
A Network Architecture for Remote Rendering

Gerd Hesina and Dieter Schmalstieg
Vienna University of Technology, Austria

email: [gerd|dieter]@cg.tuwien.ac.at

Abstract
Internet-based virtual environments (VEs) let users

explore multiple virtual worlds with many different
geometric models which are downloaded rather than pre-
distributed. To avoid long download times, we have
developed a method that optimally utilizes network
bandwidth by downloading only the exact portion of
geometry that is necessary for rendering. The solution is
based on progressive geometry data structures (smooth
levels of detail) and selective download.

1. Introduction
Distributed VEs can bring together a large number of

participants in a simulated three-dimensional space. Such a
system may be described as a database - a collection of
objects - shared over a network. The content and state of
the database defines the scene that is presented visually to
the human participants. In particular, the geometric
descriptions (polygonal models) of the objects visible to
the user must be available at the user’s workstation for
rendering. A simple approach to make these geometric
models available is to replicate the information at every
host. This approach is feasible for simulations with a fixed
set of objects and an environment of restricted size (e. g., a
specific terrain for a training simulation or a specific
dungeon for a computer game).

Figure 1: Transmission models for graphical data: off-
line, preloading and on-the-fly.

However, with the adoption of the Internet as a medium
for distributed VEs, full replication is no longer a viable
option. Users connect to Internet servers and rapidly
explore multiple VEs populated with a large number of
geometric models which are downloaded rather than pre-
distributed. Large data sets lead to extensive download
times, thus necessitating a new paradigm for the
transmission of geometric models.

In this paper, we present a method that optimally
utilizes available network bandwidth for the runtime
distribution of geometric models in distributed VEs. Our
solution exploits selective download and progressive
geometry data structures for incremental transmission.

2. Related work
While the efficient transmission of simulation messages

has received a lot of interest, e. g., [1, 8, 9], relatively little
interest has been paid to the transmission of geometric
models in VEs.

The data for the visible objects in the scene must be
available to the host to perform the rendering. Off-line
distribution of the database (Figure 1a) is often used for
simulation [4, 9] or CD-ROM based computer games [7,
10]. Some applications [7] also allow to download the
environment before use (Figure 1b). Better use of spatial
coherence is made by on-the-fly download of individual
objects’ geometric description such as NPSNET [9], or
individual geometric levels of detail [11] (Figure 1c). In
[5], a method for paging geometric data from disk for
building interiors is presented. However, their method is
designed for indoor environments and does not make use
of progressive geometric models.

Recently developed progressive geometry models allow
a fine grained transport of “streaming” geometry [2, 6, 12].
However, to our knowledge, a fully distributed system that
incorporates this kind of progressive fine-grained geometry
transmission has not been demonstrated so far.

3. Remote Rendering
Demand-driven geometry transmission [11] is a method

for efficient transmission of geometric models in a
distributed VE. A server stores the data for a region of the

VE, composed of objects that are arranged spatially. Some
of the objects may be avatars that represent other
participants. A client allows the user to display and
navigate this VE database. A server stores the database of
geometric objects and clients may download individual
objects. By requesting and storing only those models that
are currently visible to the user, the amount of data that
must be transmitted and stored locally is significantly
reduced. If the required data can delivered over the
network “just in time” for the rendering process, both
intractable setup times and elevated storage requirements
are resolved without compromising visual appearance. The
geometric models are effectively cached in the client’s
memory, and the cache’s content is determined by the
behavior of the users and the state of the simulation. We
call this processremote rendering.

Figure 2: Clients maintain an area of interest (large
circles) of the server’s database. The geometric
description of objects (white dots) and avatars (black
dots) is transmitted on demand.

For remote rendering, it is sufficient if the client has the
data for those objects that are contained in its area of
interest (AOI), as shown in Figure 2. We use circular
AOIs, a practical choice for outdoor environments. Rapid
changes in the direction of gaze are possible for both
immersive head-mounted display setups and desktop
browsers, while the rate of translational movement is
constrained. Therefore, the content of a circular AOI
typically has a high degree of spatial coherence.

The geometric descriptions of the objects contained in
the client’s AOI must be available to the client. Any such
description must be downloaded from the server by using
the demand-driven geometry transmission protocol. This
protocol between client and server also incorporates
messages that let the client inform the server if the user has
moved, and let the server inform the client if movement of
other objects or avatars has occurred in the client’s AOI
(e. g., a new object has entered the AOI). For details
regarding the protocol, refer to [11].

4. Rendering with Smooth Levels of Detail
While conventional methods use a small set of discrete

levels of detail (LODs), our system uses a new class of
polygonal simplification calledsmooth levels of detail
[12]. A very large number of object approximations with
increasing fidelity is encoded in a data stream for
progressive refinement of the object from a very coarse
approximation to the original high quality representation.
This data structure allows incremental transmission, which
is exploited by our application protocol (Figure 3). While
switching between discrete LODs usually leads to
disturbing “popping” behavior, smooth LODs allow a
continuous choice of fidelity and avoid such artifacts.

Figure 3: Smooth levels of detail allow progressive
transmission of geometry data and display at any
desired resolution

As the polygon budget of the client’s image generator is
limited, there is no point in wasting bandwidth by
downloading geometry that will never be rendered; the
geometry stream is simply cut off when the desired fidelity
has been received. The fine-grained resolution of the
progressive data structure makes all received data
immediately useful: Whenever a small portion of the
object geometry has been received, it is used to refine the
visual representation. Thus notable temporal and visual
discontinuities that would occur when dealing with a large
geometric object as a whole are avoided.

5. Smooth level of detail selection strategy
The content of the client’s AOI can be interpreted as a

cache which has to be kept consistent with the server’s
database. The content of this cache is defined by the spatial
distribution of the database, but the amount of data for
each object in the AOI needs to be determined by a
separate selection scheme.

For the selection of discrete LODs, a predictive method
was presented by Funkhouser and Sequin [3]: The level of
detail selection is formulated as a discrete optimization
problem: Given a set of objects available at multiple levels
of detail, select those that contribute most to the final
image while keeping the cost for rendering these objects
below a given threshold (polygon budget). The solution for

this optimization (knapsack) problem is approximated by a
greedy algorithm.

Using smooth levels of detail, a continuous choice of
detail is available for each object. Solving the continuous
optimization problem that is equivalent to the
aforementioned knapsack problem, we have derived a
formula that is both simple (and hence fast) to evaluate and
geometrically intuitive.

As observed by Funkhouser and Sequin, the relative
importance of the object should be proportional to the size
of the object in the final image: objects that appear larger
should also be drawn with more detail (more polygons).
Consequently, the number of polygons drawn for each
object in a given frame is made proportional to the screen-
size of the object:

p x
A x P

A i
i

()
()

()
=

⋅

�

α

α
(1)

where:
p(x) …selected number of polygons for objectO(x)
P …polygon budget
A(i) …screen-size ofO(i)
α …correction factor (0 <α ≤ 1)

With α set to 1, the screen size determines the number
of polygons for each object. The screen size of polygons
will be constant over all objects. However, this does not
take into account that visual quality is not linearly
dependent on the number of polygons: Adding more
polygons yields diminishing returns in visual quality.
Adding 100 polygons to an object displayed with 200
polygons is much more important that adding the same
amount to an object displayed with 20000 polygons.
Thereforeα should be chosen < 1.

For α = 1/3, it can be shown that equation (1) gives the
exact solution to the continuous version of the problem
formulated in [3]. Other criteria that contribute to the
importance of the object such as screen position (focus) or
user-defined importance are easily incorporated into the
computation.

6. Prefetching strategy
To make geometric data available in a timely fashion,

downloads must be initiated some time before the data is
actually needed. Objects that are assumed to be rendered at
a certain level of detail in the near future are partially
prefetched. Should some geometry data not become
available in time, the object can be displayed at a lower
fidelity (graceful degradation) and be refined when the
missing data becomes available (progressive refinement).

As the client must know in advance which objects to
download, a larger AOI radius is considered for
prefetching than for rendering. For each object in this

larger AOI, the amount of geometry (number of polygons)
that should be downloaded must be determined.

It does not make sense to request more data for
download than the available network bandwidth allows.
Therefore, data requests should be prioritized, where
priority is defined by some measure of (anticipated)
importance for future images (similar to the LOD selection
described in section 5).

AOI radius ∆observer
AOI radius with prefetch

A A

Figure 4: For objects of equal size, the importance is
proportional to the screen-size A. By assuming a
movement of ∆∆∆∆ towards the object, the amount of
prefetching is determined.

Prefetching assumes that the user has traveled towards
the object by a constant distance. From the increased
screen size the desired number of polygons is computed:

p x
A x P

A i

k

k

i

()
()

()
= ⋅

�
(2)

where:
p x() …desired number of polygons for objectO(x)

A x() …increased screen-size of objectO(x)
The difference between desired and available number of

polygons for each object gives the amount of geometry that
should be downloaded. This amount is weighted by the
available bandwidth (polygon budget for download).

()
()

DL x
p x avail x P

p i avail i
i

()
() ()

() ()
=

− ⋅

−�
(3)

where:
DL(x) …number of polygons to be downloaded forO(x)
avail(x) …number of locally available polygons forO(x)
P …polygon budget for download

To avoid excessive overhead, downloads must have a
minimum size or they will not be considered.

7. Implementation and evaluation
We were interested in assessing the performance of remote
rendering. For our tests we used an entry-level workstation
(SGI O2) as the client. Our selection algorithm as detailed
in section 5 was always capable of staying within the
polygon budget, so the O2 was capable of delivering a

steady 15 frames per second for a polygon budget of
10000 triangles. Network capacity was intentionally
limited to 64kbps, which characterizes consumer level
network bandwidth.

Experiment procedure. The experiment consisted of a
client connecting to the server and moving through the VE
while the content of its AOI was monitored. The path of
the client through the VE was prerecorded and played back
for the experiments to be able to recreate exactly the same
user behavior. For prefetching, the AOI for download was
10 percent larger than the AOI for rendering.

Influence of spatial coherence. This experiment was
designed to examine the influence of spatial coherence on
the caching behavior at the client. To evaluate the quality
of the cache, we defined aquality metric as the number of
polygons thatcould be displayed (were available) over the
number of polygons thatshould be displayed (should be
available), both according to the choice of the selection
algorithm presented in section 5. With a perfect caching
strategy, this rate should be 1. Figure 5 shows the quality
over time for increasing velocities (% of AOI change/sec).
After the initial cache fill, the quality remains close to 1 for
small velocities (solid line), while larger velocities
(exceeding the bandwidth) lead to degraded quality
(dashed line).

0

20

40

60

80

100

0 20 40 60 80 100 120 140

O
ve

ra
ll

Im
ag

e
Q

ua
lit

y
[%

]

Experiment Time [s]

2%
3%

Figure 5: Influence of spatial coherence on the
availability of geometric data

Influence of selective download. This experiment was
intended to demonstrate the benefits of selective smooth
LOD downloads. We compared our strategy to a simple
scheme that fully downloads all objects in the AOI.

Full download
Selective download

0

20

40

60

80

100

0 20 40 60 80 100 120 140
Experiment Time [s]

Figure 6: Influence of the selection scheme on the
availability of geometric data

Figure 6 shows that for the same velocity, our selective
smooth LOD downloading strategy produces a good image
quality (solid line), while a naïve scheme (full download of

all objects in AOI) by far exceeds the bandwidth and leads
to unacceptable results (dashed line).

8. Conclusions
We have demonstrated a distributed virtual environment
that combines selective demand-driven transmission of
geometric objects with smooth levels of detail. This
approach avoids long download times for Internet-based
virtual worlds and improves the network utilization by
adaptive use of both rendering and network capacity.

Acknowledgments. This project was sponsored by the
Austrian Science Foundation (FWF) under contract
number P11392-MAT. Many thanks to A. Fuhrmann, H.
Hey, G. Schaufler, Zs. Szalavári, and M. Wimmer for their
help.

References
1. Carlsson C., O. Hagsand. DIVE - A platform for multi-

user virtual environments. Computers & Graphics,
17(6), pp. 663-669, 1993.

2. Deering M. Geometry Compression. Proceedings of
SIGGRAPH'95, pp. 13-20, 1995.

3. Funkhouser T., C. Sequin. Adaptive Display Algorithm
for Interactive Frame Rates During Visualisation of
Complex Virtual Environments. Proceedings of
SIGGRAPH’93, pp. 247-254, 1993.

4. Funkhouser T. Network Topologies for Scalable Multi-
User Virtual Environments. Proceedings of VRAIS'96,
Santa Clara CA, pp. 222-229, 1996.

5. Funkhouser T., C. Sequin, and S. Teller. Management
of Large Amounts of Data in Interactive Building
Walkthroughs. SIGGRAPH Symposium on Interactive
3D Graphics, pp. 11-20, 1992.

6. Hoppe H. Progressive meshes. Proceedings of
SIGGRAPH ‘96, pp. 99-108, 1996.

7. Id Software. Quake. Computer game, information
available at http://www.idsoftware.com/quake/,1996.

8. Lea R., Y. Honda, K. Matsuda, S. Matsuda.
Community Place: Architecture and Performance.
Proceedings of ACM VRML’97, pp. 41-50, 1997.

9. Macedonia M., M. Zyda, D. Pratt, D. Brutzman, and P.
Barham. Exploiting Reality with Multicast Groups: A
Network Architecture for Large-scale Virtual
Environments. Proceedings of VRAIS'95, 1995.

10. Origin. Ultima Online. Computer game, information
available at http://www.owo.com/,1997.

11. Schmalstieg D. and M. Gervautz. Demand-Driven
Geometry Transmission for Distributed Virtual
Environments. Computer Graphics Forum (Proc.
EUROGRAPHICS’96), 15(3), pp. 421-433, 1996.

12. Schmalstieg D., G. Schaufler: Smooth Levels of Detail.
Proceedings of IEEE VRAIS’97, pp. 12-19,
Albuquerque, New Mexico, March 1-5, 1997.

