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Abstract 
We present an output-sensitive rendering algorithm for 
accelerating walkthroughs of large, densely occluded 
virtual environments using a multi-stage Image Based 
Rendering Pipeline. In the first stage, objects within a 
certain distance are rendered using the traditional 
graphics pipeline, whereas the remaining scene is 
rendered by a pixel based approach using an Image 
Cache, horizon estimation to avoid calculating sky 
pixels, and finally, ray casting. The time complexity of 
this approach does not depend on the total number of 
primitives in the scene. We have measured speedups of 
up to one order of magnitude. 

CR Categories and Subject Descriptors: I.3.3 
[Computer Graphics]: Picture/Image Generation - 
Display Algorithms, Viewing algorithms; I.3.7 
[Computer Graphics]: Three-Dimensional Graphics and 
Realism - Virtual Reality. 

Additional Keywords: virtual environment, ray casting, 
walkthrough, horizon tracing, real-time display, 
panoramic images, image-based rendering, visibility. 

1 Introduction 

In this paper, we present a new approach to the problem 
of interactively rendering large virtual environments, 
where the geometric complexity exceeds what modern 
graphics hardware can render interactively and the user 
has control over camera position and orientation. This is 
also commonly referred to as the ‘walkthrough-
scenario’. 

Different solutions have been proposed for various 
types of virtual environments: Indoor scenes can be 
efficiently handled using portal rendering [Luebke97]. 
For sparsely populated outdoor scenes, the level of detail 
approach is viable, providing a number of 
representations for the same object with different 
rendering costs. Image Based Rendering has been 
proposed for very general, complex scenes. More 
recently, methods have been investigated to handle 
densely occluded, yet unrestricted scenes, for example 
urban environments. They are commonly referred to as 
‘Occlusion Culling’. 

Especially in the case of densely occluded outdoor 
environments, the following basic observations can be 
made: 

 a large part of the screen is covered by a small set of 
polygons that are very near to the observer (in the 
‘Near Field’) 

 another large part of the screen is covered by sky 

 pixels that don’t fall into one of these two categories 
are usually covered by very small polygons, or even 
by more than one polygon. 

 The number of polygons that falls outside a certain 
‘Area of Interest’ is usually much larger than a 
polygonal renderer can handle - but they still 
contribute to the final image. 

The main contribution of this paper is a new algorithm 
for accelerated rendering of such environments that 
exploits the observations listed above: the scene is  
partitioned into a ‘Near Field’ and a ‘Far Field’. 
Following the ideas of Occlusion Culling, the Near Field 
is rendered using traditional graphics hardware, covering 
many pixels with polygons, whereas the Far Field is 
rendered using an alternative method: every remaining 
pixel undergoes a multi-stage Image Based Rendering 
Pipeline in which it is either culled early or sent to the 
last stage, a ray casting algorithm (see Figure 1). 

Our method can be seen as a hybrid hardware / 
Image Based Rendering algorithm that uses a new way 
to obtain images on the fly with very low memory 
overhead. The algorithm is in its nature output-sensitive 
(compare [Sudar96]): by restricting hardware rendering 
to the Near Field, constant load of the hardware graphics 
pipeline can be achieved. The remaining pixels are also 
obtained in an output-sensitive manner: both the culling 
stage and the ray casting stage can be shown to have 
linear time complexity in the number of pixels only. Ray 
casting, if combined with an acceleration structure, is 
less than linear in the number objects. 

After reviewing previous work relevant to this 
paper, an overview of the system architecture is given 
and the various stages of and acceleration methods used 

 

Figure 1: Ray casting is used to cover the pixels of the 
Far Field (beyond 100m). Pixels above the horizon are 
culled early. 
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in the algorithm are explained. This is followed by a 
discussion of the behavior of the system and the possible 
hardware setups where the algorithm works and a 
summary of the results we obtained in our 
implementation. Finally, conclusions and futures 
avenues of research in this field are given. 

2 Previous Work 

Ray tracing is a well known area of Computer Graphics. 
A good overview can be found in [Glass89]. The regular 
grid approach we use has been first introduced in 
[Fujim86]. Later, [Aman87] have introduced a different 
incremental traversal algorithm which proved to be the 
fastest for our purpose. On a theoretical analysis of the 
complexity of regular grids see [Cleary88]. Interesting 
extensions to grids for non-uniform scenes are discussed 
in [Klima97]. 

 Image Based Rendering and Level of Detail 
rendering has been a hot research topic in recent time. 
One of the most well known commercial IBR systems is 
Quicktime VR [Chen95]. It is capable of displaying a 
panoramic view of an image acquired by a camera or by 
synthetic rendering. The viewer can rotate this 
panoramic image in realtime. Many papers have 
followed that improve on the basic idea. Different 
methods are used to interpolate between adjacent images 
to allow arbitrary viewpoints. Especially the problem of 
avoiding gaps and overlaps in the final image has 
received much attention in this area ([McMill95], 
[Shade98]). 

 [Heckb97] gives a good survey of current 
geometric Level of Detail algorithms. Hybrid 
traditional/Image Based Rendering algorithms have been 
proposed by [Shade96] and [Schaufler96]: they use 
graphics hardware to calculate Image Caches for objects 
on the fly. A similar idea, but taken further to allow 
affine transforms on the images done in special purpose 
hardware, is exploited by [Torb95]. 

 [Teller91] describes a consistent way to 
precalculate ‘Potentially Visible Sets’ to accelerate 
architectural walkthroughs. [Luebke95] introduces portal 
rendering, where those PVS are calculated on the fly. 
More general scenes are made possible by the 
hierarchical z-buffer method [Greene93], where a 
hierarchical z-buffer is used to cull occluded geometry. 
An alternative occlusion culling method, Hierarchical 
Occlusion Maps, that does not use depth information, is 
shown in [Zhang97]. [Chamber96] already partitioned 
the scene into Near and Far Field. They use colored 
octree nodes to render the Far Field.  

3 Overview of the System 

The traditional polygonal rendering pipeline consists of 
three basic steps. Depending on the architecture, each of 
them may or may not be accelerated in hardware. What 
is obvious, though, is that the time complexity of 
rendering the scene is always linear in the number of 

primitives, because arbitrarily many objects may be 
visible at any one time. 

We introduce a second stage to the pipeline, which is not 
primitive-based, but purely image-based4. Each of the 
two stages is able to render the whole scene alone, but 
both would be equally overloaded by the whole 
database. Thus, rendering of the scene is distributed to 
the two stages by partitioning the scene into a Near - and 
Far Field. All primitives within a distance less than a 
certain threshold are sent to the polygonal renderer. The 
second stage passes over all the pixels and fills those 
that have not yet been covered by polygons in the Near 
Field with the appropriate color. 

In the pixel stage, various mechanism exist to allow 
early exits before a ray is cast to obtain the color 
information: 

 pixels already covered by polygons are recognized 
by an opacity buffer that is created during the first 
stage. 

 pixels which fall into an area covered by sky are 
recognized by a Horizon Map created before the 
second stage. 

 if a pixel fails those two tests, but its value is still 
within a valid error range, the pixel is looked up in 
an Image Cache. 

                                                           
4 unlike Impostors [Schaufler96], where the images used for Image 

Based Rendering still have to be created by polygonal rendering 
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Figure 2: The image cache is composed of three stages 
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Figure 3: The traditional rendering pipeline consists 
of three steps 
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Figure 4: Extended rendering pipeline uses a polygonal 
pipeline for the near field and an image based pipeline 
for the far field 



Only if all these three tests fail is a pixel sent to the final 
step in the pipeline, the raycaster. It is important to note 
that, while ray casting is a very costly technique in itself 
because it has to be done purely in software, the time 
complexity of the raycaster is still less than linear in the 
number of objects. Also, by restricting the number of 
polygons sent to the graphics hardware, the time spent in 
the polygonal graphics pipeline is bounded as well 
(given a reasonably uniform distribution of primitives in 
the scene). Thus, the overall algorithm can be said to be 
output-sensitive, i.e., its time complexity is linear in the 
number of visible primitives only, but less than linear in 
the total number of primitives. 

4 Ray Casting for Image Based 
Rendering 

4.1 Near Field / Far Field 

When rendering a large scene, a huge number of objects 
can reside in the area defined by the viewing frustrum, 
but only a small amount of those objects actually 
contribute to the appearance of the image. Large, near 
object usually have much more impact on appearance 
than small and far away objects. 

It should therefore be possible to determine a set of 
objects that have the most contribution to the image, and 
only render this set of objects. The simplest way to 
achieve this is to select all objects within a maximum 
distance of the viewer. We call the space where these 
objects reside the ‘Near Field’. This approach is very 
popular, especially in computer games, and it is often 
combined with fogging, so that the transition between 
the Near Field and the space where objects are simply 
not rendered is not so sudden. 

Obviously, culling away all objects that do not 
belong to the Near Field introduces severe visual 
artifacts. We call ‘Far Field’ the space of objects beyond 
the Near Field, but not so far away as to be totally 
indiscernible. An important property of the Far Field is 
that it usually  

 consists of much more polygons than the 
graphics hardware can render, but 

 contributes to only very few pixels on the 
screen, because most of the pixels have already 
been covered by Near Field polygons. 

To take advantage of this fact, a separate memory buffer, 
the ‘opacity buffer’ is used that records which pixels 
have already been covered by the Near Field for every 
frame. This is what has been demonstrated to work 
already in the ‘Hierarchical Z-Buffer’-method, or for 
‘Hierarchical Occlusion Maps’. 

The basic algorithm for our Image Based 
Rendering technique using ray casting is as follows: 

1. Find Objects in the Near Field using the regular 
grid 

2. Render those objects with graphics hardware 

3. Rasterize them into the opacity buffer 

4. Go through the opacity buffer and cast a ray for 
each uncovered pixel (enter the resulting color in 
a separate buffer) 

5. Copy the pixels gained by ray casting to the 
framebuffer 

4.2 Ray casting 

We claim that ray casting is an appropriate technique for 
acquiring images for Image Based Rendering on the fly. 
This might seem strange at first glance, because ray 
casting (ray tracing) is known to be a notoriously slow 
technique. The reason for that is the high complexity: in 
a naive approach every object has to be intersected with 
a ray for every pixel, so the complexity is O(pixels * 
objects). In our approach, we want to cast rays into the 
scene through individual pixels and find the ‘first hit’, 
i.e., the first intersection with an object in the Far Field. 
This means no secondary rays have to be cast, and we 
are interested in so-called ‘first hit’ acceleration 
techniques. 

From the first days of ray tracing, acceleration 
structures have been used to reduce the number of ray-
object intersection tests for individual rays. The two 
most popular are Bounding Volume Hierarchies and 
Hierarchical Space Subdivision. Of all the methods 
proposed, the Regular Grid [Fujim86] approach is the 
most interesting for our purpose: space is partitioned 
into a regular grid structure, and all objects are entered 
into the grid cells with which they intersect. 

It has been shown ([Ohta97], [Fujim86]) that 
theoretically, using an appropriate acceleration structure, 
the time complexity of ray tracing can be reduced to 
O(1), i.e., constant, in the number of objects (although 
this constant may be very large). In out experiments we 
have observed a sublinear rise in the time to cast rays 
into a very large scene. 

The advantage of the regular grid is its speed. Also, 
given a more or less uniform distribution of objects, 
which we can safely assume for many types of virtual 
environments, the memory overhead is very low. 
Tracing through a grid is fast, using for example Woo’s 
incremental algorithm [Aman97] which only requires 
few floating point operations per grid cell. If more 
objects are added, runtime behavior can even improve 
because rays will collide earlier with objects than if there 
were huge empty spaces in the grid. 

The Regular Grid also provides a simple solution to 
view frustrum culling, which is necessary to quickly find 
the objects that have to be rendered in the Near Field. 

For certain scenes, ray casting alone might already 
be sufficient and moderate gains can be observed. But 
generally, this still leaves too many pixels which have to 
be raycast, and while ray casting is relatively 
independent of scene complexity, casting a single ray is 



expensive compared to polygonal rendering and thus 
only tractable for a moderate number of pixels. The 
following sections explain how Image Caching and 
Horizon Tracing can be used to drastically reduce the 
number of rays that have to be cast. 

5 Image Caching 

5.1 Panoramic Image Cache 

Usually, walkthrough sequences exhibit a considerable 
amount of temporal coherence: the viewpoint changes 
only by a small amount between successive frames. We 
exploit this coherence in our system: instead of tracing 
every Far Field pixel every frame, we retain all the color 
values of the previous frame and try to retrace only those 
pixels that are outdated according to some error metrics. 

The validity of pixels depends strongly on the type 
of viewpoint motion: 

Forward/Backward motion: this makes up for a 
very large amount of motions in a walkthrough 
sequence. The farther away an object is, the smaller the 
amount of pixels it moves on the screen due to 
forward/backward motion. Many pixels will even remain 
at the same location, so just reusing the pixels from the 
previous frame is already a good first approximation. 

Rotation: Rotation is quite different from 
forward/backward motion: reusing the contents of the 
framebuffer would indeed be a very bad solution, 
because all pixels would be wrong. But actually, many 
pixels are still valid, they have just moved to a different 
position. So what is needed is a method to store traced 
pixels that does not depend on the orientation of the 
viewer. 

Panning (left/right, up/down): This type of 
movement is similar to rotation in that most pixels move 
to a different place. 

Our assumption is that forward/backward motion 
and rotation will be the major types of motion in a 
walkthrough sequence. We therefore choose a 

representation which is independent of viewpoint 
rotation: a panoramic image cache. 

Panoramic Images have been demonstrated to be a 
very efficient tool to store full views of a scene where 
rotation is allowed. We use the panoramic image cache 
not for presenting a precomputed panorama as for 
example in the Quicktime VR system [Chen95], but we 
use it as a rotation-independent Image Cache. 

When a ray is cast through a pixel on the (flat) 
screen, its position on the (curved) map calculated and 
the color value obtained by the ray is entered in this 
position. If, at a later time, another screen pixel projects 
to the same position in the curved map, its value can be 
reused if it is still good enough. 

The major advantage of using a panoramic image 
as an image cache is that the validity of pixels stored in 
the map is invariant under rotation. This means that, as 
long as the viewpoint does not change, all image 
elements already calculated and stored in the map can be 
reused in the new image, provided they still fall into the 
viewing frustrum after rotation. This speeds up rotation 
considerably: only the very small amount of pixels that 
appears newly at the border towards which the viewer is 
rotating has to be retraced. All other pixels can be 
reused, and their values will be correct. 

In the case of forward/backward movement, the 
behavior of the map resembles that of a normal, flat 
image map: reusing the previous panoramic map will be 
a good approximation to the image and many pixels will 
be in the correct location. Panning causes more pixels to 
be invalidated if no costly reprojection is used.  

5.2  Cache Update Strategy 

Assuming that pixels which have been traced in a 
previous frame are retained in an Image Cache, the 
algorithm has to decide which pixels are considered 
good enough according to a certain error metric, and 
which pixels have to be retraced. In an interactive 
walkthrough system, the decision can also be based on a 
given pixel-‘budget’ instead of an error metric: which 
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Figure 5: Indexing into the Panoramic Image Cache: Given a pixel on the image plane, an angle  can be 
calculated with respect to the image plane center. This angle does not depend on the initial viewer orientation 0, 
therefore it can be precomputed and stored in a lookup-table. So, indexing into the Image Cache consists of 
looking up  in a table, adding the viewer orientation 0 and rescaling this value to fit the resolution of the Image 
Cache 



pixels are the most important ones to retrace, given a 
maximum amount of pixels available per frame. 

As with any speedup-algorithm, worst-case 
scenarios can be constructed that do not benefit from the 
algorithm. In such a case, our approach allows 
progressive refinement by iteratively retracing all 
necessary pixels every frame. As soon as the scenery 
gets more suited to the algorithm or the observer does 
not move for a short moment, the  system is able to catch 
up again. 

To select an appropriate set of pixels to retrace, we 
assign a confidence value to each pixel in the map. The 
pixels are then ordered according to their confidence 
values and tracing starts with the pixels that have the 
lowest confidence, proceeding to better ones until the 
pixel budget is exhausted. Finding a good heuristic for 
the confidence value of a pixel is not trivial. We have 
chosen the following approach: 

Every frame in which the observer moves more 
than a certain distance (rotation is not taken into 
account, as the Image Cache is rotation-independent), a 
new Confidence-Record is created, which contains the 
current observer position. All pixels which are traced 
during this particular frame are assigned a pointer to the 
current Confidence-Record (pixels which have not been 
traced at all point to a ‘Lowest-Confidence’-Record). 

After a few frames, there will be a certain amount 
of Confidence Records (as many as there were distinct 
observer positions), and each pixel in the Image Cache 
will reference exactly one of those Records. This 
information is used as follows: 

During the polygon rendering stage, a new opacity-
buffer is created. All pixels of this buffer are visited 
sequentially. If a pixel is covered by a polygon, it is 
ignored. If not, a lookup is done into the Image Cache to 
find out the Confidence Record associated with this 
pixel. The Confidence Record also contains a pixel 
counter which is then incremented. 

CacheElement { 
 Color; 
 Pointer to ConfidenceRecord; 
}; 

ConfidenceRecord { 
 ObserverPosition; 
 PixelCounter; 
 CurrentConfidence; 
}; 

Figure 6: The basic data-structure used for in the 
Cache and for keeping track of confidence values 

After all pixels have been visited, each Confidence 
Record contains the number of pixels that refer to it in 
its internal counter. Now, the observer position stored in 
each Confidence Record can be compared to the current 
observer position and the distance between the two is 
remembered as the current confidence value of this 

Confidence Record. All Confidence Records are sorted 
according to this confidence value. 

Scanning through the Confidence Records from 
worst (farthest away) to best (nearest), we add up the 
counted pixels until the pixel budget is met. This gives a 
threshold distance: all pixels farther away than this 
threshold distance will be retraced. Nearer pixels will be 
reused from the Image Cache. 

This is accomplished by going again through the 
opacity buffer, indexing into the Image Cache for every 
unoccluded pixel and casting a ray for the pixel if its 
distance (which can be found out by following its 
pointer to the associated Confidence Record) is greater 
than the threshold distance. 

The problem with this approach is that it occurs 
quite often that all pixels have the same confidence 
value: if the observer stands still for a while and then 
suddenly moves, all pixels will be assigned the same 
new confidence value. In this case, the confidence 
values are not a good indication of where ray casting 
effort should be spent. We therefore only trace every n-
th pixel that has the same distance, such that the pixel 
budget is met. In the subsequent frame, the remaining 
pixels will then be selected automatically for retracing. 

The distance between the current and previous 
observer position is used as an error-estimation, because 
the panoramic image map is rotation-independent, hence 
the only value that changes between frames with respect 
to the map is the observer position. A more elaborate 
scheme could also store orientations with each 
Confidence Record and compare this to the current 
orientation. For reasons of efficiency, we have chosen 
the more simple approach of keeping the error 
estimation rotation-independent. It would be interesting 
to investigate whether performance improves if one 
takes additional information about the hit object or the 
distance to the intersection point into account. 

To sum up, our update strategy makes sure that 
pixels are retraced in the order of their distances to the 
current observer position, taking into account a pixel 
budget that allows for ‘graceful degradation’ if the 
demand for pixels to be retraced is too high in a 
particular frame. Note that on average, the area left for 
ray casting only covers a small portion of the screen. 

6 Horizon Tracing 

Most virtual environments share the following property: 
they have 

 a polygonal floor 

 either a polygonal ceiling or 

 empty sky 

For indoor-scenarios with a polygonal ceiling, the 
system as presented so far would already be sufficient, 
but a problem arises if there are large areas of empty 
sky. Theoretically, the ray tracing acceleration structure 
should take care of rays that do not hit any object in the 



scene. But in fact, even the overhead of just setting up a 
ray for every background-pixel is much too large as to 
be acceptable. The usual case in outdoor scenes is that 
between one third and one half of the pixels are covered 
by polygons. A very small part is covered by Far Field 
pixels that do hit objects, but the rest of the screen is 
covered by sky. 

If it were possible to find out where the sky 
actually starts, most of the sky pixels could be safely 
ignored and set to a background-color or filled with the 
contents of a static environment map. 

We assume that the viewer only takes upright 
positions, i.e., there is no head tilt involved. This is a 
reasonable restriction in a walkthrough situation. Then, 
we observe that the screen position where the sky starts 
only depends on the x-coordinate in screenspace, i.e., on 
the pixel column. So, for every pixel column we have to 
find out the y-coordinate of the horizon. 

This, again, is a problem that can be solved by ray 
tracing, but in 2-dimensional space. In addition to the 3D 
Regular Grid that is used for tracing pixels, a 2D 
Regular Grid is created that contains the height value of 
the highest point in each grid node - a 2-dimensional 
height-field. 

For every frame, a 2-dimensional ray is traced 
through this heightfield to find the grid node that 
projects to the highest value in screenspace (note: this 
need not be the highest point in absolute coordinates!). 
All pixels with a height above this value can be ignored 
and set to the background color. 

Our results indicate that the reduction in the 
number of pixels to trace was so substantial that the total 
time spent ray casting and the time spent horizon tracing 
were comparable. This makes horizon tracing itself a 
further candidate for acceleration. 

One way to speed up horizon tracing is to carefully 
adjust the resolution of the height field. As opposed to 
pixel ray casting, rays cast through the heightfield have 
to travel through the whole 2D-grid so as to find the 
point whose projection has the highest y-value on the 

screen. Whereas the 3D grid profits from higher 
resolution because of improved intersection culling, it is 
detrimental for horizon tracing because of the large 
number of grid cells that have to be visited. Even though 
a coarser grid tends to overestimate the horizon height, 
the speedup gained faster horizon tracing makes up for 
this. 

Another way to speed up horizon tracing is to 
apply the principle of graceful degradation to the 
horizon map in the same manner as to the Image Cache: 
as long as the viewer is moving, the horizon is 
subsampled and the locations between samples are filled 
with the maximum of the adjacent samples. 

7 Implementation and Results 

The algorithms described in this paper have been 
implemented and tested in an application environment 
for creating professional computer games. The system 
was tested with a Pentium 233MMX processor, which is 
moderately fast for a consumer PC. The 3D board used 
was a 3DFX Voodoo Graphics, a reasonably fast board 
for PC-standards. Even better speedups might be 
possible using a faster main processor. The 
implementation is still very crude, and it is likely that 
additional performance gains can be achieved by careful 
optimization of critical per-pixel operations. 

One problem that has to be solved is how to create 
an occlusion map, and how to reuse it for rendering. 
Surprisingly, graphics hardware is not of much help in 
this case: transfers from frame buffer memory to main 
memory are usually very slow, except in some 
specialized new architectures which incorporate a 
Unified Memory concept (e.g., the Silicon Graphics O2 
[Kilg97]). 

Therefore, while the Near Field is rendered int the 
frame buffer using graphics hardware, we create the 1-
bit opacity buffer with a very fast software renderer, 
taking advantage of the fact that neither shading nor 
depth information is required for the opacity buffer. 

Image Plane
Viewing Position 1

Viewing Position 2

Heightfield  

Figure 7: The image shows a cut through the heightfield along the path of one particular horizon ray 
cast from two viewing position with different heights. Note that it is not always the highest point in 
the heightfield that determines the height of the horizon on the screen. 



Our current implementation is limited to upright 
viewing positions only. This restriction is inherent to the 
horizon tracing acceleration, and we believe that it does 
not severely infringe on the freedom of movement in a 
walkthrough environment. With respect to the Image 
Cache, a spherical map could easily be used instead of 
the cylindrical map that we chose to implement, 
allowing the viewer to also look up and down. 

The first graph (figure 8) shows the time taken to 
render each frame of a recorded walkthrough sequence 
(about 400 frames) through a very large environment, a 
huge city (containing approximately 150000 triangles). 
Two of the series are for pure hardware rendering only, 
with the the backplane set to infinity in once case and 
100m in the other case. The Far Field is not rendered at 
all, and our algorithm disabled completely (so there is no 
overhead for tracing horizon pixels, creating or going 
through the opacity buffer etc.). It shows that up to a 
certain distance, graphics hardware can render the scene 
very quickly, but of course misses out on a considerable 
amount of the background. But if the whole scene is 
rendered indiscriminately, the hardware simply cannot 

cope with the amount of triangles, and the framerate 
drops to an unacceptably low value. 

Obviously, these are the two extremes between 
which our algorithm can or should operate. It will 
certainly not get faster than just rendering the Near 
Field, but it should be considerably faster than rendering 
the whole scene with triangles only. The third series 
shows how our algorithm performs for the same 
walkthrough sequence with the backplane set at 100m. A 
speedup of up to one order of magnitude over rendering 
the full scene in hardware can be observed. 

To give a feeling for the operating behavior of the 
algorithm, the second graph (figure 9) shows frame 
times for our algorithm with different Near Field sizes 
(i.e., the backplane set to different values). Increasing 
the back plane distance beyond a certain limit reduces 
performance, because more triangles have to be 
rendered, but they do not further reduce the number of 
pixels the have to be traced. Setting the backplane too 
near gives a very non-uniform frame-rate. 

The third graph (figure 10) gives an impression of 
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Figure 8: The chart compares full hardware rendering (backplane set to infinity), our new output sensitive 
algorithm and hardware rendering (Far Field not rendered) with the backplane at 100m. The image resolution was 
640x480 pixels for all tests. The average frame rates were 2.0 fps for full hardware rendering and 9.25 fps for the 
new algorithm, so the speedup is about 4.6. 
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Figure 9: The chart compares the behavior of the algorithm with respect to the size of the Near Field at a resolution 
of 640x480 pixels. 



what the algorithm is capable if the screen resolution is 
reduced and the scenery is more complex (in this 
walkthrough sequence, almost all of the polygons were 
in the viewing frustrum most of the time, so view 
frustrum culling is not able to cull geometry). The 
following chart (figure 11) shows that the performance 
of the output sensitive algorithm is due to heavy 
occlusion in the walkthrough sequence: 

The images at the end of the paper show two views of 
the virtual city the walkthroughs were recorded in. The 
border to the Far Field is indicated by a line. To the left 
there is a view from an elevated position which does not 
satisfy the assumptions because there is no significant 
occlusion. The expected framerate in such a view is 
about 4 frames per second for a resolution of 640x480 
pixels (triangles only would be about 1 frame per 
second). The image to the right represents a typical shot 
from a walkthrough sequence that does fulfil our 
assumption of dense occlusion. 

8 Discussion 

8.1 Scalability 

The rendering algorithm described in this paper is 
applicable to a wide range of environments (see 

applications). The same is true for the type of platforms 
it can be used on. Originally, it has been designed with 
the consumer PC in mind, where almost every new PC is 
equipped with a 3D accelerator. These accelerators share 
a common property: they are very good at triangle 
rasterization, but the transformation step has to be done 
by the main CPU. Rendering scenes that contain a lot of 
primitives easily overloads the transformation 
capabilities of the CPU, and the 3D card is idle. Instead 
of transforming all primitives with the CPU, the 
algorithm can put this processing power to better use: by 
using the methods described, and some a priori 
knowledge about the scene, the 3D accelerator is used to 
quickly cover the Near Field with polygons, and the 
remaining CPU time is used for the pixel based 
operations. 

The algorithm is not restricted to such a platform, 
though. As the power of the 3D pipeline increases, the 
size of the Near Field can be increased as well, thus 
leveraging the additional triangle processing power of 
the pipeline. More pixels will be covered by polygons, 
and even fewer pixels left to send to the ray casting step. 
This is especially true if the geometry transformation 
stage is implemented in hardware, as is the case in 
higher end PC solutions and midrange 3D workstations.  

But even if a high end graphics pipeline exists, the 
ideas of this paper are valid: there will always be scenes 
too large and too complex to handle even with the best 
graphics hardware. Adjusting the size of the Near Field 
to the speed of the polygon pipeline provides a good 
parameter for tuning an application for speed on a 
specific platform. 

This means that the approach scales very well with 
CPU processing power as well as with graphics pipeline 
speed, and the result is an output-sensitive algorithm that 
can be used in many different setups. 

0

200

400

600

800

1000

1200

1400

1 22 43 64 85 10
6

12
7

14
8

16
9

19
0

21
1

23
2

25
3

27
4

29
5

31
6

33
7

35
8

37
9

40
0

42
1

44
2

46
3

48
4

50
5

52
6

54
7

56
8

58
9

61
0frames

ti
m

e 
(m

s)

Hardware

Output Sensitive Algorithm

 

Figure 10: Frame times for a different walkthrough sequence at a resolution of 320x240 pixels. Here, the average 
number of polygons in the viewing frustrum was higher than in the first sequence, making hardware rendering even 
slower. The average frame time for hardware was 1.1 fps, for the new algorithm 16.3 fps, so the speedup is 14.8. 

Percentage of pixels... Min Average Max

ray cast and hit an object 0,00% 0,13% 0,49%

ray cast and missed 0,00% 0,10% 0,38%

taken from the image cache 0,00% 0,13% 0,81%

culled by horizon tracing 7,38% 23,76% 39,21%

covered by polygons 60,37% 75,89% 92,62%  

Figure 11: Illustrates that very few pixels have to be 
calculated using ray casting in a densely occluded 
environment. 



8.2 Aliasing 

No speedup comes without a cost. There are two reasons 
why aliasing occurs in the algorithm: first, ray casting 
itself is a source of aliasing because the scene is point 
sampled with rays. The other reason is the aliasing due 
to the projection of the flat screen into a curved image 
map and back. 

In both cases, antialiasing would theoretically be 
possible, but it would have a heavy impact on the 
performance of the algorithm, thus defying the purpose 
of the algorithm, which is to accelerate interactive 
walkthroughs.  

9 Applications 

There is a variety of applications where the algorithms 
presented in this paper could be applied. Foremost, there 
is: 

9.1 Walkthroughs 

Many types of virtual environment walkthroughs fulfil 
the basic preconditions the algorithm requires. Most and 
foremost, urban environments are ideal to showcase the 
points of this paper. Especially in a city, most of the 
screen is covered by the houses that are near to the 
viewer. But there are also several viewpoints where 
objects are visible that are still very far away - imagine 
looking down a very long street. Polygons cover the 
right, left and lower part of the image, a good part of the 
sky is caught by horizon tracing, and the remaining part 
can be efficiently found by ray casting. Note that under 
normal circumstances, such scenes are either 
excruciatingly slow to render, or the backplane distance 
is simply set so near that the result does not look very 
convincing. 

Any other scenery which is densely occluded is  
also suitable. For example, walking through virtual 
woods is very difficult to do with graphics hardware 
alone - but with our algorithm, a good number of trees 
could be rendered in the Near Field, and the remaining 
pixels traced. 

9.2 Computer Games 

In recent times, first person 3D computer games have 
gained immense popularity. Many of them are restricted 
to indoor-environments, because portal rendering 
provides a very good solution for the complexity 
problem in this case. But few have ventured to outdoor 
scenarios, and most those who have make use of heavy 
fogging to reduce the amount of polygons to render. 
Sometimes the back plane is not set much farther than 
10-20 meters, which does not provide for a very realistic 
feeling. Using the described algorithm, the perceived 
backplane can be pushed back to the horizon, or at least 
a considerable distance further away, as the space 

between the previous backplane and the horizon can be 
covered by Far Field rendering. 

Neither graphics hardware nor processing power 
will be lacking for computer games in the near future, as 
both are rapidly catching up with workstation standards. 
The benchmarks where done on a system whose 
performance is by no means ‘state of the art’ even for a 
PC environment (see results-section) on purpose, to 
show that good results can be achieved nevertheless. 

9.3 Portal Tracing 

Previous work [Alia97] has suggested the use of textures 
as a cache for rendering portals in indoor environments. 
Those textures are calculated by using the graphics 
hardware. We propose that under certain circumstances, 
it might be advantageous to use ray casting to trace 
through the portals: far away portals cover only a small 
amount of space on the screen, so there are very few 
pixels to trace, but the amount of geometry behind a 
portal can still be quite large, especially if portals have 
to be traced recursively. Of course in this case, the 
horizon tracing stage can be omitted. 

9.4 Effects 

A potential application for some of the ideas of this 
paper is to render certain special effects that do not 
require high accuracy: reflections on partly reflective 
surfaces can be adaptively raytraced using only a small 
number of rays - the effect would be visible, but one can 
avoid having to rerender the whole scene multiple times 
as is usually necessary for such effects. 

10 Conclusions and Future Work 

We have presented an algorithm which is capable of 
considerably speeding up rendering of large virtual 
environments. In scenes where our basic assumptions 
hold, speedups of an order of magnitude have been 
measured. 

We believe that our way of partitioning the scene 
into Near Field and Far Field is a sound approach, as we 
have been able to demonstrate with examples. There is 
still a lot of work in carefully studying the behavior of 
the system with respect to scene complexity, overall 
‘type’ of the scene and to the algorithm parameters. We 
plan to investigate ways to automatically determine such 
parameters as backplane distance, number of rays to 
trace per frame and grid resolution, so as to always 
provide near optimal performance.  

There is no reason why this system could not be 
combined with other approaches like geometric level of 
detail or textured impostors. Especially the latter are 
very interesting for moving objects, as our algorithm as 
yet only deals with the static parts of a scene. It has to be 
pointed out, however, that many algorithms have very 
elevated memory requirements, which could pose a 



problem for the type of scenes we imagine. The current 
algorithm is not very memory intensive as long as there 
is a certain amount of uniformity in the scene 
distribution. 

Another interesting avenue of research is the use of 
graphics hardware for the image based operations we 
have introduced. With systems that allow access to 
frame buffer and texture memory with the same speed as 
to the system memory, it might be possible to let the 
hardware do the reprojection of the environment map 
onto the screen. For example, a simple extension to our 
current system would be to use graphics hardware to 
create the opacity buffer. 
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Figure 12: A view over much of the virtual city that 
was used for the walkthroughs. 

 

Figure 13: A typical view from a walkthrough 
sequence in the city. 


