Dynamic Load Balancing in Distributed Virtual Environments

Stephan Mantler and Dieter Schmalstieg

Vienna University of Technology, Austria
{step | dieter}@Qcg.tuwien.ac.at

Abstract

This paper introduces a new approach for improving the scalability of distributed virtual environments
by using a combination of visibility culling for communication and dynamic load balancing to keep
the system load evenly distributed. Further communication optimizations as well as some preliminary

results are presented.

1. Introduction

In many Virtual Environments, there is a desire for
huge numbers of simultaneous participants within the
environment. However, these goals are defeated by
limits of current software and hardware. Increasing
load will degrade responsiveness to the point where
the system is rendered useless. To overcome the re-
strictions, distributed designs are needed that improve
the scalability of the system.

An optimal design will therefore minimize the com-
munication through a careful decomposition of the
system; additional computational effort can be used
to further reduce the required communication, how-
ever care must be taken that the increased processing
requirements will not outweigh the improvements of
distribution.

An efficient networking mechanism for that purpose
is the use of multicast communication !. In addition
to using a generic distributed approach, improvements
can be obtained by exploiting properties specific to
the virtual environment application. For example, if
the environment features dense occlusion, such as in
building interiors, the additional visibility information
can be used to reduce the number of messages sent to
each client. This reduction is typically performed by a
network of servers, each of which possesses geometry
(and thus visibility) information about some part of
the environment as well as the clients in this part.
As a client can see only a small fraction of the total
number of avatars in such a system, filtering based
upon visibility information greatly reduces the number
of messages that need to be passed, which leads to a
significant increase of the system’s scalability.

Funkhouser described an architecture named RING
2 which uses static visibility information to perform

message filtering at runtime. The environment is de-
composed into adjacent parts, which are statically dis-
tributed over a network of servers.

More specifically, the system’s scalability is now not
longer limited by the total number of clients in the
environment, but the number of clients that need to
be accounted for by one server. This is without doubt
a drastic improvement, however it is still possible for
such a system to become overloaded as soon as one
server reaches its limits, even if the other computers
are only very lightly loaded.

This paper introduces an architecture which is
aimed at taking the scalability of distributed virtual
environments one step further by employing dynamic
load balancing to keep all servers evenly loaded. The
virtual world is decomposed into regions, the distribu-
tion (and hence the cost of maintenance) of which is
balanced among the available servers. This architec-
ture differs from previous design by allowing a dy-
namic reconfiguration of the simulation subdivision
among servers, including database and network con-
nections. Our approach also allows to add and remove
servers at runtime, which is essential for Internet-
based applications.

2. A system design with load balancing

In order to keep the system’s load distributed evenly
over all connected machines, some sort of workload
balancing needs to take place. In the above case of
assigning a part of the environment to each server,
an overloaded server will aim to reduce its load by
reducing the part of the world it has to handle, while
a server noticing that it has little or nothing to do
can request further work. In this section, we outline
our system design, which was inspired by the RING



S. Mantler and D. Schmalstieg / Dynamic Load Balancing in Distributed Virtual Environments

Figure 1: Regions are transferred between servers to
balance system load.

architecture, but is capable to include load balancing
among servers.

For simplicity, we have limited the environment to
a Z%D representation, which is sufficient for the rep-
resentation of building interiors. Visibility can be de-
termined from the floor “map” with a fast on-the-fly
algorithm 2, which allows rapid point-to-cell and cell-
to-cell visibility computation. The world consists of a
number of adjacent, non-intersecting convex polygons,
where each edge of the polygon can be either transpar-
ent - representing an open door - or opaque for walls.
The size of these polygons determines the granularity
of the load balancing.

The simple heuristic that has been used in our im-
plementation tries to estimate the server’s load by ex-
amining the number of clients as well as the regions.
By trying to keep the client count below a certain level,
the network traffic and required computing power can
be limited; the tendency towards keeping the number
of regions down tries to keep an otherwise unloaded
server from “bad surprises” like a large number of
clients entering its regions.

If it is decided that load balancing is required, the
heuristic tries to choose a region for transfer that will
bring the most benefit for the server, i.e. the one that
will move as many clients as possible to the other
server.

Naturally, such transfers should not cause another
server to become overloaded and necessitate addi-
tional region transfers, since this could cause un-
wanted oscillations as regions and clients are handed
over back and forth. Therefore, there are two limits on
the load scale:

e The high water mark defines the point above which
a server tries to get rid of a region.

o If a server’s load falls below the low water mark it
will try to take over a region from another server.

The latter is needed to evenly distribute the load
even in areas where the overall load is low by requiring
“bored” servers to take over some of the work from
other servers.

120

100 -

80 - R T I |
‘ number of regions on server A ——

\\ number of regions on serverB - - -
60 - =

40 4

| R o A N o \ - AN WA
20 i number of clients on server A ——
number of clients on serverB - - -

0

Experiment Time

Figure 2: Load balancing in action: Initially server A
has too many clients and gradually passes regions and
clients to server B. As the clients move about ran-
domly, they become evenly distributed over the world
and cause B to return some regions to A.

3. Evaluation and Results

We have implemented a prototype of the design as de-
scribed in the previous sections and are currently per-
forming experiments to examine the reaction of the
environment to the change of parameters (world size,
number of servers, number of clients, directed client
movement vs. random walk). To simulate a large num-
ber of human participants and to be able to repro-
duce the test situation under changing conditions, the
movement of the clients is controlled by ”robot” pro-
grams which are able to explore the world without
user interaction. Preliminary results show that our ap-
proach is feasible and appear encouraging.

To conclude, the presented system can be regarded
as a framework for further studies. This future work
will be aimed at examining potential heuristics and
performance optimizations as well as the integration
of the system with other ongoing research.

Acknowledgments This project is sponsored by the
Austrian Science Foundation (FWF) under contract
number P11392-MAT.

References

1. M. Macedonia, M. Zyda, D. Pratt, D. Brutzman,
and P. Barham, “Exploiting reality with multicast
groups: A network architecture for large-scale vir-
tual environments”, Proc. VRAIS’95, (1995).

2. T. Funkhouser, “Network topologies for scalable
multi-user virtual environments”, Proceedings of
VRAIS’96, Santa Clara CA, pp. 222-229 (1996).

3. D. Schmalstieg and R. Tobler, “Exploiting coher-
ence in 2.5 d visibility computation”, Computers
and Graphics, 21(1), pp. 121-123 (1997).



