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Abstract 
thod to generate a stream of 

nes a polygonal model from 
to the original high-fidelity 
level of detail algorithms 

r of discrete approximations 
od allows a smooth, continuous 
over time while the stream is 

based on a hierarchical 
clustering algorithm which produces the model 
representation of steadily increasing detail ana' has 
several advantages over conventional models with few,  
discrete levels of detail: The model can be transmitted 
and decoded incrementally, yielding a valid 
approximation at any stage of the process. The 
incremental encoding is extremely compact, so models 
are smaller than in their original form. Any desired level 
of detail can be selected during rendering at interactive 
speed. It is also possible to have variable detail 
resolution within a single model, which is useful for 
rendering models with large extent. 

1. Introduction 

n image quality because 
the small detail in the models is not captured by 
rastenzed images. 

Overload of the graphics hardware and object detail 
which will not be visible in the final image is 
commonly avoided through the use of so-called levels 
of detail (LOD): models are approximated with 
decreasing accuracy using a decreasing number of 
triangles. Numerous methods to generate a small set of 
such levels of detail have been developed, that all aim 
at a high data reduction without noticeable degradation 
of the resulting image quality. Coarser levels of detail 
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should only be used for small or distant objects, so that 
the difference in image quality cannot be noticed by 
the observer, but frequently models are to complex for 
the available rendering capacity, so that a coarser than 
desired approximations has to be drawn to prevent the 
image generator from stalling. In such cases, switching 
from one level of detail to another in an is particularly 
distracting and annoying for the user. 

Use of 3-D models in networked computer systems 
is growing fast as Intemet-based graphics standards 
such as VRML and distributed virtual environments are 
being adopted by large user communities. In this 
context, transmission of object models is a major issue 
as soon as the simulated environment is complex 
enough to make storing full copies of the environment 
on every computer impractical. LODs with 
progressively higher detail will be transmitted as the 
participant is approaching an object. However, only the 
last completely transmitted level can be displayed, and 
as data sizes increase with the LOD quality, delays 
between model refinements increase rapidly. Such 
stalling negatively affects the participant's experience 
of the simulation. 

This paper proposes a solution for the mentioned 
problems. We propose the generation of a 
representation for an object which can be displayed 
with continuous level of detail. The transmission of this 
object representation over computer networks makes 
the latest transmitted data immediately available for 
display during the simulation. 

After reviewing related work in section 2, the 
algorithm is motivated in section 3. Section 4 
introduces the hierarchical cluster tree used to 
represent the smooth LODs. Manipulation of the cluster 
tree is explained in section 5. Section 6 defines a 
suitable network protocol, section 7 deals with object 
reconstruction and presents methods for display. 
Section 8 presents results and section 9 draws 
conclusions. 

2. Related Work 

The gains in rendering speed achievable by 
approximating small, distant or otherwise unimportant 
objects instead of rendering them in full quality were 
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identified by Clark as early as 1976 [l]. Since then, 
researchers have investigated several methods for the 
automated generation of so-called levels of detail 
@ODs); a comprehensive overview can be found in the 
paper by Heckbert and Garland 14). The task of LOD 
generation so far has been understood as a search for a 
series of progressive simplifications of a polygonal 
object, that have fewer primitives (polygons), but 
closely resemble the Original object. 

Polygonal simplification can be categorized by the 
property that is examined to compute the reduced data 
set: Topological algorithms such as. [3,5, 11, 121 allow 
relatively precise control over the result, including 
preservation of the topology of the object and error 
bounds on the quality of the approximation. 
Unfortunately, implementation of these algorithms is 
often highly complex, and generally requires objects to 
be topologically well-behaved and manifold, a 
requirement rarely met by real-world CAD data. 

Geometric algorithms, however, are less sensible to 
the input data and easier to implement. Since they are 
not constrained to preserve any topological properties 
of the data, they can be forced to achieve arbitrarily 
high data reduction (at the expense of object fidelity). 
The LOD generation algorithm on which this paper is 
based belongs to the latter class. 

The fundamental idea of data reduction based on 
geometry is to reduce the number of vertices of a 
polygonal model (usually a triangle mesh). Due to 
perspective distortion individual vertices of an object 
move closer together on the screen as the distance to 
the observer increases until they finally fall into one 
pixel. By creating a cluster of such close vertices and 
replacing al l  cluster members by a representative 
vertex, the number of vertices is reduced. The set of 
triangles is modified to include only the vertices in the 
new set. In the course of that process, triangles will 
degenerate to lines or points and can be removed. 
Therefore the set of triangles is reduced, and any such 
intermediate data set can be used as an individual 
LOD. 

Several selection criteria have been presented to 
choose the vertices that are to be clustered. Rossignac 
and Borrel [SI propose a simple, yet efficient unifoxm 
quantization in 3-D. Schaufler and Stiirzlinger [9] use a 
hierarchical clustering method, on which the work 
presented in this paper is bas*&. Luebke [7J presents a 
data structure derived from an octree, that is capable of 
computing any desired level of detail during display, 
which incrementally adapts to changes in the 
viewpoint. 

As networked virtual environments and other 
distributed graphical applications involving more than 
one computer and display system become increasingly 
commonplace, it is no longer sufficient to provide 
LODs for better utilization of the rendering pipeline 
only. Transmission of the geometric database over the 
network becomes the bottleneck as large data sets 

introduce intolerable lag. Schmalstieg and Gervautz 
[lo] discuss a strategy for network distribution of 
individual LODs oni demand that reduces bandwidth 
requirements. Deering [2] introduces a compression 
method for polygonal data sets. Levoy [61 proposes a 
combination of geometry and compressed image data 
to preserve bandwidlh with a compressed video stream. 
The wavelet based multi-resolution modeling presented 
by Eck et al. 131 lends itself to progressive refineiment 
of objects, similar in spirit to the approach presented 
here. 

3. Motivation for Smooth Levels of Detail 

Frequently polygonal models are very large, which 
is at conflict with rendering capacity and network 
throughput. Adding levels of detail partly addresses the 
rendering problem, but makes overall model size even 
larger. The reason for this dilemma is that the standard 
approach of representing polygonal data as lists of 
vertices and triangles is not powerful enuugh. In this 
paper, we present a tiata structure that does not suffer 
from the mentioned shortcomings and fulfills the 
followine reuuirements: 

Sm&h LODs.. The data structure should 
represent many levels of details (not only 3-6, but 
hundreds or thousands of LODs), so that a 
continuous (or almost continuous) refinement of 
the model is possible by repeatedly adding smiall 
amounts of local detail to the model. 
Incremental decoding. Decoding of the smooth 
LODs should be incremental, i. e. the next h e r  
LOD should be irepresented as the difference to 
the current LOD. By reusing all the data from the 
coarser LODs, nlodel size can be kept small 
despite the large number of LODs. 
Interactive LOD selection. The smooth LODs 
data structure should support selection and 
rendering of any specific LOD, allowing a chance 
to the next LOlD (both coarser and finer) at 
interactive speeds (during rendering). 
Incremental transmission. It should be possible 
to incrementally transmit the model over the 
network, starting jkom the coarsest approximation 
and progressing to the original model. In 
particular, rendering should immediately be able 
to use all the data received up to a certain 
moment, and render an incomplete. This is 
important for progressive refinement of large 
models that take an extended period to transmit, 
and allows continued operation in case of netwoirk 
failures. 
Compact representation, It is preferred if the 
smooth LODS data structure introduces no 
overhead in the model size compared to thie 
original, uncompressed polygonal model. Ideally, 
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the introduction of smooth LODs should yield 
compression instead of bloating the model. 
Variable resolution within the model. If the 
many LODs within the data structure have only 
local influence on the appearance of the model, 
the corresponding details can be selected 
individually, resulting in variable resolution within 
a single model. This is particularly useful for 
models with a large extent (e.g. a large building 
seen from the inside), where parts close to the 
observer should have high fidelity, whereas distant 
parts can be represented by a coarse 
approximation. 

Our data structure is based on a binary tree that is 
created by hierarchically clustering vertices of the 
original model, thereby constructing a cluster tree. 
Every clustering operation simplifies ’the model, and 
therefore every node of the cluster tree represents a 
single level of detail. A linearization of the tree in the 
inverse order of the clustering process yields a 
sequential representation of the data structure that is 
suitable for network transmission. It also incrementally 
encodes the model, and therefore fulfills our 
requirements. The next section discusses the creation 
of this data structure in detail. 

4. Representing the model as a cluster tree 

Hierarchical clustering for LOD generation, as 
presented in [SI, is based on the idea that groups of 
vertices which project onto a sufficiently small area in 
the image can be replaced by a single representative: a 
many-to-one mapping of vertices. As a consequence, 
the number of triangles is reduced when the triangles’ 
vertices are replaced by their representatives from the 
reduced vertex set, and collapsed triangles are filtered 
out. Repeated application of the clustering operation 
yields a sequence of progressive simplifications 
&ODs). If exactly two clusters are combined in every 
step, the result is a binary tree, the cluster tree. 

Construction of the cluster tree. The cluster tree is 
built by successively finding the two closest cluster in 
the model and combining them into one. The combined 
cluster is stored in a new node that has the two joined 
clusters as its children. The process is repeated until 
only one cluster containing all the v 
which is the root of the cluster tree. 

For each new cluster, a representative is chosen 
from the set of vertices in the cluster. More precisely, 
we chose the representative to be one of the two 
representatives of the child clusters. The distance of 
two clusters (used to find the closest clusters) is 
computed as the Euclidean distance of the two 
childrens’ representatives. This value is also stored as 
the cluster size in the new cluster’s node for further use. 

Step 0 (Initialization): Form a cluster for each vertex, 
with the vertex serving as the representative 

Step I: Find the two clusters with the closest 

Step 2: Replace the two clusters identified in step 1 

Step 3: If more than one cluster remains, go to step 1 

representatives 

by a joint cluster, select new representative 

Figure 1: The clustering process: A mesh (a) is 
mapped onto a vertex cluster tree, which is used 
to group vertices (b). From the reduced vertex set, 
a simplified model (c) is computed. 

The cluster tree has the desired properties that it 
contains instructions for a continuous simplification of 
the model, and can therefore be used to construct a 
sequence of smooth levels of detail. However, in its 
form described above, it only stores the vertices of the 
model, but not the triangles. To use the cluster tree as 
an alternate representation of the original polygonal 
model, the triangles must also be encoded and stored 
in the cluster tree in a way so that the original model 
(or any desired level of detail) can be reconstructed 
from the cluster tree alone. 

This is done by recording the events (changes) in 
the triangle database when two clusters are joined (and 
consequently one representative vertex is eliminated), 
The inverse operation of these events can be used to 
reconstruct the triangle database by reconstructing the 
cluster tree node by node. If the events are 
appropriately recorded, the smooth LODs can be 
generated by a simple traversal of the cluster tree in 
the inverse order of the clustering process with 
appropriate output. 

Triangle event recording during clustering. 
When the clustering stage combines two clusters into 
one, those triangles which have at least one vertex in 
the new cluster must be changed accordingly. For each 
such triangle, one of three events can happen: 
1. The triangle has one vertex in the new cluster, and 

this vertex is elected the new cluster representative. 
Therefore, no change is made to the triangle at all, 
and the event need not be recorded. 

2. The triangle has one vertex in the new cluster, but 
this vertex is not elected the new cluster 
representative. This vertex must be changed to the 
new cluster representative. An update list of all such 
triangles is kept in the cluster node (Figure 3a). 

3. The triangle has two vertices in the new cluster. 
Therefore it collapses to a line which is discarded 
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from the triangle set. A list (the collapsed list ) of 
all collapsed triangles is kept in the cluster node 
(Figure 3b). 

notation: triangle = (a, b, c) 

(a) clustering 

@ @ - -  

rep2, c) 

b, c) 

@) duster expansion 

- creab all triangles(rep1, -2, c) 

- modify all triangles (repl, b, c) 
npdate-list to (rep2, b, c) 

from collapsed,list 

Figure 2: During the clustering, two vertex clusters 
are joined into one, and the effect on the triangles 
are recorded (a). The inverse operation, cluster 
expansion, uses the recorded data to reconstruct 
the triangles (b). 

The lists kept for events of type 2 and 3 make it 
efficient to perform the construction of the new triangle 
list for each generated level of detail. 

(a) 

R 

Figure 3: Two events during clustering are of 
interest for the reconstruction Of the original 
triangles: Collapsing triangles (a), and triangles 
whose vertices are updated (b). 

Stepping from one LOD to the next is done by 
adding only one vertex (adding one cluster). The 
involved changes :ire small, so coherence between 
L O B  is exploited by caching changes in the update 
list and collapsed list at each node. 

A cluster tree containing the cluster representatives 
and the hformation on triangles (update list and 
collapsed list) completely encodes the information 
contained in the original model, plus instructions how 
to create all intermexlate levels of detail, In the next 
section, we describe basic operations on the cluster 
tree. 

5. Manipulation of the cluster tree 

While the cluster tree has the desired property that 
is efficiently represents the original model plus all its 
levels of detail, it is not directly usable. For rendering, 
it is still necessary to reconstruct a vertex list and 
triangle list (either foir the original model or for a 1e:vel 
of detail). A tree is also not suitable for network 
transmission, it must be linearized first. Furthermore, a 
simple method for selecting an arbitrary level of detail 
is required. Therefore:, we define a number of basic 
operations on the cluster tree, from which the required 
functions (model reconstruction, linearization, UDD 
selection) can easily be constructed. 

Traversal of the cluster tree. During the 
hierarchical clustering process, the nodes of the cluskr 
tree were generated in the order of increasing cluster 
size. Traversal of the cluster tree is done in the exact 
inverse order of the creation. A set of active nodes is 
maintained to reflect the current status of the traversal. 
Starting with the root of the cluster tree, the algorithm 
processes the cluster tree node by node, in the order of 
increasing cluster size:. Every visited interior node is 
replaced by its two children. The following pseudo- 
code sketches the algorithm: 

act iveNodeSet = root 
while not empty(activeNodeSet) 

current = get node from act iveNodeSet 

if(not isLeaf(c2urrent->left)) 

if(not isLeaf(c:urrent->right)) 

w i t h  biggest cluster size 

add current-:-left to activeNodeSet 

add current-:-right to activeNodeSet 
endwhile 

Reconstruction of the polygonal model. The 
original polygonal model, consisting of a vertex list 
and triangle list, can be reconstructed using the cluster 
tree traversal function. The root introduced the first 
verten. With every vislted node, one new vertex is 
introduced and added to the vertex list (the other child 
inherits the parent's representative). Concurrently, the 
triangle list is reconstructed by processing each visited 
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node’s collapsed list and update list. Every entry in the 
collapsed list introduces a new triangle into the 
triangle list (in the inverse process, this triangle was 
collapsed and removed). Every triangle in the update 
list contains the parent cluster’s representative, which 
must be replaced by the new vertex mentioned above. 
When all nodes have been visited by the traversal, the 
original model is completely reconstructed. 

Selection of a LOD. The original model is only the 
most detailed version of a large number of LOD 
approximations. A convenient way to select any 
desired LOD from the available range is required. 
Therefore the traversal process is modified to terminate 
when all nodes belonging to a particular LOD have 
been visited. The desired LOD is specified as a 
threshold that is compared to the cluster size contained 
in every node. The modified traversal algorithm no 
longer continues until the active node set is empty, but 
terminates if biggest cluster size from any node in the 
active node set is smaller than the given threshold. The 
reconstructed triangle list and vertex list up to that 
point represent the desired level of detail and can 
directly be used for rendering. 

Refinement. For refinement of the model, the 
fundamental operation is to switch from a given level 
of detail to the next finder one. A particular LOD is 
defined by an active node list of the cluster tree, and 
the corresponding vertex list and triangle list. This is 
achieved by unfolding the node which is selected for 
refinement into its two successors, and using the 
information contained in that node to extend the 
triangle list and vertex list. This is an incremental 
operation that typically requires only a small amount 
of processing and can be carried out at interactive 
speeds. Selection of a LOD as previously mentioned is 
nothing else than the repeated application of 
refinement, starting with an initially empty vertex list 
and triangle list. 

Simplification. The inverse operation to refinement 
is simplification, which is used to switch from a given 
level of detail to the next coarser one. Two nodes are 
folded into their common parent node, One vertex is 
removed from the vertex list, and references to that 
node in the triangle list are updated. Collapsed 
triangles are filtered out, thereby simplifying the 
model. 

Linearization. The traversal can not only be used to 
reconstruct the model for rendering, but also to 
generate a sequential version of the cluster tree 
suitable for network transmission. Nodes are visited in 
the same order as for LOD selection, but instead of 
reconstructing the original modeI, the information 
contained in the node is directly output into a 
sequential data stream. During that process, triangles 
and vertices are automatically renumbered in the order 
in which they are visited, so that references always 
point back to available vaIid indices and incremental 
decoding becomes possible. 

6. Transmission Protocol 

Using the linearization operation introduced in the 
last section, it is very simple to create the stream of 
packets required for network transmission. No 
redundant information is stored in the network 
packages, so the requirement of compactness is 
satisfied by the network protocol, which actually 
represents the smooth LODs model in less bytes than 
the original model (see section 8 for results). 
Our protocol currently consists two types of packets, 

one introducing a new vertex and encoding the updates 
on the existing triangles necessary for that node, The 
other packet type introduces a new triangle and is 
repeatedly used for every new triangle introduced with 
a new vertex. Such a unit of one new vertex packet and 
multiple new triangle packets incrementally encodes 
one smooth level of detail. 
1. new-vertex@arent-node, x, y, z, update-list): A 

new vertex is introduced. One node of the cluster 
tree is replaced by its two children. The coordinates 
of the representative of one of the new clusters are 
encoded in this package. The parent-node field is 
an integer that identifies the cluster that is being 
split in two. The (x,y,z) tuple gives the coordinates 
of the .new vertex in absolute single precision 
numbers (32 bit per value). 
new-vertex also encodes the update list associated 
with the parent node. Already encoded triangles 
which contain the parent cluster’s representative 
can either continue to use that representative or 
from now on use the new vertex. This information 
must be encoded to be able to update the triangles 
cmwtly. The update is simply the replacement of 
the parent clusters representative with the new 
vertex within the triangle. One bit is sufficient to 
indicate for each candidate triangle containing the 
parent cluster’s representative whether the update 
should take place or not. These bits are compactly 
stored as a bit list. 
A variable length bit list is used to encode these 
updates. Since the number of candidate triangles as 
well as the order of the triangles given by their 
position in the global triangle list is known to both 
sender and receiver. the update process is well 
defined. 

2. new-triangle(vertex, orientation): As the 
reconstruction of the object from -the network data 
steam is the inverse operation of the clustering 
stage, for every new vertex encoded by new-vertex, 
the triangles stored in the parent node’s collapsed 
list must be re-introduced as new triangles. This is 
done by a sequence of new-triangle packets. The 
triangle in question collapsed because new vertex 
and the parent’s representative were clustered, so 
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two of the original vertices are already known. The 
missing third vertex is encoded in the packet as a 
16-bit index into the array of vertices. The new 
triangle has either the orientation (new-vertex, 
parat-rep, vertex) or (parent-rep, new-vertex, 
vertex), distinguished by the orientation bit. 

The packets are headed by a one-bit tag indicating 
whether a new-vertex or another new-triangle packet 
is to follow. As typically only a few new triangles are 
introduced with each new vertex, the overhead 
associated with the tag is small. The use of tags will 
also make it easier to extend the protocol. Currently 
&bit indices for vertices and cluster nodes are used, 
which is sufficient for the test cases given below. The 
size of the indices might need to be increased for 
larger models. 

Table 1 summarizes the packets including their 
parameters (field sizes in bit given in parenthesis). 

Packet Id I Parameters 
newgertex (1) 1 parent node (16) 

Table 1: Protocol packets with parameters & sizes 
total 

X,Y,Z (96) 
update list 0 113+N 

new-triangle (1) 

7. Model reconstruction and rendering 

vertex (16) 
orientation (1) 18 

Model reconstruction. At the receiver’s side, the 
geometric model must be reconstructed f” the data 
stream. The cluster tree is de-linearized by successive 
refinement (i. e. node unfolding) operations, where the 
child nodes are created from the data fields of the 
network packages. At the same time, a vertex list and 
triangle list can be reconstructed. The reconstruction 
process is incremental and fast, which is necessary, 
because it must be possible to perform decoding and 
rendering in parallel, always displaying the best 
approximation possible with the data received so far. 

Rendering. The representation of the model as a 
cluster tree allows more than one way of rendering. The 
more conventional approach is to take “snapshots” of 
the reconstructed triangle list after a certain amount of 
data has arrived, thereby obtaining conventional, 
discrete levels of detail. In that case, the reconstruction 
of the cluster tree can be omitted. The advantage of 
this possibility is that the resulting LODs can be used 
by an existing LOD renderer without any modification. 

Interactive selection of smooth LODs. The cluster 
tree makes it possible to select smooth levels of detail 
on the fly during rendering, which is a more powerful 
method than simply creating a small set of LODs. In an 
initial step, the LDD selection operation is used to 
create a triangle list for display. 

For every successive frame, a new threshold is 
chosen according to the new viewpoint, and the 
corresponding smooth LOD is selected. Depending on 
whether the new ILOD is finer or coarser than the 
previous one, the refinement or simplification opeiration 
is used to modify thie active node set and the vertex list 
and triangle list Us;ually only few manipulations have 
to be carried out, so the incremental LQD selection 
can be carried out at interactive speed. 

The selection of smooth LODs from the cluster tree 
also works if the transmission is still incomplete, 
because every partially created tree is consistent in the 
set of vertices, triangles and clusters. As soon as new 
data arrives and is “mounted” in the tree, the mlodel 
can be refined to incorporate the new data, if desired. 

Variable resolution within one object. The 
comparison of the cluster size against the threshold can 
also be made by estimating the cluster’s projected 
screen size. This allows to make a different selection 
for every node, depending on the distance of the cliister 
to the observer. The displayed model allows 111013- 
uniform simplification and automatically adapts to the 
user’s position. Those: parts of the object that are further 
away from the observer will be displayed coarser 1,han 
those that are near. (bnsequently, the polygon budget 
is better exploited. However, neither cluster size nor 
update list can be precomputed anymore, but the 
incurred performancc penalty can be kept within 
tolerable limits (compare 171). 

8. Results and Comparison 

Comparison of model sizes. Table 2 compares the 
sizes of models encoded as a smooth LOD packet 
stream as detailed in section 6 to the original modlels 
(vertex list and triangle list) with and without levels of 
detail (see Figure 7 fca images). Every model is listed 
with its vertex (#vericest) and triangle (#triangles) 
count, the original size (size orig.), computed from 12 
byte per vertex and 6 byte per triangle, assuming 16 bit 
indices for vertex references in triangles). The next 
column (size wl LUD) lists the size of the model with 5 
conventional LODs including the original object 
(additional LODs only increase triangle count, vertices 
are reused from the original model with the approach 
described in section 4!). These values should be 
compared to the size of the corresponding smooth KID 
model (SLUD size), stored in the format given in 
section 6. The sue of the smooth LOD model is also 
given as a percentage of the original model (% orig.) 
and level of detail model (7% w/ LUD). 

A smooth LOD model is not only smaller than the 
model with LODs, but also smaller than the origirlal 
model. AS far zw mhdel size is concern4 smoolth 
LODs come for free! This is particularly impressive as 
the applied compressioln is lossless. There is still much 
potential in lossy compiression 121. 
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size size w SLOD 
ork. LOD size 

% % w/ 
orig. LOD 

lamp 
tree 

584 1352 13968 17712 11485 822 64.8 

718 1092 15168 20460 12830 84.6 62.7 

1239 

8228 
1W 

3422 

c Y 

* 
C .- z 20% 
3 

2600 30228 37188 24014 79.4 64.6 

13576 179352 ux)154 149214 832 74.5 

1600 21864 30528 18916 865 620 

5404 73488 84906 64584 87.9 76.1 

u 
0% 

sink I 2952 I 4464 62208 81558 

transmitted data 

(a) shelf 

55513 892 68.1 

T I A 100% 
m 

ball 

curtain 

Q) 

E 
0 .- c 

- 

1232 2288 28512 39420 24127' 84.6 61.2 

4648 8606 107412109770 89684 835 81.7 

transmitted data 

(3) Plant 
Figure 4: Comparison of visual effect of smooth 
vs. conventional LODs (1 noth on x-axis Z: 5 KB). 

Comparison of the visual effect. Our experience 
shows that the refinement of a model with smooth 
LODs is superior to the e-grained switching 
between a few (typically 4-6) conventional LOB. 
However, such a subjective statement is hard to prove 

formally. If we assume that image quality is roughly 
proportional to the number of triangles from the original 
model, we can compare smooth to conventional LODs 
by plotting available triangles as a function of 
transmitted bytes for both methods. Figure 4 shows two 
such examples. 

The maximum triangle count is reached much 
earlier using the smooth LODs than using conventional 
LODs because of the smooth LO&' more compact 
representation (compare the r-Z% column in Table 2). 
This difference is also obvious when comparing the 
obtained images. (compare Figure 5). 

Note that the roughly linear correspondence between 
transmitted data (x-axis) and available triangles (y- 
axis) is very suitable for networked virtual 
environments, where an object is approached at 
constant velocity, while its geometric representation is 
still being transmitted over a network of constant 
bandwidth. 

9. Conclusions and Future Work 

We have presented a new approach for representing 
polygonal models designed for interactive rendering 
and transmission in networked systems. A hierarchical 
clustering method which has been used to compute 
conventional simplifications of triangle meshes is 
extended to yield a continuous stream of 
approximations of the original model. A very large, 
practically continuous number of levels of detail is 
computed. The result can be represented in an 
extremely compact way by relative encoding. The 
resulting data set is smaller than the original models 
without levels of detail. If the data set is transmitted 
over a network, a useful representation is available at 
any stage of the data transmission. The data set can be 
used to compute conventional levels of detail, or the 
underlying hierarchical structure can be exploited to 
generate and incrementally update any desired 
approximation for rendering at runtime. 

Experiments with the method show that 
conventional and smooth levels of detail perform 
roughly alike, if the LODs are used as intended, that is, 
a coarser approximation is only used if the model is so 
small on the screen that the visible difference to the 
high fidelity model is barely noticeable. However, 
when running real world applicationa on low cost 
systems, this assumption is almost always violated 
because of insufficient rendering performance (see 
Figure 5 and Figure 6). Furthermore, slow network 
connections such as Internet downloads make the user 
wait for completion of transmission while the model is 
already displayed at full screen resolution. In these 
situations, our approach is clearly superior, because it 
makes new data immediately visible (compare Figure 
4) and due to its compression finishes earlier. 
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Future work will involve improving the compression 
ratio of the smooth LODs. 
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Figure 6: Differenlce image between two 
successive frames from an animation of the plant 
model. The difference for smooth LODs is very 
small (left). The conventional LOD model (right) 
switches LODs exactly between these consecutive 
frames, which produces an obvious diff erencce. 
Note that this is an extreme example: Usually, 
LOD switching is not so much exposed because 
smaller images are rendered for coarse LODs. 

tree shelf plant 

Figure 7: Models used for evaluation 
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