
Fast Walkthroughs with Image Caches and Ray Casting

 Michael Wimmer1 Markus Giegl2 Dieter Schmalstieg3

1 Vienna University of Technology,

Email: wimmer@cg.tuwien.ac.at
Web: http://www.cg.tuwien.ac.at/~wimmer

2 Ars Creat Game Development
Email: m.giegl@magnet.at

3 Vienna University of Technology,
Email: schmalstieg@cg.tuwien.ac.at

Abstract
We present an output-sensitive rendering algorithm for
accelerating walkthroughs of large, densely occluded
virtual environments using a multi-stage Image Based
Rendering Pipeline. In the first stage, objects within a
certain distance are rendered using the traditional
graphics pipeline, whereas the remaining scene is
rendered by a pixel based approach using an Image
Cache, horizon estimation to avoid calculating sky
pixels, and finally, ray casting. The time complexity of
this approach does not depend on the total number of
primitives in the scene. We have measured speedups of
up to one order of magnitude.

CR Categories and Subject Descriptors: I.3.3
[Computer Graphics]: Picture/Image Generation -
Display Algorithms, Viewing algorithms; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and
Realism - Virtual Reality.

Additional Keywords: virtual environment, ray casting,
walkthrough, horizon tracing, real-time display,
panoramic images, image-based rendering, visibility.

1 Introduction

In this paper, we present a new approach to the problem
of interactively rendering large virtual environments,
where the geometric complexity exceeds what modern
graphics hardware can render interactively and the user
has control over camera position and orientation. This is
also commonly referred to as the ‘walkthrough-
scenario’.

Different solutions have been proposed for various
types of virtual environments: Indoor scenes can be
efficiently handled using portal rendering [Luebke97].
For sparsely populated outdoor scenes, the level of detail
approach is viable, providing a number of
representations for the same object with different
rendering costs. Image Based Rendering has been
proposed for very general, complex scenes. More
recently, methods have been investigated to handle
densely occluded, yet unrestricted scenes, for example
urban environments. They are commonly referred to as
‘Occlusion Culling’.

Especially in the case of densely occluded outdoor
environments, the following basic observations can be
made:

 a large part of the screen is covered by a small set of
polygons that are very near to the observer (in the
‘Near Field’)

 another large part of the screen is covered by sky

 pixels that don’t fall into one of these two categories
are usually covered by very small polygons, or even
by more than one polygon.

 The number of polygons that falls outside a certain
‘Area of Interest’ is usually much larger than a
polygonal renderer can handle - but they still
contribute to the final image.

The main contribution of this paper is a new algorithm
for accelerated rendering of such environments that
exploits the observations listed above: the scene is
partitioned into a ‘Near Field’ and a ‘Far Field’.
Following the ideas of Occlusion Culling, the Near Field
is rendered using traditional graphics hardware, covering
many pixels with polygons, whereas the Far Field is
rendered using an alternative method: every remaining
pixel undergoes a multi-stage Image Based Rendering
Pipeline in which it is either culled early or sent to the
last stage, a ray casting algorithm (see Figure 1).

Our method can be seen as a hybrid hardware /
Image Based Rendering algorithm that uses a new way
to obtain images on the fly with very low memory
overhead. The algorithm is in its nature output-sensitive
(compare [Sudar96]): by restricting hardware rendering
to the Near Field, constant load of the hardware graphics
pipeline can be achieved. The remaining pixels are also
obtained in an output-sensitive manner: both the culling
stage and the ray casting stage can be shown to have
linear time complexity in the number of pixels only. Ray
casting, if combined with an acceleration structure, is
less than linear in the number objects.

After reviewing previous work relevant to this
paper, an overview of the system architecture is given
and the various stages of and acceleration methods used

Figure 1: Ray casting is used to cover the pixels of the
Far Field (beyond 100m). Pixels above the horizon are
culled early.

Horizon

Far Field

in the algorithm are explained. This is followed by a
discussion of the behavior of the system and the possible
hardware setups where the algorithm works and a
summary of the results we obtained in our
implementation. Finally, conclusions and futures
avenues of research in this field are given.

2 Previous Work

Ray tracing is a well known area of Computer Graphics.
A good overview can be found in [Glass89]. The regular
grid approach we use has been first introduced in
[Fujim86]. Later, [Aman87] have introduced a different
incremental traversal algorithm which proved to be the
fastest for our purpose. On a theoretical analysis of the
complexity of regular grids see [Cleary88]. Interesting
extensions to grids for non-uniform scenes are discussed
in [Klima97].

 Image Based Rendering and Level of Detail
rendering has been a hot research topic in recent time.
One of the most well known commercial IBR systems is
Quicktime VR [Chen95]. It is capable of displaying a
panoramic view of an image acquired by a camera or by
synthetic rendering. The viewer can rotate this
panoramic image in realtime. Many papers have
followed that improve on the basic idea. Different
methods are used to interpolate between adjacent images
to allow arbitrary viewpoints. Especially the problem of
avoiding gaps and overlaps in the final image has
received much attention in this area ([McMill95],
[Shade98]).

 [Heckb97] gives a good survey of current
geometric Level of Detail algorithms. Hybrid
traditional/Image Based Rendering algorithms have been
proposed by [Shade96] and [Schaufler96]: they use
graphics hardware to calculate Image Caches for objects
on the fly. A similar idea, but taken further to allow
affine transforms on the images done in special purpose
hardware, is exploited by [Torb95].

 [Teller91] describes a consistent way to
precalculate ‘Potentially Visible Sets’ to accelerate
architectural walkthroughs. [Luebke95] introduces portal
rendering, where those PVS are calculated on the fly.
More general scenes are made possible by the
hierarchical z-buffer method [Greene93], where a
hierarchical z-buffer is used to cull occluded geometry.
An alternative occlusion culling method, Hierarchical
Occlusion Maps, that does not use depth information, is
shown in [Zhang97]. [Chamber96] already partitioned
the scene into Near and Far Field. They use colored
octree nodes to render the Far Field.

3 Overview of the System

The traditional polygonal rendering pipeline consists of
three basic steps. Depending on the architecture, each of
them may or may not be accelerated in hardware. What
is obvious, though, is that the time complexity of
rendering the scene is always linear in the number of

primitives, because arbitrarily many objects may be
visible at any one time.

We introduce a second stage to the pipeline, which is not
primitive-based, but purely image-based4. Each of the
two stages is able to render the whole scene alone, but
both would be equally overloaded by the whole
database. Thus, rendering of the scene is distributed to
the two stages by partitioning the scene into a Near - and
Far Field. All primitives within a distance less than a
certain threshold are sent to the polygonal renderer. The
second stage passes over all the pixels and fills those
that have not yet been covered by polygons in the Near
Field with the appropriate color.

In the pixel stage, various mechanism exist to allow
early exits before a ray is cast to obtain the color
information:

 pixels already covered by polygons are recognized
by an opacity buffer that is created during the first
stage.

 pixels which fall into an area covered by sky are
recognized by a Horizon Map created before the
second stage.

 if a pixel fails those two tests, but its value is still
within a valid error range, the pixel is looked up in
an Image Cache.

4 unlike Impostors [Schaufler96], where the images used for Image

Based Rendering still have to be created by polygonal rendering

Horizon Map
Cache
Lookup

Opacity
Buffer

Figure 2: The image cache is composed of three stages

Database
Traversal

Transform Rasterization

Figure 3: The traditional rendering pipeline consists
of three steps

Database
Traversal

Transform Rasterization

Pixel
Traversal

Image Cache Raycasting

Stage 1:
Near Field

Stage 2:
Far Field

Figure 4: Extended rendering pipeline uses a polygonal
pipeline for the near field and an image based pipeline
for the far field

Only if all these three tests fail is a pixel sent to the final
step in the pipeline, the raycaster. It is important to note
that, while ray casting is a very costly technique in itself
because it has to be done purely in software, the time
complexity of the raycaster is still less than linear in the
number of objects. Also, by restricting the number of
polygons sent to the graphics hardware, the time spent in
the polygonal graphics pipeline is bounded as well
(given a reasonably uniform distribution of primitives in
the scene). Thus, the overall algorithm can be said to be
output-sensitive, i.e., its time complexity is linear in the
number of visible primitives only, but less than linear in
the total number of primitives.

4 Ray Casting for Image Based
Rendering

4.1 Near Field / Far Field

When rendering a large scene, a huge number of objects
can reside in the area defined by the viewing frustrum,
but only a small amount of those objects actually
contribute to the appearance of the image. Large, near
object usually have much more impact on appearance
than small and far away objects.

It should therefore be possible to determine a set of
objects that have the most contribution to the image, and
only render this set of objects. The simplest way to
achieve this is to select all objects within a maximum
distance of the viewer. We call the space where these
objects reside the ‘Near Field’. This approach is very
popular, especially in computer games, and it is often
combined with fogging, so that the transition between
the Near Field and the space where objects are simply
not rendered is not so sudden.

Obviously, culling away all objects that do not
belong to the Near Field introduces severe visual
artifacts. We call ‘Far Field’ the space of objects beyond
the Near Field, but not so far away as to be totally
indiscernible. An important property of the Far Field is
that it usually

 consists of much more polygons than the
graphics hardware can render, but

 contributes to only very few pixels on the
screen, because most of the pixels have already
been covered by Near Field polygons.

To take advantage of this fact, a separate memory buffer,
the ‘opacity buffer’ is used that records which pixels
have already been covered by the Near Field for every
frame. This is what has been demonstrated to work
already in the ‘Hierarchical Z-Buffer’-method, or for
‘Hierarchical Occlusion Maps’.

The basic algorithm for our Image Based
Rendering technique using ray casting is as follows:

1. Find Objects in the Near Field using the regular
grid

2. Render those objects with graphics hardware

3. Rasterize them into the opacity buffer

4. Go through the opacity buffer and cast a ray for
each uncovered pixel (enter the resulting color in
a separate buffer)

5. Copy the pixels gained by ray casting to the
framebuffer

4.2 Ray casting

We claim that ray casting is an appropriate technique for
acquiring images for Image Based Rendering on the fly.
This might seem strange at first glance, because ray
casting (ray tracing) is known to be a notoriously slow
technique. The reason for that is the high complexity: in
a naive approach every object has to be intersected with
a ray for every pixel, so the complexity is O(pixels *
objects). In our approach, we want to cast rays into the
scene through individual pixels and find the ‘first hit’,
i.e., the first intersection with an object in the Far Field.
This means no secondary rays have to be cast, and we
are interested in so-called ‘first hit’ acceleration
techniques.

From the first days of ray tracing, acceleration
structures have been used to reduce the number of ray-
object intersection tests for individual rays. The two
most popular are Bounding Volume Hierarchies and
Hierarchical Space Subdivision. Of all the methods
proposed, the Regular Grid [Fujim86] approach is the
most interesting for our purpose: space is partitioned
into a regular grid structure, and all objects are entered
into the grid cells with which they intersect.

It has been shown ([Ohta97], [Fujim86]) that
theoretically, using an appropriate acceleration structure,
the time complexity of ray tracing can be reduced to
O(1), i.e., constant, in the number of objects (although
this constant may be very large). In out experiments we
have observed a sublinear rise in the time to cast rays
into a very large scene.

The advantage of the regular grid is its speed. Also,
given a more or less uniform distribution of objects,
which we can safely assume for many types of virtual
environments, the memory overhead is very low.
Tracing through a grid is fast, using for example Woo’s
incremental algorithm [Aman97] which only requires
few floating point operations per grid cell. If more
objects are added, runtime behavior can even improve
because rays will collide earlier with objects than if there
were huge empty spaces in the grid.

The Regular Grid also provides a simple solution to
view frustrum culling, which is necessary to quickly find
the objects that have to be rendered in the Near Field.

For certain scenes, ray casting alone might already
be sufficient and moderate gains can be observed. But
generally, this still leaves too many pixels which have to
be raycast, and while ray casting is relatively
independent of scene complexity, casting a single ray is

expensive compared to polygonal rendering and thus
only tractable for a moderate number of pixels. The
following sections explain how Image Caching and
Horizon Tracing can be used to drastically reduce the
number of rays that have to be cast.

5 Image Caching

5.1 Panoramic Image Cache

Usually, walkthrough sequences exhibit a considerable
amount of temporal coherence: the viewpoint changes
only by a small amount between successive frames. We
exploit this coherence in our system: instead of tracing
every Far Field pixel every frame, we retain all the color
values of the previous frame and try to retrace only those
pixels that are outdated according to some error metrics.

The validity of pixels depends strongly on the type
of viewpoint motion:

Forward/Backward motion: this makes up for a
very large amount of motions in a walkthrough
sequence. The farther away an object is, the smaller the
amount of pixels it moves on the screen due to
forward/backward motion. Many pixels will even remain
at the same location, so just reusing the pixels from the
previous frame is already a good first approximation.

Rotation: Rotation is quite different from
forward/backward motion: reusing the contents of the
framebuffer would indeed be a very bad solution,
because all pixels would be wrong. But actually, many
pixels are still valid, they have just moved to a different
position. So what is needed is a method to store traced
pixels that does not depend on the orientation of the
viewer.

Panning (left/right, up/down): This type of
movement is similar to rotation in that most pixels move
to a different place.

Our assumption is that forward/backward motion
and rotation will be the major types of motion in a
walkthrough sequence. We therefore choose a

representation which is independent of viewpoint
rotation: a panoramic image cache.

Panoramic Images have been demonstrated to be a
very efficient tool to store full views of a scene where
rotation is allowed. We use the panoramic image cache
not for presenting a precomputed panorama as for
example in the Quicktime VR system [Chen95], but we
use it as a rotation-independent Image Cache.

When a ray is cast through a pixel on the (flat)
screen, its position on the (curved) map calculated and
the color value obtained by the ray is entered in this
position. If, at a later time, another screen pixel projects
to the same position in the curved map, its value can be
reused if it is still good enough.

The major advantage of using a panoramic image
as an image cache is that the validity of pixels stored in
the map is invariant under rotation. This means that, as
long as the viewpoint does not change, all image
elements already calculated and stored in the map can be
reused in the new image, provided they still fall into the
viewing frustrum after rotation. This speeds up rotation
considerably: only the very small amount of pixels that
appears newly at the border towards which the viewer is
rotating has to be retraced. All other pixels can be
reused, and their values will be correct.

In the case of forward/backward movement, the
behavior of the map resembles that of a normal, flat
image map: reusing the previous panoramic map will be
a good approximation to the image and many pixels will
be in the correct location. Panning causes more pixels to
be invalidated if no costly reprojection is used.

5.2 Cache Update Strategy

Assuming that pixels which have been traced in a
previous frame are retained in an Image Cache, the
algorithm has to decide which pixels are considered
good enough according to a certain error metric, and
which pixels have to be retraced. In an interactive
walkthrough system, the decision can also be based on a
given pixel-‘budget’ instead of an error metric: which

Viewpoint

Ray Ray

Viewpoint

Image Plane

Im
ag

e
Pl

an
e

Environment Map Environment Map

Figure 5: Indexing into the Panoramic Image Cache: Given a pixel on the image plane, an angle can be
calculated with respect to the image plane center. This angle does not depend on the initial viewer orientation 0,
therefore it can be precomputed and stored in a lookup-table. So, indexing into the Image Cache consists of
looking up in a table, adding the viewer orientation 0 and rescaling this value to fit the resolution of the Image
Cache

pixels are the most important ones to retrace, given a
maximum amount of pixels available per frame.

As with any speedup-algorithm, worst-case
scenarios can be constructed that do not benefit from the
algorithm. In such a case, our approach allows
progressive refinement by iteratively retracing all
necessary pixels every frame. As soon as the scenery
gets more suited to the algorithm or the observer does
not move for a short moment, the system is able to catch
up again.

To select an appropriate set of pixels to retrace, we
assign a confidence value to each pixel in the map. The
pixels are then ordered according to their confidence
values and tracing starts with the pixels that have the
lowest confidence, proceeding to better ones until the
pixel budget is exhausted. Finding a good heuristic for
the confidence value of a pixel is not trivial. We have
chosen the following approach:

Every frame in which the observer moves more
than a certain distance (rotation is not taken into
account, as the Image Cache is rotation-independent), a
new Confidence-Record is created, which contains the
current observer position. All pixels which are traced
during this particular frame are assigned a pointer to the
current Confidence-Record (pixels which have not been
traced at all point to a ‘Lowest-Confidence’-Record).

After a few frames, there will be a certain amount
of Confidence Records (as many as there were distinct
observer positions), and each pixel in the Image Cache
will reference exactly one of those Records. This
information is used as follows:

During the polygon rendering stage, a new opacity-
buffer is created. All pixels of this buffer are visited
sequentially. If a pixel is covered by a polygon, it is
ignored. If not, a lookup is done into the Image Cache to
find out the Confidence Record associated with this
pixel. The Confidence Record also contains a pixel
counter which is then incremented.

CacheElement {
 Color;
 Pointer to ConfidenceRecord;
};

ConfidenceRecord {
 ObserverPosition;
 PixelCounter;
 CurrentConfidence;
};

Figure 6: The basic data-structure used for in the
Cache and for keeping track of confidence values

After all pixels have been visited, each Confidence
Record contains the number of pixels that refer to it in
its internal counter. Now, the observer position stored in
each Confidence Record can be compared to the current
observer position and the distance between the two is
remembered as the current confidence value of this

Confidence Record. All Confidence Records are sorted
according to this confidence value.

Scanning through the Confidence Records from
worst (farthest away) to best (nearest), we add up the
counted pixels until the pixel budget is met. This gives a
threshold distance: all pixels farther away than this
threshold distance will be retraced. Nearer pixels will be
reused from the Image Cache.

This is accomplished by going again through the
opacity buffer, indexing into the Image Cache for every
unoccluded pixel and casting a ray for the pixel if its
distance (which can be found out by following its
pointer to the associated Confidence Record) is greater
than the threshold distance.

The problem with this approach is that it occurs
quite often that all pixels have the same confidence
value: if the observer stands still for a while and then
suddenly moves, all pixels will be assigned the same
new confidence value. In this case, the confidence
values are not a good indication of where ray casting
effort should be spent. We therefore only trace every n-
th pixel that has the same distance, such that the pixel
budget is met. In the subsequent frame, the remaining
pixels will then be selected automatically for retracing.

The distance between the current and previous
observer position is used as an error-estimation, because
the panoramic image map is rotation-independent, hence
the only value that changes between frames with respect
to the map is the observer position. A more elaborate
scheme could also store orientations with each
Confidence Record and compare this to the current
orientation. For reasons of efficiency, we have chosen
the more simple approach of keeping the error
estimation rotation-independent. It would be interesting
to investigate whether performance improves if one
takes additional information about the hit object or the
distance to the intersection point into account.

To sum up, our update strategy makes sure that
pixels are retraced in the order of their distances to the
current observer position, taking into account a pixel
budget that allows for ‘graceful degradation’ if the
demand for pixels to be retraced is too high in a
particular frame. Note that on average, the area left for
ray casting only covers a small portion of the screen.

6 Horizon Tracing

Most virtual environments share the following property:
they have

 a polygonal floor

 either a polygonal ceiling or

 empty sky

For indoor-scenarios with a polygonal ceiling, the
system as presented so far would already be sufficient,
but a problem arises if there are large areas of empty
sky. Theoretically, the ray tracing acceleration structure
should take care of rays that do not hit any object in the

scene. But in fact, even the overhead of just setting up a
ray for every background-pixel is much too large as to
be acceptable. The usual case in outdoor scenes is that
between one third and one half of the pixels are covered
by polygons. A very small part is covered by Far Field
pixels that do hit objects, but the rest of the screen is
covered by sky.

If it were possible to find out where the sky
actually starts, most of the sky pixels could be safely
ignored and set to a background-color or filled with the
contents of a static environment map.

We assume that the viewer only takes upright
positions, i.e., there is no head tilt involved. This is a
reasonable restriction in a walkthrough situation. Then,
we observe that the screen position where the sky starts
only depends on the x-coordinate in screenspace, i.e., on
the pixel column. So, for every pixel column we have to
find out the y-coordinate of the horizon.

This, again, is a problem that can be solved by ray
tracing, but in 2-dimensional space. In addition to the 3D
Regular Grid that is used for tracing pixels, a 2D
Regular Grid is created that contains the height value of
the highest point in each grid node - a 2-dimensional
height-field.

For every frame, a 2-dimensional ray is traced
through this heightfield to find the grid node that
projects to the highest value in screenspace (note: this
need not be the highest point in absolute coordinates!).
All pixels with a height above this value can be ignored
and set to the background color.

Our results indicate that the reduction in the
number of pixels to trace was so substantial that the total
time spent ray casting and the time spent horizon tracing
were comparable. This makes horizon tracing itself a
further candidate for acceleration.

One way to speed up horizon tracing is to carefully
adjust the resolution of the height field. As opposed to
pixel ray casting, rays cast through the heightfield have
to travel through the whole 2D-grid so as to find the
point whose projection has the highest y-value on the

screen. Whereas the 3D grid profits from higher
resolution because of improved intersection culling, it is
detrimental for horizon tracing because of the large
number of grid cells that have to be visited. Even though
a coarser grid tends to overestimate the horizon height,
the speedup gained faster horizon tracing makes up for
this.

Another way to speed up horizon tracing is to
apply the principle of graceful degradation to the
horizon map in the same manner as to the Image Cache:
as long as the viewer is moving, the horizon is
subsampled and the locations between samples are filled
with the maximum of the adjacent samples.

7 Implementation and Results

The algorithms described in this paper have been
implemented and tested in an application environment
for creating professional computer games. The system
was tested with a Pentium 233MMX processor, which is
moderately fast for a consumer PC. The 3D board used
was a 3DFX Voodoo Graphics, a reasonably fast board
for PC-standards. Even better speedups might be
possible using a faster main processor. The
implementation is still very crude, and it is likely that
additional performance gains can be achieved by careful
optimization of critical per-pixel operations.

One problem that has to be solved is how to create
an occlusion map, and how to reuse it for rendering.
Surprisingly, graphics hardware is not of much help in
this case: transfers from frame buffer memory to main
memory are usually very slow, except in some
specialized new architectures which incorporate a
Unified Memory concept (e.g., the Silicon Graphics O2
[Kilg97]).

Therefore, while the Near Field is rendered int the
frame buffer using graphics hardware, we create the 1-
bit opacity buffer with a very fast software renderer,
taking advantage of the fact that neither shading nor
depth information is required for the opacity buffer.

Image Plane
Viewing Position 1

Viewing Position 2

Heightfield

Figure 7: The image shows a cut through the heightfield along the path of one particular horizon ray
cast from two viewing position with different heights. Note that it is not always the highest point in
the heightfield that determines the height of the horizon on the screen.

Our current implementation is limited to upright
viewing positions only. This restriction is inherent to the
horizon tracing acceleration, and we believe that it does
not severely infringe on the freedom of movement in a
walkthrough environment. With respect to the Image
Cache, a spherical map could easily be used instead of
the cylindrical map that we chose to implement,
allowing the viewer to also look up and down.

The first graph (figure 8) shows the time taken to
render each frame of a recorded walkthrough sequence
(about 400 frames) through a very large environment, a
huge city (containing approximately 150000 triangles).
Two of the series are for pure hardware rendering only,
with the the backplane set to infinity in once case and
100m in the other case. The Far Field is not rendered at
all, and our algorithm disabled completely (so there is no
overhead for tracing horizon pixels, creating or going
through the opacity buffer etc.). It shows that up to a
certain distance, graphics hardware can render the scene
very quickly, but of course misses out on a considerable
amount of the background. But if the whole scene is
rendered indiscriminately, the hardware simply cannot

cope with the amount of triangles, and the framerate
drops to an unacceptably low value.

Obviously, these are the two extremes between
which our algorithm can or should operate. It will
certainly not get faster than just rendering the Near
Field, but it should be considerably faster than rendering
the whole scene with triangles only. The third series
shows how our algorithm performs for the same
walkthrough sequence with the backplane set at 100m. A
speedup of up to one order of magnitude over rendering
the full scene in hardware can be observed.

To give a feeling for the operating behavior of the
algorithm, the second graph (figure 9) shows frame
times for our algorithm with different Near Field sizes
(i.e., the backplane set to different values). Increasing
the back plane distance beyond a certain limit reduces
performance, because more triangles have to be
rendered, but they do not further reduce the number of
pixels the have to be traced. Setting the backplane too
near gives a very non-uniform frame-rate.

The third graph (figure 10) gives an impression of

0

100

200

300

400

500

600

700

800

900
1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

30
1

31
6

33
1

34
6

36
1

37
6

39
1

40
6

42
1frames

ti
m

e
(m

s)

Hardware Full

Output Sensitive Algorithm

Hardware Near Field

Figure 8: The chart compares full hardware rendering (backplane set to infinity), our new output sensitive
algorithm and hardware rendering (Far Field not rendered) with the backplane at 100m. The image resolution was
640x480 pixels for all tests. The average frame rates were 2.0 fps for full hardware rendering and 9.25 fps for the
new algorithm, so the speedup is about 4.6.

0

50

100

150

200

250

300

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

28
1

29
5

30
9

32
3

33
7

35
1

36
5

37
9

39
3

40
7

42
1frames

ti
m

e
(m

s)

Backplane: 200m

Backplane: 100m

Backplane: 50m

Figure 9: The chart compares the behavior of the algorithm with respect to the size of the Near Field at a resolution
of 640x480 pixels.

what the algorithm is capable if the screen resolution is
reduced and the scenery is more complex (in this
walkthrough sequence, almost all of the polygons were
in the viewing frustrum most of the time, so view
frustrum culling is not able to cull geometry). The
following chart (figure 11) shows that the performance
of the output sensitive algorithm is due to heavy
occlusion in the walkthrough sequence:

The images at the end of the paper show two views of
the virtual city the walkthroughs were recorded in. The
border to the Far Field is indicated by a line. To the left
there is a view from an elevated position which does not
satisfy the assumptions because there is no significant
occlusion. The expected framerate in such a view is
about 4 frames per second for a resolution of 640x480
pixels (triangles only would be about 1 frame per
second). The image to the right represents a typical shot
from a walkthrough sequence that does fulfil our
assumption of dense occlusion.

8 Discussion

8.1 Scalability

The rendering algorithm described in this paper is
applicable to a wide range of environments (see

applications). The same is true for the type of platforms
it can be used on. Originally, it has been designed with
the consumer PC in mind, where almost every new PC is
equipped with a 3D accelerator. These accelerators share
a common property: they are very good at triangle
rasterization, but the transformation step has to be done
by the main CPU. Rendering scenes that contain a lot of
primitives easily overloads the transformation
capabilities of the CPU, and the 3D card is idle. Instead
of transforming all primitives with the CPU, the
algorithm can put this processing power to better use: by
using the methods described, and some a priori
knowledge about the scene, the 3D accelerator is used to
quickly cover the Near Field with polygons, and the
remaining CPU time is used for the pixel based
operations.

The algorithm is not restricted to such a platform,
though. As the power of the 3D pipeline increases, the
size of the Near Field can be increased as well, thus
leveraging the additional triangle processing power of
the pipeline. More pixels will be covered by polygons,
and even fewer pixels left to send to the ray casting step.
This is especially true if the geometry transformation
stage is implemented in hardware, as is the case in
higher end PC solutions and midrange 3D workstations.

But even if a high end graphics pipeline exists, the
ideas of this paper are valid: there will always be scenes
too large and too complex to handle even with the best
graphics hardware. Adjusting the size of the Near Field
to the speed of the polygon pipeline provides a good
parameter for tuning an application for speed on a
specific platform.

This means that the approach scales very well with
CPU processing power as well as with graphics pipeline
speed, and the result is an output-sensitive algorithm that
can be used in many different setups.

0

200

400

600

800

1000

1200

1400

1 22 43 64 85 10
6

12
7

14
8

16
9

19
0

21
1

23
2

25
3

27
4

29
5

31
6

33
7

35
8

37
9

40
0

42
1

44
2

46
3

48
4

50
5

52
6

54
7

56
8

58
9

61
0frames

ti
m

e
(m

s)

Hardware

Output Sensitive Algorithm

Figure 10: Frame times for a different walkthrough sequence at a resolution of 320x240 pixels. Here, the average
number of polygons in the viewing frustrum was higher than in the first sequence, making hardware rendering even
slower. The average frame time for hardware was 1.1 fps, for the new algorithm 16.3 fps, so the speedup is 14.8.

Percentage of pixels... Min Average Max

ray cast and hit an object 0,00% 0,13% 0,49%

ray cast and missed 0,00% 0,10% 0,38%

taken from the image cache 0,00% 0,13% 0,81%

culled by horizon tracing 7,38% 23,76% 39,21%

covered by polygons 60,37% 75,89% 92,62%

Figure 11: Illustrates that very few pixels have to be
calculated using ray casting in a densely occluded
environment.

8.2 Aliasing

No speedup comes without a cost. There are two reasons
why aliasing occurs in the algorithm: first, ray casting
itself is a source of aliasing because the scene is point
sampled with rays. The other reason is the aliasing due
to the projection of the flat screen into a curved image
map and back.

In both cases, antialiasing would theoretically be
possible, but it would have a heavy impact on the
performance of the algorithm, thus defying the purpose
of the algorithm, which is to accelerate interactive
walkthroughs.

9 Applications

There is a variety of applications where the algorithms
presented in this paper could be applied. Foremost, there
is:

9.1 Walkthroughs

Many types of virtual environment walkthroughs fulfil
the basic preconditions the algorithm requires. Most and
foremost, urban environments are ideal to showcase the
points of this paper. Especially in a city, most of the
screen is covered by the houses that are near to the
viewer. But there are also several viewpoints where
objects are visible that are still very far away - imagine
looking down a very long street. Polygons cover the
right, left and lower part of the image, a good part of the
sky is caught by horizon tracing, and the remaining part
can be efficiently found by ray casting. Note that under
normal circumstances, such scenes are either
excruciatingly slow to render, or the backplane distance
is simply set so near that the result does not look very
convincing.

Any other scenery which is densely occluded is
also suitable. For example, walking through virtual
woods is very difficult to do with graphics hardware
alone - but with our algorithm, a good number of trees
could be rendered in the Near Field, and the remaining
pixels traced.

9.2 Computer Games

In recent times, first person 3D computer games have
gained immense popularity. Many of them are restricted
to indoor-environments, because portal rendering
provides a very good solution for the complexity
problem in this case. But few have ventured to outdoor
scenarios, and most those who have make use of heavy
fogging to reduce the amount of polygons to render.
Sometimes the back plane is not set much farther than
10-20 meters, which does not provide for a very realistic
feeling. Using the described algorithm, the perceived
backplane can be pushed back to the horizon, or at least
a considerable distance further away, as the space

between the previous backplane and the horizon can be
covered by Far Field rendering.

Neither graphics hardware nor processing power
will be lacking for computer games in the near future, as
both are rapidly catching up with workstation standards.
The benchmarks where done on a system whose
performance is by no means ‘state of the art’ even for a
PC environment (see results-section) on purpose, to
show that good results can be achieved nevertheless.

9.3 Portal Tracing

Previous work [Alia97] has suggested the use of textures
as a cache for rendering portals in indoor environments.
Those textures are calculated by using the graphics
hardware. We propose that under certain circumstances,
it might be advantageous to use ray casting to trace
through the portals: far away portals cover only a small
amount of space on the screen, so there are very few
pixels to trace, but the amount of geometry behind a
portal can still be quite large, especially if portals have
to be traced recursively. Of course in this case, the
horizon tracing stage can be omitted.

9.4 Effects

A potential application for some of the ideas of this
paper is to render certain special effects that do not
require high accuracy: reflections on partly reflective
surfaces can be adaptively raytraced using only a small
number of rays - the effect would be visible, but one can
avoid having to rerender the whole scene multiple times
as is usually necessary for such effects.

10 Conclusions and Future Work

We have presented an algorithm which is capable of
considerably speeding up rendering of large virtual
environments. In scenes where our basic assumptions
hold, speedups of an order of magnitude have been
measured.

We believe that our way of partitioning the scene
into Near Field and Far Field is a sound approach, as we
have been able to demonstrate with examples. There is
still a lot of work in carefully studying the behavior of
the system with respect to scene complexity, overall
‘type’ of the scene and to the algorithm parameters. We
plan to investigate ways to automatically determine such
parameters as backplane distance, number of rays to
trace per frame and grid resolution, so as to always
provide near optimal performance.

There is no reason why this system could not be
combined with other approaches like geometric level of
detail or textured impostors. Especially the latter are
very interesting for moving objects, as our algorithm as
yet only deals with the static parts of a scene. It has to be
pointed out, however, that many algorithms have very
elevated memory requirements, which could pose a

problem for the type of scenes we imagine. The current
algorithm is not very memory intensive as long as there
is a certain amount of uniformity in the scene
distribution.

Another interesting avenue of research is the use of
graphics hardware for the image based operations we
have introduced. With systems that allow access to
frame buffer and texture memory with the same speed as
to the system memory, it might be possible to let the
hardware do the reprojection of the environment map
onto the screen. For example, a simple extension to our
current system would be to use graphics hardware to
create the opacity buffer.

11 Acknowledgments

This research is supported in part by the Austrian
Science Foundation (FWF) contract no. p-11392-MAT.
We’d like to thank Ars Creat Game Development for
letting us use the ‘Ars Machina’ framwork of their
upcoming computer game.

References
[Alia97] D. G. Aliaga, A. A. Lastra. Architectural Walkthroughs Using

Portal Textures. IEEE Visualization '97, pp. 355-362, November
1997.

[Aman87] J. Amanatides, A. Woo. A fast voxel traversal algorithm for
ray tracing. Eurographics '87, pp. 3-10, North-Holland, August
1987

[Chamber96] B. Chamberlain et. al. Fast rendering of complex
environments using a spatial hierarchy. Graphics Interface '96, pp.
132-141, May 1996.

[Chen95] S. E. Chen. QuickTime VR - An Image-Based Approach to
Virtual Environment Navigation. Computer Graphics (Proc.
SIGGRAPH’95), pp. 29-38.

[Cleary88] J. G. Cleary, Geoff Wyvill. Analysis of an algorithm for
fast ray tracing using uniform space subdivision. The Visual
Computer, 4(2), pp. 65-83, July 1988.

[Fujim86] A. Fujimoto, T. Tanaka. ARTS: Accelerated Ray Tracing
System. IEEE Computer Graphics and Applications, 6(4), pp. 16-
26, 1986.

[Glass87] A. S. Glassner (ed.). An Introduction to Ray Tracing.
Academic Press, 1989.

[Greene93] Hierarchical Z-Buffer Visibility. Computer Graphics
(Proc. SIGGARPH’93), 27, pp. 231-238, 1993.

[Heckb97] P. Heckbert, M. Garland. Survey of Polygonal Surface
Simplification Algorithms. Technical Report, CS Dept., Carnegie
Mellon U., to appear (draft May’97)
(http://www.cs.cmu.edu/~ph/).

[Kilg97] Realizing OpenGL: Two Implementations of One
Architecture. 1997 SIGGRAPH / Eurographics Workshop on
Graphics Hardware, pp. 45-56, August 1997

[Klim97] K. S. Klimaszewski, Thomas W. Sederberg. Faster Ray
Tracing Using Adaptive Grids. IEEE Computer Graphics and
Applications, 17(1), pp. 42-51, January 1997.

[Luebke95] D. Luebke, Chris Georges. Portals and Mirrors: Simple,
Fast Evaluation of Potentially Visible Sets. Proc. Symp.
Interactive 3-D Graphics, ACM Press, April 1995.

[McMill95] L. McMillan, G. Bishop. Plenoptic Modeling: An Image-
Based Rendering System. Computer Graphics (Proc.
SIGGRAPH’95), 29, pp. 39-46, 1995.

[Ohta87] M. Ohta, M. Maekawa. Ray Coherence Theorem and
Constant Time Ray Tracing Algorithm. Computer Graphics 1987
(Proceedings of CG International '87), pp. 303-314, Springer-
Verlag, 1987.

[Schaufler96] G. Schaufler, W. Stürzlinger. A Three-Dimensional
Image Cache for Virtual Reality. Computer Graphics Forum
(Proc. EUROGRAPHICS’96), 15(3), p. C227-C235, C471--C472,
September 1996.

 [Shade96] J. Shade et. al. Hierarchical Image Caching for Accelerated
Walkthroughs of Complex Environments. Computer Graphics
(Proc. SIGGRAPH’96), 30, pp. 75-82, 1996.

[Shade98] J. Shade et. al. Layered Depth Images. Computer Graphics
(Proc. SIGGRAPH 98), pp. 231-242, July 1998.

[Sudar96] Output-Sensitive Visibility Algorithms for Dynamic Scenes
with Applications to Virtual Reality. Computer Graphics Forum,
15(3), pp. 249-258, Blackwell Publishers, August 1996.

[Teller91] S. J. Teller, Carlo H. Séquin. Visibility preprocessing for
interative walkthroughs. Computer Graphics (Proc. SIGGRAPH
'91), 25(4), pp. 61-69, July 1991.

[Torb95] Talisman: Commodity Real-time 3D Graphics for the PC.
Computer Graphics (Proc. SIGGRAPH 96), pp. 353-364, August
1996.

[Zhang97] H. Zhang et. al. Visibility Culling Using Hierarchical
Occlusion Maps. Computer Graphics (Proc. SIGGRAPH’97),
31(3A), pp. 77-88, August 1997.

Figure 12: A view over much of the virtual city that
was used for the walkthroughs.

Figure 13: A typical view from a walkthrough
sequence in the city.

