
Incremental Encoding of Polygonal Models

Dieter Schmalstieg
Vienna University of Technology, Austria

dieter@ cg.tuwien.ac.at

Abstract
thod to generate a stream of

nes a polygonal model from
to the original high-fidelity
level of detail algorithms

r of discrete approximations
od allows a smooth, continuous
over time while the stream is

based on a hierarchical
clustering algorithm which produces the model
representation of steadily increasing detail ana' has
several advantages over conventional models with few,
discrete levels of detail: The model can be transmitted
and decoded incrementally, yielding a valid
approximation at any stage of the process. The
incremental encoding is extremely compact, so models
are smaller than in their original form. Any desired level
of detail can be selected during rendering at interactive
speed. It is also possible to have variable detail
resolution within a single model, which is useful for
rendering models with large extent.

1. Introduction

n image quality because
the small detail in the models is not captured by
rastenzed images.

Overload of the graphics hardware and object detail
which will not be visible in the final image is
commonly avoided through the use of so-called levels
of detail (LOD): models are approximated with
decreasing accuracy using a decreasing number of
triangles. Numerous methods to generate a small set of
such levels of detail have been developed, that all aim
at a high data reduction without noticeable degradation
of the resulting image quality. Coarser levels of detail

1060-3425/97 $10.00 0 1997 IEEE

Gernot Schaufler
Kepler University Linz, Austria

gs@ gup.uni-linz.ac.at

should only be used for small or distant objects, so that
the difference in image quality cannot be noticed by
the observer, but frequently models are to complex for
the available rendering capacity, so that a coarser than
desired approximations has to be drawn to prevent the
image generator from stalling. In such cases, switching
from one level of detail to another in an is particularly
distracting and annoying for the user.

Use of 3-D models in networked computer systems
is growing fast as Intemet-based graphics standards
such as VRML and distributed virtual environments are
being adopted by large user communities. In this
context, transmission of object models is a major issue
as soon as the simulated environment is complex
enough to make storing full copies of the environment
on every computer impractical. LODs with
progressively higher detail will be transmitted as the
participant is approaching an object. However, only the
last completely transmitted level can be displayed, and
as data sizes increase with the LOD quality, delays
between model refinements increase rapidly. Such
stalling negatively affects the participant's experience
of the simulation.

This paper proposes a solution for the mentioned
problems. We propose the generation of a
representation for an object which can be displayed
with continuous level of detail. The transmission of this
object representation over computer networks makes
the latest transmitted data immediately available for
display during the simulation.

After reviewing related work in section 2, the
algorithm is motivated in section 3. Section 4
introduces the hierarchical cluster tree used to
represent the smooth LODs. Manipulation of the cluster
tree is explained in section 5. Section 6 defines a
suitable network protocol, section 7 deals with object
reconstruction and presents methods for display.
Section 8 presents results and section 9 draws
conclusions.

2. Related Work

The gains in rendering speed achievable by
approximating small, distant or otherwise unimportant
objects instead of rendering them in full quality were

638

identified by Clark as early as 1976 [l]. Since then,
researchers have investigated several methods for the
automated generation of so-called levels of detail
@ODs); a comprehensive overview can be found in the
paper by Heckbert and Garland 14). The task of LOD
generation so far has been understood as a search for a
series of progressive simplifications of a polygonal
object, that have fewer primitives (polygons), but
closely resemble the Original object.

Polygonal simplification can be categorized by the
property that is examined to compute the reduced data
set: Topological algorithms such as. [3,5, 11, 121 allow
relatively precise control over the result, including
preservation of the topology of the object and error
bounds on the quality of the approximation.
Unfortunately, implementation of these algorithms is
often highly complex, and generally requires objects to
be topologically well-behaved and manifold, a
requirement rarely met by real-world CAD data.

Geometric algorithms, however, are less sensible to
the input data and easier to implement. Since they are
not constrained to preserve any topological properties
of the data, they can be forced to achieve arbitrarily
high data reduction (at the expense of object fidelity).
The LOD generation algorithm on which this paper is
based belongs to the latter class.

The fundamental idea of data reduction based on
geometry is to reduce the number of vertices of a
polygonal model (usually a triangle mesh). Due to
perspective distortion individual vertices of an object
move closer together on the screen as the distance to
the observer increases until they finally fall into one
pixel. By creating a cluster of such close vertices and
replacing al l cluster members by a representative
vertex, the number of vertices is reduced. The set of
triangles is modified to include only the vertices in the
new set. In the course of that process, triangles will
degenerate to lines or points and can be removed.
Therefore the set of triangles is reduced, and any such
intermediate data set can be used as an individual
LOD.

Several selection criteria have been presented to
choose the vertices that are to be clustered. Rossignac
and Borrel [SI propose a simple, yet efficient unifoxm
quantization in 3-D. Schaufler and Stiirzlinger [9] use a
hierarchical clustering method, on which the work
presented in this paper is bas*&. Luebke [7J presents a
data structure derived from an octree, that is capable of
computing any desired level of detail during display,
which incrementally adapts to changes in the
viewpoint.

As networked virtual environments and other
distributed graphical applications involving more than
one computer and display system become increasingly
commonplace, it is no longer sufficient to provide
LODs for better utilization of the rendering pipeline
only. Transmission of the geometric database over the
network becomes the bottleneck as large data sets

introduce intolerable lag. Schmalstieg and Gervautz
[lo] discuss a strategy for network distribution of
individual LODs oni demand that reduces bandwidth
requirements. Deering [2] introduces a compression
method for polygonal data sets. Levoy [61 proposes a
combination of geometry and compressed image data
to preserve bandwidlh with a compressed video stream.
The wavelet based multi-resolution modeling presented
by Eck et al. 131 lends itself to progressive refineiment
of objects, similar in spirit to the approach presented
here.

3. Motivation for Smooth Levels of Detail

Frequently polygonal models are very large, which
is at conflict with rendering capacity and network
throughput. Adding levels of detail partly addresses the
rendering problem, but makes overall model size even
larger. The reason for this dilemma is that the standard
approach of representing polygonal data as lists of
vertices and triangles is not powerful enuugh. In this
paper, we present a tiata structure that does not suffer
from the mentioned shortcomings and fulfills the
followine reuuirements:

Sm&h LODs.. The data structure should
represent many levels of details (not only 3-6, but
hundreds or thousands of LODs), so that a
continuous (or almost continuous) refinement of
the model is possible by repeatedly adding smiall
amounts of local detail to the model.
Incremental decoding. Decoding of the smooth
LODs should be incremental, i. e. the next h e r
LOD should be irepresented as the difference to
the current LOD. By reusing all the data from the
coarser LODs, nlodel size can be kept small
despite the large number of LODs.
Interactive LOD selection. The smooth LODs
data structure should support selection and
rendering of any specific LOD, allowing a chance
to the next LOlD (both coarser and finer) at
interactive speeds (during rendering).
Incremental transmission. It should be possible
to incrementally transmit the model over the
network, starting jkom the coarsest approximation
and progressing to the original model. In
particular, rendering should immediately be able
to use all the data received up to a certain
moment, and render an incomplete. This is
important for progressive refinement of large
models that take an extended period to transmit,
and allows continued operation in case of netwoirk
failures.
Compact representation, It is preferred if the
smooth LODS data structure introduces no
overhead in the model size compared to thie
original, uncompressed polygonal model. Ideally,

639

the introduction of smooth LODs should yield
compression instead of bloating the model.
Variable resolution within the model. If the
many LODs within the data structure have only
local influence on the appearance of the model,
the corresponding details can be selected
individually, resulting in variable resolution within
a single model. This is particularly useful for
models with a large extent (e.g. a large building
seen from the inside), where parts close to the
observer should have high fidelity, whereas distant
parts can be represented by a coarse
approximation.

Our data structure is based on a binary tree that is
created by hierarchically clustering vertices of the
original model, thereby constructing a cluster tree.
Every clustering operation simplifies ’the model, and
therefore every node of the cluster tree represents a
single level of detail. A linearization of the tree in the
inverse order of the clustering process yields a
sequential representation of the data structure that is
suitable for network transmission. It also incrementally
encodes the model, and therefore fulfills our
requirements. The next section discusses the creation
of this data structure in detail.

4. Representing the model as a cluster tree

Hierarchical clustering for LOD generation, as
presented in [SI, is based on the idea that groups of
vertices which project onto a sufficiently small area in
the image can be replaced by a single representative: a
many-to-one mapping of vertices. As a consequence,
the number of triangles is reduced when the triangles’
vertices are replaced by their representatives from the
reduced vertex set, and collapsed triangles are filtered
out. Repeated application of the clustering operation
yields a sequence of progressive simplifications
&ODs). If exactly two clusters are combined in every
step, the result is a binary tree, the cluster tree.

Construction of the cluster tree. The cluster tree is
built by successively finding the two closest cluster in
the model and combining them into one. The combined
cluster is stored in a new node that has the two joined
clusters as its children. The process is repeated until
only one cluster containing all the v
which is the root of the cluster tree.

For each new cluster, a representative is chosen
from the set of vertices in the cluster. More precisely,
we chose the representative to be one of the two
representatives of the child clusters. The distance of
two clusters (used to find the closest clusters) is
computed as the Euclidean distance of the two
childrens’ representatives. This value is also stored as
the cluster size in the new cluster’s node for further use.

Step 0 (Initialization): Form a cluster for each vertex,
with the vertex serving as the representative

Step I: Find the two clusters with the closest

Step 2: Replace the two clusters identified in step 1

Step 3: If more than one cluster remains, go to step 1

representatives

by a joint cluster, select new representative

Figure 1: The clustering process: A mesh (a) is
mapped onto a vertex cluster tree, which is used
to group vertices (b). From the reduced vertex set,
a simplified model (c) is computed.

The cluster tree has the desired properties that it
contains instructions for a continuous simplification of
the model, and can therefore be used to construct a
sequence of smooth levels of detail. However, in its
form described above, it only stores the vertices of the
model, but not the triangles. To use the cluster tree as
an alternate representation of the original polygonal
model, the triangles must also be encoded and stored
in the cluster tree in a way so that the original model
(or any desired level of detail) can be reconstructed
from the cluster tree alone.

This is done by recording the events (changes) in
the triangle database when two clusters are joined (and
consequently one representative vertex is eliminated),
The inverse operation of these events can be used to
reconstruct the triangle database by reconstructing the
cluster tree node by node. If the events are
appropriately recorded, the smooth LODs can be
generated by a simple traversal of the cluster tree in
the inverse order of the clustering process with
appropriate output.

Triangle event recording during clustering.
When the clustering stage combines two clusters into
one, those triangles which have at least one vertex in
the new cluster must be changed accordingly. For each
such triangle, one of three events can happen:
1. The triangle has one vertex in the new cluster, and

this vertex is elected the new cluster representative.
Therefore, no change is made to the triangle at all,
and the event need not be recorded.

2. The triangle has one vertex in the new cluster, but
this vertex is not elected the new cluster
representative. This vertex must be changed to the
new cluster representative. An update list of all such
triangles is kept in the cluster node (Figure 3a).

3. The triangle has two vertices in the new cluster.
Therefore it collapses to a line which is discarded

640

from the triangle set. A list (the collapsed list) of
all collapsed triangles is kept in the cluster node
(Figure 3b).

notation: triangle = (a, b, c)

(a) clustering

@ @ - -

rep2, c)

b, c)

@) duster expansion

- creab all triangles(rep1, -2, c)

- modify all triangles (repl, b, c)
npdate-list to (rep2, b, c)

from collapsed,list

Figure 2: During the clustering, two vertex clusters
are joined into one, and the effect on the triangles
are recorded (a). The inverse operation, cluster
expansion, uses the recorded data to reconstruct
the triangles (b).

The lists kept for events of type 2 and 3 make it
efficient to perform the construction of the new triangle
list for each generated level of detail.

(a)

R

Figure 3: Two events during clustering are of
interest for the reconstruction Of the original
triangles: Collapsing triangles (a), and triangles
whose vertices are updated (b).

Stepping from one LOD to the next is done by
adding only one vertex (adding one cluster). The
involved changes :ire small, so coherence between
L O B is exploited by caching changes in the update
list and collapsed list at each node.

A cluster tree containing the cluster representatives
and the hformation on triangles (update list and
collapsed list) completely encodes the information
contained in the original model, plus instructions how
to create all intermexlate levels of detail, In the next
section, we describe basic operations on the cluster
tree.

5. Manipulation of the cluster tree

While the cluster tree has the desired property that
is efficiently represents the original model plus all its
levels of detail, it is not directly usable. For rendering,
it is still necessary to reconstruct a vertex list and
triangle list (either foir the original model or for a 1e:vel
of detail). A tree is also not suitable for network
transmission, it must be linearized first. Furthermore, a
simple method for selecting an arbitrary level of detail
is required. Therefore:, we define a number of basic
operations on the cluster tree, from which the required
functions (model reconstruction, linearization, UDD
selection) can easily be constructed.

Traversal of the cluster tree. During the
hierarchical clustering process, the nodes of the cluskr
tree were generated in the order of increasing cluster
size. Traversal of the cluster tree is done in the exact
inverse order of the creation. A set of active nodes is
maintained to reflect the current status of the traversal.
Starting with the root of the cluster tree, the algorithm
processes the cluster tree node by node, in the order of
increasing cluster size:. Every visited interior node is
replaced by its two children. The following pseudo-
code sketches the algorithm:

act iveNodeSet = root
while not empty(activeNodeSet)

current = get node from act iveNodeSet

if(not isLeaf(c2urrent->left))

if(not isLeaf(c:urrent->right))

w i t h biggest cluster size

add current-:-left to activeNodeSet

add current-:-right to activeNodeSet
endwhile

Reconstruction of the polygonal model. The
original polygonal model, consisting of a vertex list
and triangle list, can be reconstructed using the cluster
tree traversal function. The root introduced the first
verten. With every vislted node, one new vertex is
introduced and added to the vertex list (the other child
inherits the parent's representative). Concurrently, the
triangle list is reconstructed by processing each visited

641

node’s collapsed list and update list. Every entry in the
collapsed list introduces a new triangle into the
triangle list (in the inverse process, this triangle was
collapsed and removed). Every triangle in the update
list contains the parent cluster’s representative, which
must be replaced by the new vertex mentioned above.
When all nodes have been visited by the traversal, the
original model is completely reconstructed.

Selection of a LOD. The original model is only the
most detailed version of a large number of LOD
approximations. A convenient way to select any
desired LOD from the available range is required.
Therefore the traversal process is modified to terminate
when all nodes belonging to a particular LOD have
been visited. The desired LOD is specified as a
threshold that is compared to the cluster size contained
in every node. The modified traversal algorithm no
longer continues until the active node set is empty, but
terminates if biggest cluster size from any node in the
active node set is smaller than the given threshold. The
reconstructed triangle list and vertex list up to that
point represent the desired level of detail and can
directly be used for rendering.

Refinement. For refinement of the model, the
fundamental operation is to switch from a given level
of detail to the next finder one. A particular LOD is
defined by an active node list of the cluster tree, and
the corresponding vertex list and triangle list. This is
achieved by unfolding the node which is selected for
refinement into its two successors, and using the
information contained in that node to extend the
triangle list and vertex list. This is an incremental
operation that typically requires only a small amount
of processing and can be carried out at interactive
speeds. Selection of a LOD as previously mentioned is
nothing else than the repeated application of
refinement, starting with an initially empty vertex list
and triangle list.

Simplification. The inverse operation to refinement
is simplification, which is used to switch from a given
level of detail to the next coarser one. Two nodes are
folded into their common parent node, One vertex is
removed from the vertex list, and references to that
node in the triangle list are updated. Collapsed
triangles are filtered out, thereby simplifying the
model.

Linearization. The traversal can not only be used to
reconstruct the model for rendering, but also to
generate a sequential version of the cluster tree
suitable for network transmission. Nodes are visited in
the same order as for LOD selection, but instead of
reconstructing the original modeI, the information
contained in the node is directly output into a
sequential data stream. During that process, triangles
and vertices are automatically renumbered in the order
in which they are visited, so that references always
point back to available vaIid indices and incremental
decoding becomes possible.

6. Transmission Protocol

Using the linearization operation introduced in the
last section, it is very simple to create the stream of
packets required for network transmission. No
redundant information is stored in the network
packages, so the requirement of compactness is
satisfied by the network protocol, which actually
represents the smooth LODs model in less bytes than
the original model (see section 8 for results).
Our protocol currently consists two types of packets,

one introducing a new vertex and encoding the updates
on the existing triangles necessary for that node, The
other packet type introduces a new triangle and is
repeatedly used for every new triangle introduced with
a new vertex. Such a unit of one new vertex packet and
multiple new triangle packets incrementally encodes
one smooth level of detail.
1. new-vertex@arent-node, x, y, z, update-list): A

new vertex is introduced. One node of the cluster
tree is replaced by its two children. The coordinates
of the representative of one of the new clusters are
encoded in this package. The parent-node field is
an integer that identifies the cluster that is being
split in two. The (x,y,z) tuple gives the coordinates
of the .new vertex in absolute single precision
numbers (32 bit per value).
new-vertex also encodes the update list associated
with the parent node. Already encoded triangles
which contain the parent cluster’s representative
can either continue to use that representative or
from now on use the new vertex. This information
must be encoded to be able to update the triangles
cmwtly. The update is simply the replacement of
the parent clusters representative with the new
vertex within the triangle. One bit is sufficient to
indicate for each candidate triangle containing the
parent cluster’s representative whether the update
should take place or not. These bits are compactly
stored as a bit list.
A variable length bit list is used to encode these
updates. Since the number of candidate triangles as
well as the order of the triangles given by their
position in the global triangle list is known to both
sender and receiver. the update process is well
defined.

2. new-triangle(vertex, orientation): As the
reconstruction of the object from -the network data
steam is the inverse operation of the clustering
stage, for every new vertex encoded by new-vertex,
the triangles stored in the parent node’s collapsed
list must be re-introduced as new triangles. This is
done by a sequence of new-triangle packets. The
triangle in question collapsed because new vertex
and the parent’s representative were clustered, so

642

two of the original vertices are already known. The
missing third vertex is encoded in the packet as a
16-bit index into the array of vertices. The new
triangle has either the orientation (new-vertex,
parat-rep, vertex) or (parent-rep, new-vertex,
vertex), distinguished by the orientation bit.

The packets are headed by a one-bit tag indicating
whether a new-vertex or another new-triangle packet
is to follow. As typically only a few new triangles are
introduced with each new vertex, the overhead
associated with the tag is small. The use of tags will
also make it easier to extend the protocol. Currently
&bit indices for vertices and cluster nodes are used,
which is sufficient for the test cases given below. The
size of the indices might need to be increased for
larger models.

Table 1 summarizes the packets including their
parameters (field sizes in bit given in parenthesis).

Packet Id I Parameters
newgertex (1) 1 parent node (16)

Table 1: Protocol packets with parameters & sizes
total

X,Y,Z (96)
update list 0 113+N

new-triangle (1)

7. Model reconstruction and rendering

vertex (16)
orientation (1) 18

Model reconstruction. At the receiver’s side, the
geometric model must be reconstructed f” the data
stream. The cluster tree is de-linearized by successive
refinement (i. e. node unfolding) operations, where the
child nodes are created from the data fields of the
network packages. At the same time, a vertex list and
triangle list can be reconstructed. The reconstruction
process is incremental and fast, which is necessary,
because it must be possible to perform decoding and
rendering in parallel, always displaying the best
approximation possible with the data received so far.

Rendering. The representation of the model as a
cluster tree allows more than one way of rendering. The
more conventional approach is to take “snapshots” of
the reconstructed triangle list after a certain amount of
data has arrived, thereby obtaining conventional,
discrete levels of detail. In that case, the reconstruction
of the cluster tree can be omitted. The advantage of
this possibility is that the resulting LODs can be used
by an existing LOD renderer without any modification.

Interactive selection of smooth LODs. The cluster
tree makes it possible to select smooth levels of detail
on the fly during rendering, which is a more powerful
method than simply creating a small set of LODs. In an
initial step, the LDD selection operation is used to
create a triangle list for display.

For every successive frame, a new threshold is
chosen according to the new viewpoint, and the
corresponding smooth LOD is selected. Depending on
whether the new ILOD is finer or coarser than the
previous one, the refinement or simplification opeiration
is used to modify thie active node set and the vertex list
and triangle list Us;ually only few manipulations have
to be carried out, so the incremental LQD selection
can be carried out at interactive speed.

The selection of smooth LODs from the cluster tree
also works if the transmission is still incomplete,
because every partially created tree is consistent in the
set of vertices, triangles and clusters. As soon as new
data arrives and is “mounted” in the tree, the mlodel
can be refined to incorporate the new data, if desired.

Variable resolution within one object. The
comparison of the cluster size against the threshold can
also be made by estimating the cluster’s projected
screen size. This allows to make a different selection
for every node, depending on the distance of the cliister
to the observer. The displayed model allows 111013-
uniform simplification and automatically adapts to the
user’s position. Those: parts of the object that are further
away from the observer will be displayed coarser 1,han
those that are near. (bnsequently, the polygon budget
is better exploited. However, neither cluster size nor
update list can be precomputed anymore, but the
incurred performancc penalty can be kept within
tolerable limits (compare 171).

8. Results and Comparison

Comparison of model sizes. Table 2 compares the
sizes of models encoded as a smooth LOD packet
stream as detailed in section 6 to the original modlels
(vertex list and triangle list) with and without levels of
detail (see Figure 7 fca images). Every model is listed
with its vertex (#vericest) and triangle (#triangles)
count, the original size (size orig.), computed from 12
byte per vertex and 6 byte per triangle, assuming 16 bit
indices for vertex references in triangles). The next
column (size wl LUD) lists the size of the model with 5
conventional LODs including the original object
(additional LODs only increase triangle count, vertices
are reused from the original model with the approach
described in section 4!). These values should be
compared to the size of the corresponding smooth KID
model (SLUD size), stored in the format given in
section 6. The sue of the smooth LOD model is also
given as a percentage of the original model (% orig.)
and level of detail model (7% w/ LUD).

A smooth LOD model is not only smaller than the
model with LODs, but also smaller than the origirlal
model. AS far zw mhdel size is concern4 smoolth
LODs come for free! This is particularly impressive as
the applied compressioln is lossless. There is still much
potential in lossy compiression 121.

643

size size w SLOD
ork. LOD size

% % w/
orig. LOD

lamp
tree

584 1352 13968 17712 11485 822 64.8

718 1092 15168 20460 12830 84.6 62.7

1239

8228
1W

3422

c Y

*
C .- z 20%
3

2600 30228 37188 24014 79.4 64.6

13576 179352 ux)154 149214 832 74.5

1600 21864 30528 18916 865 620

5404 73488 84906 64584 87.9 76.1

u
0%

sink I 2952 I 4464 62208 81558

transmitted data

(a) shelf

55513 892 68.1

T I A 100%
m

ball

curtain

Q)

E
0 .- c

-

1232 2288 28512 39420 24127' 84.6 61.2

4648 8606 107412109770 89684 835 81.7

transmitted data

(3) Plant
Figure 4: Comparison of visual effect of smooth
vs. conventional LODs (1 noth on x-axis Z: 5 KB).

Comparison of the visual effect. Our experience
shows that the refinement of a model with smooth
LODs is superior to the e-grained switching
between a few (typically 4-6) conventional LOB.
However, such a subjective statement is hard to prove

formally. If we assume that image quality is roughly
proportional to the number of triangles from the original
model, we can compare smooth to conventional LODs
by plotting available triangles as a function of
transmitted bytes for both methods. Figure 4 shows two
such examples.

The maximum triangle count is reached much
earlier using the smooth LODs than using conventional
LODs because of the smooth LO&' more compact
representation (compare the r-Z% column in Table 2).
This difference is also obvious when comparing the
obtained images. (compare Figure 5).

Note that the roughly linear correspondence between
transmitted data (x-axis) and available triangles (y-
axis) is very suitable for networked virtual
environments, where an object is approached at
constant velocity, while its geometric representation is
still being transmitted over a network of constant
bandwidth.

9. Conclusions and Future Work

We have presented a new approach for representing
polygonal models designed for interactive rendering
and transmission in networked systems. A hierarchical
clustering method which has been used to compute
conventional simplifications of triangle meshes is
extended to yield a continuous stream of
approximations of the original model. A very large,
practically continuous number of levels of detail is
computed. The result can be represented in an
extremely compact way by relative encoding. The
resulting data set is smaller than the original models
without levels of detail. If the data set is transmitted
over a network, a useful representation is available at
any stage of the data transmission. The data set can be
used to compute conventional levels of detail, or the
underlying hierarchical structure can be exploited to
generate and incrementally update any desired
approximation for rendering at runtime.

Experiments with the method show that
conventional and smooth levels of detail perform
roughly alike, if the LODs are used as intended, that is,
a coarser approximation is only used if the model is so
small on the screen that the visible difference to the
high fidelity model is barely noticeable. However,
when running real world applicationa on low cost
systems, this assumption is almost always violated
because of insufficient rendering performance (see
Figure 5 and Figure 6). Furthermore, slow network
connections such as Internet downloads make the user
wait for completion of transmission while the model is
already displayed at full screen resolution. In these
situations, our approach is clearly superior, because it
makes new data immediately visible (compare Figure
4) and due to its compression finishes earlier.

644

Future work will involve improving the compression
ratio of the smooth LODs.

Acknowledgments. The authors would like to thank
Michael Gervautz, Eduard Gdler and Wolfgang
Stiinlinger for proofreading and giving useful
suggestions. This research was sponsored by the
Austrian Fonds zur Forderung der Wissenschaftlichen
Forschung under project no. P11392-MAT.

[l] J. Clark, “Hierarchical Geometric Models for Visible
Surface Algorithms”, Communications of the ACM, Vol. 19,

[2] U Deering, “Geometry Compression”, Proceedings of
SIGGRAPH’95.1995, pp. 13-20.
[3] M. Eck, T. &Rose, T. Duchamp, H H o p , M
Lounsbery, W. Stuet.de. “Multiresolution Analysis of
Arbitrary Meshes”, Proceedings 4SIGGRAPH95, 1995, pp

[4] P. Heckbert, M. Garland, “Multiresolution Modelling Ex
Fast Rendering”, Proceedings 4Grqhics Interjbce‘94,1994,

151 R Hoppe, T. DeRose, T. Duchamp, J. McDonald, W.
Stuel “Mesh Optimization”, Proceedings of
SIN bH93.1993, pp. 19-26.

NO. 10, 1976, p ~ . 547-554.

173-182

pp. 43-50.

Figure 5 (left): Comparison of 3 development
stages of a chair. The left column shows smooth
LODs, the right column conventional LODs for
corresponding amounts of data. Black bars on
each side indicate the amount of triangles
received and displayed.

161 M. Levoy, “Polygon-Assisted P E G and MPEG
Compression of Synthetic Images”, Proceedings of

[7] D. Luebke, “Hierarchical Structures for Dynamic
Polygonal Simplification”, Technical Reprt TR-96-006,
Univ. North Carolina Chapel Hill, 1996.
181 Jarek Rossignac, Paul Borrel, “Multi-Resolution 3D
Approximation for Rendering Complex Scenes”, E” Tc
5.WG 5.10 It Conference on Geometric Modeling in
Computer Graphics, Italy, 1993.
[91 G. Schaufler, W. Stilrzlinger, “Generating Multiple Levels
of Detail &om Polygonal Geometry Models”, Virtual
Enviroments’95, Springer Wien-New York, 1995.
[lo] D. Schmalstieg, M. Gervautz, ”Demand-Driven
Geomehy Transmission for Distributed Virtual
Environments”, proceedings 4 EUROGRAPHICS ‘515,
Poitiers, France, August 1996.
[ll] G. Turk, “Re-Tiling Polygon Surfaces”, Proceedings of
SIGGRAF’H’92,1992, pp. 55-64.
[12] A. Varshney, “Hierarchical Geometric Approximatio~is”,
PhD Thesis, Department of Computer Science, University of
North Carolina. 1994.

SIGGRAI’H95,1995, ~1.21-25.

~~ .. .-. 5. . . I

_ _ _ ~ ~ ~ ~

Figure 6: Differenlce image between two
successive frames from an animation of the plant
model. The difference for smooth LODs is very
small (left). The conventional LOD model (right)
switches LODs exactly between these consecutive
frames, which produces an obvious diff erencce.
Note that this is an extreme example: Usually,
LOD switching is not so much exposed because
smaller images are rendered for coarse LODs.

tree shelf plant

Figure 7: Models used for evaluation

645

http://Stuet.de

