, of the scene that is generated either in a

prepreprocess for static objects, or at runtime for

animated scenes. For each untransformed patch that is

passed recursively into the RecursiveGridRefinement

algorithm, we have to determine whether the container

is visible on that patch—partially or as a whole.

Our approximation is twofold: First, we intersect

the geometric lines of sight from e to all four L-vertices

of the patch with the front-facing portion of the

container. Second, we intersect the geometric lines of

sight from e to front-facing container vertices

with the patch. If at least one of the resulting rays

causes an intersection, the patch might contain visible

color information and it will be further processed. If,

however, none of the rays cause intersections, the patch

is not treated further (i.e. it will not be transformed nor

refined or rendered). If the convex container is

represented as a triangle mesh, a fast ray-triangle

intersection method [18] is applied together with the

front-facing container triangles. Note that as for vertex

transformations, the intersection information are buf-

fered and looked up in the memory, rather than re-

computing them multiple times while evaluating adja-

cent patches.

We use oriented convex hulls as containers.

It is obvious that the complexity of the container

influences the performance of this method. Although a

precise container can eliminate a maximum number

of patches, the number of intersection tests increases

with the container’s number of vertices and polygons.

Our experiments have shown that the highest

speedups are reached if the container is as simple as an

oriented bounding box or a very coarse but tighter

convex hull (cf. Figs. 6, 7, 11). However, the complexity

of the convex hull that maximizes the speedup and

balances intersection tests with patch generations

depends on the scene and the required rendering

precision.

7.2. Image space error

The consideration of the screen space error that is

determined relative to a display surface is a common

measure for many computer graphics methods (e.g.

[12,13,15]). In contrast to traditional displays, curved

mirror displays create a view-dependent, non-planar image

surface, which is located inside the mirror optics.

Consequently, an appropriate error function has to

consider this optical transformation. Our error is deter-

mined by first warping the curved image surface into an

image plane, and then computing the screen space error on

this plane. We call this error image space error ðdisÞ:
The image space error is a variation of a screen space

error that can be computed for convex mirror displays

that present the image plane within the image space of

their optics, rather than on a display surface. We want to

define the image space error as the geometric distance

between the desired position ðvd Þ and the actual

appearance ðvaÞ of a point on the image plane.

Consequently, the image space error is given by dis ¼
jvd � vaj and delivers results in image space coordinates
(e.g. mm in our case).

In case of our Virtual Showcase mirror optics, the

image space is the reflection of the object space (i.e. the

physical display screen in front of the mirror optics) that

optically overlays the physical space inside the Virtual

Showcase. In addition, the optically deformed pixels do

not maintain a uniform size within the image space. They

are deformed in exactly the same way as the entire image

after being reflected from the object space into the image

space—although on a smaller scale. Consequently, we

chose the Euclidean distance between geometric points as

an error metric, rather than expressing the image space

error with a uniform pixel size.

For any given pixel on the transformed patch with

texture coordinates u; v; we can compute dis as follows

(cf. Fig. 4):

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111Fig. 4. Samples on transformed patch (left). The distance between desired and actual appearance of samples near the untransformed

patch results in the image space error (right).

O. Bimber et al. / Computers & Graphics 0 (]]]]) ]]]–]]] 7

CAG : 1223



UNCORRECTED P
ROOF

First, we determine the pixel’s world coordinate v00 at

u; v within the object space (i.e. on the display surface).
Note that the pixels, which are mapped onto the patch’s

transformed vertices, optically appear at their correct

locations on the image plane inside the image space.

This is because their exact mappings have been

determined during the patch’s transformation. This

transformation considers the laws of geometric optics,

for example reflection and refraction laws. Note also

that the pixels that are displayed anywhere else (i.e.

inside one of a patch’s triangle) do not necessarily

appear at their correct locations on the image plane.

This is because their positions on the display surface are

approximated by a linear texture interpolation, rather

than by optical laws.

The second step is to determine the position of the

optical image ðv0Þ of v00 within the image space of the

mirror optics. The projection of v0 onto the image plane

results in va: The transformation from v00 to va will be

discussed in detail in Section 7.3.

In an ideal case, va is located at the position that also

maps to the texture coordinates u; v within the un-

transformed patch. We can identify the location that

does this as our desired image position vd : However, if
vaavd ; the image space error dis for this pixel is non-

zero.

We chose to compute the image space errors for the

four points on the transformed patch (4-left) that should

map to the patch’s T-vertices on the untransformed

patch (4-right) as if the image space errors were zero for

these positions. Obviously, this is not the case in our

example, shown in Fig. 4-right.

Since the untransformed patch is a rectangular quad,

small image space errors suggest that the optical

mapping between the transformed and untransformed

patch is linear. Furthermore, we can then conclude that

a linear texture interpolation within the displayed

transformed patch produces approximately correct

results while being mapped (i.e. reflected and refracted)

into image space. Consequently, we can say that the

resulting image space errors describe a patch’s curvili-

nearity at the representative pixel locations.

To decide whether or not a patch has to be further

refined, we determine the largest of the four image space

errors. If it is above a predefined threshold value %dis the

patch has to be further refined and the RefineFurther

returns true.

7.3. Computing object–image reflections

To compute va from a given viewpoint e; the object
point v00 and the optic’s geometry is equivalent to finding

the extremal Fermat path from v00 to e via the optics. In

general, this would be a difficult problem of variational

calculus.

Beside ray- and beam-tracing approaches, several

methods have been proposed that approximate reflec-

tion on curved mirrors to simulate global illumination

phenomena within rendered 3D scenes. All of these

methods face the above mentioned problem in one or

the other way.

Mitchell and Hanrahan [19], for instance, solve a

multidimensional non-linear optimization problem for

explicitly defined mirror objects ðgðxÞ ¼ 0Þ with interval
techniques. To compute reflected illumination from

curved mirror surfaces, they seek the osculation ellipsoid

that is tangent to the mirror surface, whereby its two

focal points match the light source and the object point.

For a given viewpoint e; Ofek and Rappoport [20]

spatially subdivide the object space into truncated tri-

pyramid shaped cells. In contrast to solving an

optimization problem, they apply accelerated search

techniques to find the corresponding cell that contains

the object v00 at interactive rates.

While Mitchell’s multidimensional optimization ap-

proach is far from being applied at interactive rates,

Ofek’s search method offers a good approximation for

rendering global illumination effects, such as reflections

but does not provide the precision required by an optical

display.

In the following, we present a numerical minimization

method to compute the object–image reflection for

specific mirror surfaces, such as cones and cylinders.

For such surfaces, we can reduce the optimization

problem to only one dimension. Consequently, our

method provides an appropriate precision at interactive

rates.

For the subsequent example we chose a cone-shaped

mirror surface, since this surface type has also been used

for our Virtual Showcase display (cf. Fig. 1).

Cones and similar bodies of revolution have the

property that multiple surface points lie on a common

plane. For example, all points on the straight line

spanned by a cone’s peak and an arbitrary point on its

bottom circle lie on the same plane. Consequently,

individual plane parameters can be determined for all

angles around the cone’s principle axis.

To determine an object’s ðv00d Þ image for a given

viewpoint e and mirror surface gðxÞ ¼ 0; we first assume
an arbitrary angle a around the cone’s principle axis. We
then determine the surface’s tangent plane TP1 at a by
computing a surface point and the surface normal at a:
Since gðxÞ is an explicit function, we can compute the
surface normal by using its first-order derivatives g=ð@xÞ:
Next, we reflect v00d over TP1 to its corresponding

position within the image space and project it onto the

image plane, as described in Section 7.2. In Fig. 5, the

projected image point is outlined by v:
To verify the quality of our assumption, we reflect v

back into the object space and project it onto the display

surface. For a given v; gðxÞ and e; a simple analytical

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

O. Bimber et al. / Computers & Graphics 0 (]]]]) ]]]–]]]8

CAG : 1223



UNCORRECTED P
ROOF

solution exists to determine this image–object transfor-

mation: The ray spanned by e and v is intersected with

gðxÞ by solving a simple quadratic equation. In the case
of our conical Virtual Showcase, the quadratic equation

is given by inserting the linear ray equation into the

quadratic equation of a cone, and solving for x: The
surface intersection i; together with the normal vector at
i determined using the surface’s first-order derivatives

gives the tangent plane TP2 at i: Reflecting v and e over

TP2 and projecting the reflection of v onto the display

surface using the reflection of e as center of projection,

results in point v00: The image–object transformation is
illustrated in Fig. 2-center. Note that for simplicity, the

image–object transformation and the object–image

transformation have been described as simple reflec-

tion/projection transformations. Normally, they incor-

porate refraction as well.

If the tangent plane at a produces the extremal

Fermat path between v00d and e; the geometric distance D
between v00d and v00 is zero, TP1 ¼ TP2; and va ¼ v:
Otherwise D is non-zero.

To approximate the correct a; we minimize the above-
described function for D: Since this function depends

only on a; we can apply fast numerical optimizers for
one dimension. However, because we cannot easily

derive its first-order derivatives but it appears to be

nicely parabolic near its minimum, we apply Brent’s

inverse parabolic interpolation [21] with bracketing.

To speed up the minimization process (i.e. to reduce

the number of function iterations), we can constrain the

function range for a particular v00d : As illustrated in Fig.
5, the minimization is restricted to find a between a1 and
a2: These boundaries can be determined as follows: given
e and the untransformed patch that belongs to v00d ; we
evaluate the projections on the mirror surface of the

untransformed patch at the next lower LOD. The two

angles a1 and a2 at the horizontal extrema of these

projections are the corresponding boundary angles.

Note that these projections are determined while

transforming the patches (i.e. within TransformPatch-

Vertices). Thus, for efficiency reasons, they are stored

and looked up in the memory, rather than re-computing

them again.

Our experiments showed that sufficiently precise

solutions can be found after a small number of

iterations. Typically, we achieve average errors of D ¼
0:002 mm with an average of 3 iterations. This value is

still two orders of magnitude smaller than the smallest

image space error we experimented with ðdis ¼ 0:1 mmÞ:

7.4. Error direction propagation

Although the number of iterations is relatively small,

the computational expenses of four minimization steps

per patch result in a noticeable loss of performance.

Especially, while evaluating the large number of higher

LOD patches, such an approach might not produce a

speedup.

We also noticed that the direction in which the highest

image space error (i.e. the one of the four patch sides

where dis is maximal) propagates is the same for higher

LOD patches that are derived from the same parent

patch.

However, from which level of detail on this is the case

depends on the display’s properties. If, for instance, the

optics produce well-behaved image deformations, the

propagation direction of the highest error is consistent

for relatively high LODs. If, on the other hand, the

optics produces noisy images, the error direction

alternates as randomly.

To benefit from this situation, we specify a LOD L
depending on the optic’s and the display surface’s

properties. For patches that are below L; we determine
the image space error as described above: we compute dis

at all four edges and find the highest value. In addition,

we record the error direction (i.e. the edge where dis is

maximal) for each patch.

For patches that are above L we reuse the error

direction of the corresponding parent patch and

compute dis only for the edge in this direction, rather

than at all four edges. By doing this, we assume that the

largest error will occur in the same direction as for the

parent patch. Consequently, we reduce the number of

minimization steps from four to one for all patches that

are above L—i.e. for the majority of all relevant grid

patches.

Our experiments have shown that this heuristic leads

to a significant speedup while producing the same visual

final output.

Note that although we deal with a simple mirror

shape (i.e. a cone), an algorithm that uses a precom-

puted look-up table (e.g. such as the one described by

Ofek [20]) instead of dynamic numerical minimizations

would either result in fairly large data-structures that

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

Fig. 5. Object–image reflection via numerical minimization.

O. Bimber et al. / Computers & Graphics 0 (]]]]) ]]]–]]] 9

CAG : 1223



UNCORRECTED P
ROOF

cannot be efficiently searched, or in a precision that is

not adequate for an optical display.

8. Results

Our experiments were concerned with the perfor-

mance of the described approaches as well as with the

resulting image quality that can be expressed by

evaluating the average local displacement error on the

image plane. Our Virtual Showcase mirror display that

was driven by a Pentium IV with 2 GHz and FireGL II

graphics acceleration was used to carry out these

experiments.

Figs. 6 and 7 illustrate several outcomes of the

RecursiveGridRefinement algorithm for different image

space error thresholds while using the same point of

view, scene, and optics (i.e. the Virtual Showcase, as

illustrated in Fig. 1). Note that stretched image regions

with a lower curvature are rendered with a lower discrete

LOD, and compressed regions with a higher curvature

are rendered with a higher discrete LOD. Note also that

LOD transitions are continuous. Fig. 7 reveals how

effectively the relevant image geometry can be identified

with an oriented bounding box, rather than deforming

the entire image grid. The image grids shown in the

center row of Fig. 7 are the ones that are actually

produced by our algorithm. The grids shown in the left

row are only used to illustrate the effect of the selected

image space error threshold.

We have chosen a L of 3 (i.e. error directions are only

computed for the three lowest LODs), since our

experiments have shown that this is a suitable value

for our simple mirror geometry. The tessellation of the

image grid varies with a moving viewpoint and is not

necessarily as symmetric as shown in Figs. 6 and 7.

Figs. 8 and 9 plot the reduction of vertex transforma-

tions and number of triangles to be rendered for the

examples shown in Fig. 6.

Diamonds indicate measurements for the uniform

image grid with a resolution that is appropriate to

compensate for the required image space error. While

squares represent measurements for the entire selectively

refined image grid, triangles outline measurements for

the spatially limited image portion.

Fig. 10 illustrates the computation durations that

were required for the image grid transformation and the

rendering of the transformed grid.

Table 1 presents the speedup factors for different

image space errors while comparing the uniform grid

method with the unconstrained selective refinement

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111Fig. 6. Selective grid refinement for different image space error

thresholds.

Fig. 7. Spatially limited grids for different perspectives: entire

refined grid (left), grid portion limited by container (center),

resulting image (right).

O. Bimber et al. / Computers & Graphics 0 (]]]]) ]]]–]]]10

CAG : 1223



UNCORRECTED P
ROOF

method (A) and with the spatially limited selective

refinement method (B). One can observe that for large

error thresholds (e.g. 8 mm in our examples) no speedup

can be gained over the uniform grid method. For higher

precision requirements, however, significant speedups

are achieved. Note that the measurements include all

required computations, such as recursions and mini-

mizations.

Fig. 11 shows an example as it can be observed in the

Virtual Showcase prototype that is illustrated in Fig. 1.

Note that the photographs are not touched up. They are

taken as seen from the observer’s perspective. However,

they have been rendered monoscopically. As in Fig. 7,

the uniform (Fig. 11b) and the refined rectangular grid

(Fig. 11c) are only shown to illustrate the effect of the

selected image space error threshold. The image grid

that approximates the bounding box’s silhouette (Fig.

11d) is actually produced by our algorithm. It can be

noticed in Fig. 11c that the algorithm generates higher

LODs for those image regions, which are reflected by

portions of the mirror that are less orthogonal to the

observer. These regions generate a higher non-linearity

within the warped image and would consequently

produce a larger image space error. To prevent this, a

higher geometric grid resolution is generated for these

regions.

Note that the grid geometry shown in Figs. 11b–e

appears to be slightly noisy. This results from small

bumps and dents that are randomly scattered over the

mirror surface. They were caused by the irregular

surface of the Plexiglas foil, which was coated with a

half-silvered mirror to build the optics. This distortion is

too complex to be taken into account. Note also that the

image in Figs. 11b and c is clipped by the boundaries of

the mirror at its top and bottom. In the photographs,

this clipping lets the image grid appear curved at these

sides. However, it is rectangular.

9. Display specific components

While our algorithm is valid for other displays that

require non-linear predistortion, its display specific

components have been explained based on a particular

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

Fig. 8. Number of required vertex transformations (vertical

axis) for a varying image space error %dis (horizontal axis).

Diamonds indicate measurements for the uniform grid method,

squares represent measurements for the entire selectively refined

image grid, and triangles outline measurements for the

generation of the spatially limited image portions.

Fig. 9. Number of triangles that are required to be rendered

(vertical axis) for a varying image space error %dis (horizontal

axis). Diamonds indicate measurements for the uniform grid

method, squares represent measurements for the entire selec-

tively refined image grid, and triangles outline measurements

for the generation of the spatially limited image portions.

Fig. 10. Time required for vertex transformation and rendering

(vertical axis) for a varying image space error %dis (horizontal

axis). Diamonds indicate measurements for the uniform grid

method, squares represent measurements for the entire selec-

tively refined image grid, and triangles outline measurements

for the generation of the spatially limited image portions.

Table 1

Speedup factor for different %dis

%dis 8 mm 4 mm 2 mm 1 mm 0:5 mm 0:1 mm

A 0.88 1.31 3.05 1.79 3.70 3.19

B 0.86 1.51 3.94 2.44 5.78 5.78

O. Bimber et al. / Computers & Graphics 0 (]]]]) ]]]–]]] 11

CAG : 1223



UNCORRECTED P
ROOF

mirror display, the cone-shaped Virtual Showcase. The

nature of the additional mirror optics makes the

transformation of the grid patches and the computation

of the resulting displacement error fairly complex.

In fact, the implementation of the TransformPatchVer-

tices and the RefineFurther functions have been

explained with an emphasis on cone-shaped mirror

surfaces. These two functions represent the display

specific components of our algorithm. While for a

mirror display, TransformPatchVertices and Refine-

Further have to consider laws of geometric optics, such

as reflection and refraction transformations, to map grid

vertices from the image plane onto the projection surface

and vice versa, they can be generalized to do the same

for other displays without modifying the general

algorithm.

If, for instance, the algorithm is used to project images

onto curved screens (e.g. a cylindrical or spherical

projection device), TransformPatchVertices would in-

corporate only projection transformations (i.e. it would

only determine intersections of vertex-individual geo-

metric lines of sight with the display surface). The

resulting displacement error that is computed by

RefineFurther can then be determined within the object

space (e.g. the screen space), rather than within an image

space. Compared to our numerical approach for convex

mirror displays, this would be less complex since it

involves only simple intersection computations for that

analytical solutions exist. If a view-dependence is not

required, TransformPatchVertices and RefineFurther

could also retrieve precomputed values from a look-up

table.

10. Conclusion and future work

For displays such as the Virtual Showcase that correct

non-linear distortion by applying multi-pass rendering,

generating appropriate local levels of detail instead of

applying uniform grids or constant image geometries

allows to consider the error that is caused from a

piecewise linear texture interpolation and to minimize it

by adapting the underlying geometry.

For this purpose, we have presented an adaptive grid

refinement algorithm for real-time view-dependent im-

age warping. It can be applied to neutralize optical

distortion or to display undistorted images onto non-

planar surfaces. Although we have developed the

algorithm mainly to enhance image quality and render-

ing performance of curved Virtual Showcases, it can be

adapted to similar displays with only minor modifica-

tions. For instance, we have presented a method for

object–image reflections (Section 7.3) that was optimized

for particular second order mirror surfaces, such as

cones or cylinders. For other mirror surfaces or

projection screens, this method has to be replaced.

On the one hand, the algorithm prevents oversam-

pling and texture artifacts that result from under-

sampling. On the other hand, it speeds up rendering

for such displays significantly while guaranteeing a

predefined maximal error on the image plane. Further-

more, the algorithm facilitates rendering on low-cost

and off-the-shelf hardware, such as PCs and PC-based

graphics acceleration boards.

Beside the displacement error, other criteria are

evaluated and concatenated to define the final exit

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

Fig. 11. Results observed in the Virtual Showcase: (a) distorted image created with an undersampled uniform grid, (b) oversampled

uniform grid, (c) selectively refined grid for %dis ¼ 0:25 mm; (d) grid portion that projects onto container, and (d) final result.

O. Bimber et al. / Computers & Graphics 0 (]]]]) ]]]–]]]12

CAG : 1223



UNCORRECTED P
ROOF

condition of the recursive refinement procedure. For

.example, the area of the projected patches is computed

to ensure that their size does not fall below the pixel size

on the display surface.

The evaluation of upcoming graphics engines that

provide enhanced user-programmable vertex operations

is on our list of future work. We hope that they will

allow for hardware acceleration of the required per-

vertex transformations. The instruction sets of current

architectures, such as the ones offered by nVidia, ATI or

[14], however, are still too restricted and do not yet allow

to implement our optical predistortion entirely.

Furthermore, a reactive progressive rendering [10],

which dynamically adapts the screen space error thresh-

old to reach and keep a desired frame rate, would

represent a more intuitive user interface. Such a method

could also consider the texture resolution to further

accelerate our multi-pass rendering method. This speed-

up, however, would be gained on the cost of the overall

image quality.

Acknowledgements

This work was mainly funded by the Fraunhofer

Center for Research in Computer Graphics. The Virtual

Showcase project is supported by the European Union,

IST-2001-28610.

References

[1] Bandyopadhyay D, Raskar R, Fuchs H. Dynamic shader

lamps: painting on real objects. Proceedings of Interna-

tional Symposium on Augmented Reality (ISAR’01), 2001.

p. 207–15.

[2] Van Belle R, Maximus B, Vandenbogaerde P, Clodfelter

R. High quality geometry distortion tool for use with LCD

and DLP projectors. Proceedings of IMAGE’00, 2000.

[3] Raskar R, Welch G, Fuchs H. Spatially augmented reality.

In: Proceedings of First IEEE Workshop on Augmented

Reality (IWAR’98), San Francisco, CA, 1998. p. 63–72.

[4] Bimber O, Fr .ohlich B, Schmalsteig D, Encarna@*ao LM.
The virtual showcase. IEEE Computer Graphics and

Applications 2001;21(6):48–55.

[5] Watson B, Hodges L. Using texture maps to correct for

optical distortion in head-mounted displays. Proceedings

of IEEE VRAIS’95, 1995. p. 172–8.

[6] Yang R, Gotz D, Hensley J, Towles H, Brown MS.

PixelFlex: a reconfigurable multi-projector display system.

Proceedings of IEEE Visualization’01, 2001. p. 167–74.

[7] Segal M, Korobkin C, van Widenfelt R, Foran J, Haeberli

P. Fast shaddows and lighting effects using texture

mapping. Computer Graphics (Proceedings of SIG-

GRAPH’92), 1992. p. 249–52.

[8] McKay S, Mason S, Mair LS, Waddell P, Fraser M.

Membrane mirror based display for viewing 2D and 3D

images. Proceedings of SPIE, vol. 3634, 1999. p. 144–55.

[9] McKay S, Mason S, Mair LS, Waddell P, Fraser M.

Stereoscopic display using a 1.2-M diameter stretchable

membrane mirror. Proceedings of SPIE, vol. 3639, 1999. p.

122–31.

[10] Funkhouser T, Sequin C. Adaptive display algorithm for

interactive frame rates during visualization of complex

virtual environments. Computer Graphics (Proceedings of

SIGGRAPH’93), 1993. p. 247–54.

[11] Hoppe H. Progressive meshes. Computer Graphics (Pro-

ceedings of SIGGRAPH’96), 1996. p. 99–108.

[12] Hoppe H. View-dependent refinement of progressive

meshes. Computer Graphics (Proceedings of SIG-

GRAPH’97), 1997. p. 189–97.

[13] Hoppe H. Smooth view-dependent level-of-detail control

and its application to terrain rendering. Proceedings of

IEEE Visualization’98, 1998. p. 35–42.

[14] Lindholm E, Kilgard MJ, Moreton H. A user-program-

mable vertex engine. Computer Graphics (Proceedings of

SIGGRAPH’01), 2001. p. 149–58.

[15] Lindstrom P, Koller D, Ribarsky W, Hughes L, Faust N,

Turner G. Realtime, continuous level of detail rendering

for height fields. Computer Graphics (Proceedings of

SIGGRAPH’96), 1996. p. 109–18.

[16] Taylor DC, Barret WA. An algorithm for continuous

resolution polygonalizations of a discrete surface. Com-

puter Graphics (Proceedings of SIGGRAPH’94), 1994. p.

33–42.

[17] Rolland JP, Hopkins T. A method of computational

correction for optical distortion in head-mounted displays.

Technical Report, No. TR93-045, UNC Chapel Hill,

Department of Computer Science, 1993.

[18] M .oller T, Trumbore B. Fast, minimum storage ray-

triangle intersection. Journal of Graphics Tools

1997;2(1):21–8.

[19] Mitchell D, Hanrahan P. Illumination from curved

reflectors. Computer Graphics (Proceedings of SIG-

GRAPH’92), 1992. p. 283–91.

[20] Ofek E, Rappoport A. Interactive reflections on curved

objects. Computer Graphics (Proceedings of SIG-

GRAPH’98), 1998. p. 333-42.

[21] Brent RP. Algorithms for minimization without deriva-

tives. Englewood Cliffs, NJ: Prentice-Hall; 1973.

Oliver Bimber is currently a scientist at the Bauhaus

University Weimar, Germany. He received a Ph.D. in

Engineering at the Technical University of Darmstadt,

Germany under supervision of Prof. Dr. Encarna@*ao
(TU Darmtadt) and Prof. Dr. Fuchs (UNC at Chapel

Hill). From 2001 to 2002 Bimber worked as a senior

researcher at the Fraunhofer Center for Research in

Computer Graphics in Providence, RI/USA, and from

1998 to 2001 he was a scientist at the Fraunhofer

Institute for Computer Graphics in Rostock, Germany.

In 1998 he received the degree of Dipl. Inform. (FH) in

Scientific Computing from the University of Applied

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

O. Bimber et al. / Computers & Graphics 0 (]]]]) ]]]–]]] 13

CAG : 1223



UNCORRECTED P
ROOF

Science Giessen and a B.Sc. degree in Commercial

Computing from the Dundalk Institute of Technology.

He initiated the Virtual Showcase project in Europe and

the Augmented Paleontology project in the USA.

Bernd Fr.ohlich is a professor for Virtual Reality Systems

with the media faculty at the Bauhaus University

Weimar in Germany. His recent work focuses on input

devices, interaction techniques, display systems, and

support for tight collaboration in local and distributed

virtual environments. He received his MS and Ph.D. in

computer science in 1988 and 1992, respectively, from

the Technical University of Braunschweig, Germany.

Dieter Schmalstieg is an assistant professor at the

Interactive Media Systems Group at Vienna University

of Technology, Austria, where he directs the Studier-

stube augmented reality research project. His research

interests include virtual environments, augmented rea-

lity, 3D user interfaces, and real-time graphics. He holds

a Ph.D. and Habilitation degree from Vienna University

of Technology.

L. Miguel Encarna@*ao is the head of the Human Media
Technologies Department of the Fraunhofer Center for

Research in Computer Graphics in Providence, Rhode

Island, and is an adjunct professor in computer science

at the University of Rhode Island. His research interests

include next-generation user interfaces, mixed reality

technologies, and advanced distributive learning envir-

onments. He received his Ph.D. in computer science in

1997 from the University of T .ubingen, Germany.

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

O. Bimber et al. / Computers & Graphics 0 (]]]]) ]]]–]]]14

CAG : 1223


	Real-time view-dependent image warping to correct non-linear distortion for curved virtual showcase displays
	Introduction and contribution
	Background
	Motivation
	Related work
	Warping for displays
	Level of detail rendering

	Image triangulation
	Recursive grid refinement
	Generation and refinement criteria
	Spatial limits
	Image space error
	Computing object-image reflections
	Error direction propagation

	Results
	Display specific components
	Conclusion and future work
	Acknowledgements
	References


