
Constructing a Highly Immersive Virtual Environment: A Case Study
Dieter Schmalstieg, Christian Faisstnauer, Tomasz Mazuryk

Institute of Computer Graphics, Vienna University of Technology, Austria
email: schmalstieg|faisstnauer|mazuryk@cg.tuwien.ac.at - http://www.cg.tuwien.ac.at/

Abstract. Virtual reality (VR) applications raise enormous interest inside and outside computer
science. Unfortunately, VR systems are rather complex, involving many software and hardware
modules being integrated. Theoretical papers are not always of much aid in the actual
implementation of VR applications. We try to fill this gap with a case study on a simple example
VR system, that is used to demonstrate the most important aspects of a VR implementation,
including application design, implementation strategy, selection of hardware and software,
rendering, tracking and display technology. Special attention is paid to practical issues that are
usually only learned by experience, and on the discussion of devices and methods that are
inexpensive and readily available.

Keywords: virtual reality, virtual environment, immersion, case study

1. Introduction
The purpose of this paper is to explain the steps necessary to build a virtual environment (VE)
with moderate hard- and software costs and restricted complexity. Our intention is to provide
insights into practical issues of virtual environments that can help research groups, students or
software companies involved in the implementation of virtual reality (VR) software projects.
We concentrate on the translation of theoretical foundations into working solutions, and we
report concrete experiences we had when doing an experimental implementation. As a study
object, we developed a simple game placing the user in a maze, with the task of fighting
computer controlled drones.

The main advantage of virtual reality over conventional computer graphics is the feeling of
immersion created by convincing real-time stimulus presented to the user. Immersion, however,
is also most difficult to achieve and sustain: It is a very demanding task to configure a system so
that the diverse needs of the application (management of input, simulation, display) can satisfied
with adequate performance to keep the illusion from breaking.

Covering every aspect of virtual environments is beyond the scope of this paper. We are
limiting ourselves to a set of topics that as a whole allow interesting applications to be
constructed. Our focus is on providing high-fidelity 3-D graphical output and interaction for a
single user in a moderately complex surrounding. Related work includes an overview of
software needs [1], several case studies (e.g., [2, 3]), and a tutorial for implementing multi-
user simulations [4].

2. What you have to do
Getting started is always the hardest task. This section tries to give a very rough “cooking
recipe” on how to make the important decisions when undertaking such a complex venture.
Unfortunately, there is no single method for software engineering, and there certainly is none
for virtual environment engineering. However, one should at least try to avoid some common
misconceptions.

2. 1 Characterize the problem and the application you want to construct
Creating working solutions always requires a solid grasp on the problem. When using novel
technology, especially if it allows a lot of freedom in design (what peripherals to use etc.), it
may be tempting to pick up one’s favorite toys and then retrofit the application to be compatible
with the available environment. Instead, a clear description of the objective is necessary, so that
the design of the system can be derived from it.

2. 2 Decide on the primary metaphor
How is the user represented in the VE? What must he achieve, and how can he achieve that?
Once this decision is made, it should be easy to determine the required level of immersion.
There is a long-lasting and ongoing battle whether total immersion (complete coverage of all or

most of the user’s senses) is necessary at all cost. A practical point of view may be to see it as a
cost-benefit equation. If the wins in overall quality are not huge, it may not be worth the extra
effort. Sometimes it may turn out that a solution using conventional desktop graphics is
superior. Not every problem is suited to be tackled in 3-D and real-time.

2. 3 Select the appropriate hardware
The decision should be based on the decision made in the previous step. See if you can afford
it. If not, try to analyze your decision: Can you come up with an alternate, still working design
within the available budget (maybe at a tolerable decrease in expected quality), or is your
solution so dependent on the chosen hardware/software that the project cannot be realized at all
with the budget you have at disposal? While such a consideration is true for any technical
project, it is particularly crucial for virtual reality where cost literally explodes when high end
components are desired.

Alternatively, if the budget is a priory fixed, or if the hardware is fixed (for example, when
developing for a particular platform), try to come up with the best application design. It is not
necessary to use all or even any of the gadgets that are available to you: Your application will
not necessarily be better of you are trying to force-fit your problem with a design that makes use
of VR technology but is not intuitive.

2. 4 Decide on the implementation strategy
Once the major design issues have been resolved, it is necessary to find an implementation
strategy. Oftentimes it becomes necessary to decide on the software support that is needed.
Virtual environments can be very complex software systems: How deep can you afford to dig
into the computer? On the one hand, it is necessary to fine-tune almost any part of the VR
application, so that the high performance demands of an immersive application are met. On the
other hand, the complex structure of a VE does not allow to be concerned with too many
details. The dilemma can partly be resolved by the use of toolkits that support a well-defined
aspect of the VE, and are highly optimized for the task. You should always try to find a toolkit
for creating the 3-D images (rendering toolkit) and for supporting you devices (device drivers in
the broadest sense). Unfortunately, you may need slightly different implementations in some
cases, and it is not always possible to extend, modify or patch the commercial toolkit. The
highest level of support comes from integrated software solutions (e.g., WorldBuilder from
Autodesk). If you are able to use such a product, you can save a lot of effort. However, the set
of features supported by such a closed solution is fixed, and it may often fail to support your
most innovative design ideas.

2. 5 Get the hardware working
It may sound trivial in the age of “plug-and-play”, but devices such as HMDs and trackers are
still complicated to handle. This is partly due to the limited distribution of VR devices and a lack
of standards, and will certainly improve over time, but for now a tedious process of trial-and
error can hardly be avoided. It may be necessary to create custom device drivers that have
specific properties, or run under specific software configurations or flavors of operating
systems. Even if you can use the drivers supplied by the vendor, it is also generally necessary
to fine-tune the parameters that can be set for the device (sampling frequency, sensibility etc.).

2. 6 Do the implementation
Once you have a demonstration running that proves that your choice of hardware runs as a more
or less harmonic ensemble, you can start the actual implementation. During the process you will
probably learn that virtual environment system design is less well-understood than for example
database design. Usually a lot of iterations with real user testing is necessary to get things right.
It may be wise if you find a way to throw together prototypes or even barely working mock-ups
of your application just to get enough response [5].

2. 7 Iterate your design until satisfying
Probably the most important difference between “normal” software engineering and the
construction of immersive virtual environments is the lack of a general theory, many factors
have to be determined by experiment.

3. Some background on virtual environments
In this section we will discuss issues that are usually raised when designing an virtual
environment or planning its implementation. We have selected several issues that seem
interesting enough to justify a closer look.

3. 1 Tracking technology
Immersive VR applications often require the tracking of the user’s head movements to
determine his current direction of gaze. Additionally other parts of the body (e.g., hands) may
be tracked to allow interaction. The most important properties of trackers [6, 7] are update
rate (defining how many measurements per second are made), latency (amount of time
between the user’s real action and the beginning of sending of the report representing this
action), accuracy (measure of error in the reported position and orientation), resolution
(smallest measurable change in position and orientation) and range (working volume of the
tracker). Beside these properties, some other aspects cannot be forgotten, like the ease of use,
size and weight etc. of the device.

Magnetic trackers are the most often used in VR immersive applications. They typically
consist of a stationary part (emitting the electromagnetic signal) and a number of movable parts
(called sensors or receivers) mounted on the tracking points. Both emitter and receiver consist
of three mutually perpendicular coils. The magnetic fields generated by the emitter are picked up
by the receiver and transformed into magnetic current by induction. Both AC and DC current is
in use, where DC-based trackers are less sensitive to interference by metal and magnetic fields
in the tracking area.

Advantages of magnetic trackers include small and light sensors, no open-line-of-sight
constraint, no sensitivity to acoustic and lighting conditions, relatively high update rates and
low latency. The most severe disadvantages are vulnerability to metallic objects and
ferromagnetic materials and rapid deterioration of accuracy with increasing distance between
sensor and emitter caused by electromagnetic distortion.

Acoustic trackers use ultrasonic waves (above 20kHz) for determining the position and
orientation of objects in space. As the use of sound allows the determination of relative distance
between two points only, multiple emitters (typically 3) and multiple receivers (typically 3) with
known geometry are used to acquire a set of distances to calculate position and orientation from
the time the sound takes to travel. Advantages of acoustic trackers are small size and weight,
inexpensiveness, and independence from magnetic interference. However, they suffer from an
open-line-of-sight restriction, vulnerability to acoustic interference (echoes), and rather low
update rates.

Other tracking technologies include several flavors of optical tracking and mechanical
tracking, but magnetic and acoustic tracking have a major non-technical advantage over these
methods: They are commercially available off-the-shelf components with some maturity.
Although this is a rather trivial issue, it currently limits your choices to magnetic vs. acoustic: If
you can manage to avoid electromagnetic disturbance in your area of work (get a wooden
desk!), you will probably opt for a magnetic tracker such as the Polhemus Fastrak or
Insidetrak, or the Ascension Flock of Birds. If you can live with the line-of-sight restriction, an
acoustic tracker may be appropriate, e.g., the Logitech tracker. Pay attention on how to connect
these peripherals to your system: usually a serial or parallel connection or PC plug-in board are
used.

3. 2 Coordinate systems and their relations
The rendering transformation for computer graphics usually involves object coordinates, world
coordinates, and camera coordinates. We need object-to-world and world-to-eye matrices.
However, most rendering systems (e.g., Iris Performer) require the specification of the object-
to-world and eye-to-world matrices. For a head-tracked HMD, the latter can be decomposed as
follows [8]:

• Eye-to-head: defines the position and orientation of the eye in the coordinates of the
tracker reference point (headTP in fig. 1) on the head (typically the sensor). The two eye-
to-sensor transformations (one for each eye) are fixed for a given HMD geometry.

• Head-to-tracker: defines the position and orientation of the head in the coordinates of
the tracker’s stationary part (typically the emitter). This transformation changes

dynamically as the user walks or rotates his head, and is measured by the tracking
device.

• Tracker-to-room: defines position and orientation of the tracking system’s emitter
module in the physical room. In that way independence of the position of the tracker in
the physical room is achieved. This transformation is fixed for a given physical tracking
system configuration.

• Room-to-world: defines position and orientation of the (physical) room in (virtual)
world coordinates. This is necessary because the simulation places the user in a simulated
vehicle that moves in the virtual world. This transformation changes dynamically
according to the users’ actions like flying, tilting or world scaling.

If we use other trackers than for the head (e.g., hand tracking), a corresponding matrix
hierarchy is used. The only difference is that a hand-to-world matrix is used like an object-to-
world matrix (e.g., for display of the user’s hand). Fig. 1 shows the hierarchy of
transformations.

eye hand

world

room

headTP

objects

handTP

tracker

modified when
objects are
moved

modified when user
moves and rotates
the vehicle

fixed for a given
room geometry

measured by tracker

fixed for a given
3D-mouse geometry

fixed for a given
HMD geometry

X

Y

X

Y

Z

roomCS

hand-receiver
head-receiver

X

X

X

Y

Y

Y

Z

Z

X

Y
ZZ

Z

transmitter

X

Y
Z

WorldCS

eye-CS
hand-CS

Fig. 1: Abstract and schematic view of the display transformation for VR

3. 3 Display technology
The chosen display technology [9] is of crucial importance when trying to design an immersive
experience. At a budget, the choice is rather limited; however, careful considerations must be
paid to the human factors, because the quality of the visual presentation largely determines how
successful your implementation is going to be. In the following we outline what we think are
the options one generally has at a reasonable cost (i.e. the peripherals may not exceed the price
of the core system).

Fish-tank VR. A large (19” and more) color monitor with high-quality can make partly
immersive experiences possible without any extra costs for peripherals. However, you must be
aware of the limitations: At no time is the user totally immersed in the scene, for he may always
be distracted by what is going on in his immediate surrounding. Interactions requiring even a
limited form of body movement are not possible. Head tracking has only limited effect. Despite
the obvious limitations, the feeling of immersion can still be surprisingly high.

The monitor-only solution may be greatly enhanced by the use of liquid crystal shutter
glasses allowing sequential stereoscopic view – corresponding images for the left and right eye
are presented in sequential frames on the monitor in synchronization with the glasses, that use
liquid crystal technology to darken the other eye in turn. The action radius is still limited by the
user having to look at the monitor, but the monitor provides very good image quality with high
resolution and brightness. The glasses are not more uncomfortable than normal sunglasses.
Therefore they may be worn for an extensive period of time, which is beneficial if the
application is to be integrated into a normal desktop workplace environment (e.g., a CAD seat).
Shutter glasses are also cheaper than HMDs.

Head-mounted display. Wearing the display on one’s head brings total immersion: The
user’s visual perception is bound to the images presented by the computer. The intention is to
focus the user on the VE, so that he can interact with the VE just like he would with reality.

However, the quality of today’s commercial products is still relatively poor. Furthermore total
immersion requires protection of the user’s action volume, because he cannot see real obstacles
anymore and may hurt himself. The options for HMDs include both LCD and CRT based
devices. Most devices accept separate video input for each eye, usually they accept NTSC or
PAL signals. Conversion from RGB signals as provided by the graphics boards is usually done
by an external conversion box. Stereoscopy can either be neglected (in that case the same input
is presented to both eyes), or two input signals are necessary. These can be provided by two
separate image generators (either two graphics boards in one computer, or two computers that
are synchronized over a network). Two signals can also be generated by special graphics
boards (like the SGI multi-channel option), but this solution is often prohibitively expensive.
HMDs normally include a head-mounted tracker, so that the user is always presented with an
image according to his current viewing frustum.

3. 4 Efficient modeling and rendering of virtual environments
Modeling toolkits. A complex system such as a VE will also require ways of integrating the
geometric description of objects with their programmed behavior in a structured, standardized
way: a 3-D modeling toolkit is required. Such toolkits are best developed using an object-
oriented or pseudo object-oriented approach, where each kind of object (polygon, light source
etc.) is modeled as a class. Instances of these classes are arranged in a hierarchical scene graph
as needed (primitives as leaves, transformation nodes etc. as intermediates). Instancing of
subgraphs allows the model to exploit similarities in the scene (e.g., the geometry for four
identical wheels of a car need only be specified once). Such a scene graph is processed by
traversal, and for each visited node the appropriate method of the corresponding class (e.g.,
draw) is called. Flexibility is achieved by allowing user defined traversal strategies, callback
upon traversal of specific nodes, and subclassing of node types. Hierarchical bounding
volumes allow efficient culling and intersection testing.

While such a modeling toolkit allows the construction of VE scenes at a sufficiently high
level, they are no substitute for a good interactive modeling or CAD package. Therefore you
need to make sure that the rendering system of your choice supports import for the geometry
file format of your favorite modeling system. Do not forget that you need to check whether
much-needed high-level information (such as which primitives belong to one object) must
survive the data exchange!

Creating a toolkit for modeling and rendering is tedious and labor-intensive. It is better to
use an existing solution, most of which are more than powerful enough to support your needs,
and also are optimized for specific hardware configuration, which is extremely hard to do
yourself. Popular choices include OpenInventor [10], Iris Performer [11], DVS [12], or Sense8
WorldToolKit.

Rendering acceleration. When designing a virtual environment experience, one may
never forget that the hardware alone cannot bring high quality immersion, unless the image
generation is programmed efficiently. Vendors of graphics boards constantly try to outperform
each other with impressive polygon-per-second figures indicating peak performance of their
products. However, professional graphics programmers know that a tenth of the figure stated
by the PR information is the typical real-application performance. When dividing this number
by the 20 or so frames that are necessary to maintain smooth animation for a convincing and
pleasant VR experience, the polygon budget for a single frame gets really tight even for
moderately complex scenes. Textures make up for the lack of detail, but low cost image
generators usually do not support them (however, last-generation video games such as the Sony
Saturn already support textures).

Nevertheless it is absolutely mandatory that the graphics capability at hand is exploited as
much as possible. Consequently a simplistic approach along the line “throw all polygons in the
rendering pipeline and forget about it” is not sufficient. Instead, it is necessary to carefully
consider the trade-off between cost for preprocessing and actual rendering (which is more or
less done by hardware). The most prominent methods for rendering acceleration are:

• Visibility preprocessing: In a large virtual environment, most of the geometry is
invisible, partly because many objects lie outside the viewing frustum (typical HMDs
have only a 40° field of view!), partly because of occluders (e.g., walls in a building).
The (in)visibility of these parts of the scene can be determined by the hardware (typically
Z-buffer), but the overload created from processing (scan converting etc.) the massive

amount of geometry that is not visible anyhow is exactly what makes the rendering
inefficient. It is therefore better to use some CPU capacity to pre-determine what is really
visible or a superset thereof, and only pass this pruned dataset to the rendering hardware.
This can be done by standard viewing frustum culling (e.g., using auxiliary data
structures like BSP trees [13]) or by specialized data structures that exploit occlusion
[14].

• Level-of-detail rendering: Realistic models for virtual environments can become very
complex, consisting of thousands of geometric primitives [15]. If objects are far away or
very small, the details cannot be seen and the effort spent on rendering them is wasted. To
compensate, a model may be represented in multiple levels of detail (LOD), e.g., using an
increasing number of polygons for each successive LOD. A good selection of the LOD
for each object at runtime requires sophisticated heuristics [16].

4. Case study
4. 1 Motivation
A game is a good example to demonstrate the important aspects we are interested in: It will only
work if it is capable of providing a high level of immersion. If it fails in this respect, the user
will not be captured. Furthermore, it involves all the aspects of a virtual reality application,
without being too complex.

From the type of application, the requirements for software and hardware can be derived.
First, one has too choose the metaphors that will be involved in the interaction of the user with
the environment, in particular navigation. In our game, the user navigates in a maze and gets
drawn into shooting fights with enemies. To support this situation, we need 3-D display of the
maze with rapid viewpoint control, so that the user can quickly spot the enemies. We also need
a simple and direct method for navigation and aiming at enemies, because these actions will be
time-critical. We chose to address these requirements with a head-mounted display (HMD) with
head-tracking, and a hand-held 3-D mouse. The HMD is driven by a 3-D accelerated SGI Indy
workstation, which places the system cost somewhere in mid-range. Low-cost (PC-based)
hardware would not have provided the necessary, prices for 3-D acceleration are dropping
rapidly, and we can soon expect the hardware to be available at commodity prices.

4. 2 System Overview
In this section, we discuss what hardware and software components are necessary for the
construction of our example VE (fig. 2). We are decomposing the task into the “classical”
domains of information processing (input, computation, output). However, note that a VE is a
closely-coupled human-in-the-loop system that must run at interactive speeds.

COMPUTATION

Interaction Collision Detection

Hand
Tracker

3D-Mouse
Buttons

INPUT

Tracker
device

device
driver

device
driver

OUTPUT

RGB to NTSC
Converter

Image
Generator

device
driver

HMD

collision

Coordination

World Model Object Simulation

USER

Head
driver

user - environment
user - drones
user´s shoot - drones
drone´s shoot - user

perform user actions:
 move, shoot

perform drone actions:
 move, shoot

model scene (user, drones, environment)
initialize trackers + mouse
loop
 Interaction: read tracker + mouse data
 Object Simulation: perform user actions
 perform drone actions
 Collision detection
 Rendering
end loop

Fig. 2: System overview diagram

Input. System input comes from the interaction devices that are connected as peripherals
to the computer, in our case the trackers for head and hand. The data delivered by the tracker is
often noisy, so the use of a filter is advised. Simple low pass filters increase the delay; hence
we decided to apply a Kalman filter [17] instead. The latter can also be used for the prediction
of tracker data (see section 4.4).

Computation. Once input data is obtained, it has to be processed so that the application
can use it. An interaction module transforms the raw data (e.g., state of button changes) into
semantic events (“user shoots missile”). To do this, the interaction module may require
information about the current state of the simulation (e.g., the projectile fired by hitting the
button may depend on the selected weapon, and whether there is ammunition available). The
data is then passed on to the central coordination component, which is responsible for invoking
the other modules to keep the system running. In particular, it has to look after the simulation of
the objects that are present in the VE, in particular the autonomous agents (in our case, the robot
drones that attack the user) and the representation of the user (e.g., simulating movement of the
users vehicle based on velocity, acceleration etc.). A special task of the simulation that is both
important and complex (because of the high computational effort) is collision detection and
response. All these modules operate on the world model, a special database describing the
details of the VE.

Output. Part of the world model is occupied by the geometric representation, which is
then used for creating the images in real-time on the HMD. Needless to say, real-time rendering
in convincing quality is a difficult problem into which a lot of effort is being invested.

4. 3 World model and interaction metaphor
While it is often argued that VEs will revolutionize human-computer interaction because of the
potential to interact with the computer in the same way we interact with the real world, the
immature quality often encountered in today’s VR technology forbids complex types of
interaction. It is therefore of utmost importance to carefully choose and fine-tune the metaphors
used for the design of the interaction with the VE, so that it does not place too high demands on
the user.

Navigation of the user in the virtual world is especially important. Without doubt the most
natural navigation would be to let the user walk physically. Unfortunately, this is rarely
possible because of difficulties in tracking larger areas, safety considerations when wearing
HMDs, screen-bound applications when not using an HMD, length of cables etc. Therefore a
navigation metaphor has to be chosen that allows the user to remain relatively stationary
(standing or sitting) while navigating. A suitable solution is the simulation of a (simplified)
vehicle that is operated in a similar way as the real-world counterpart. Fly-through allows
movements in 3-D more or less without any restriction. Drive-throughs and walk-throughs are
used if the user is meant to remain “on the ground” of the virtual environment. The usage of the
vehicle is generally greatly simplified (no physics etc.) to make usage as easy as possible,
unless accurate simulation of the vehicle operation is the focus of the application (e.g., flight
training).

While it is crucial that the navigation problem be solved, one may not neglect the other
aspects of the interaction component. Depending on what the goal of the VE is, a variety of
functions may need support. In general, using interaction elements that we know from the 2-D
desktop area does not work very well in an immersive 3-D environment. For example, it turns
out that displaying menus in 3-D is often not perceived very well by the user. Insufficient
quality (e.g., tracking inaccuracy) may make some otherwise good ideas unworkable. Instead,
new methods are suddenly possible (e.g., gesture recognition). If the system has a real-time
aspect (e.g., when the user is attacked in a game), the interface must be extremely simple and
direct so that the user is able to respond fast. The same holds for conventional user interfaces,
but in VEs the problem is more common.

For our simulation, we chose to simulate a simple “glider” vehicle that transports the user
in the maze. The vehicle always moves in the direction of its nose. The vehicle is controlled by
buttons of the 3-D mouse (left, right, forward, back). No physics are simulated for the vehicle.
Parts of the hull of the vehicle are represented in the scene (see fig. 3), so that the user can
determine the vehicle’s orientation (and hence the direction of movement). The user’s hand
(with the 3-D mouse represented by a gun) is also displayed so that the user can visually
coordinate his manual actions, in particular shooting (one 3-D mouse button is reserved to

trigger the gun). The head-tracking allows to move the direction of sight independently of the
direction of vehicle movement (e.g., one can look out of the “side” window), which is
important to check for enemies behind oneself. After a short period of adjustment, the users feel
quite comfortable with this simple metaphor.

4. 4 Hardware and Software
For tracking, we use a Polhemus Fastrak with two sensors, one for the head and one for the
hand. The tracker unit is connected to the serial port of a 486-based PC running Linux that acts
as a tracker server. Using standard TCP/IP, the PC in turn is connected to the Indy workstation
that runs the virtual environment and generates the images. UDP sockets are used for efficient
communication of the tracker data to the workstation. We use the PC for tracking, because it
provides a cheap way of distributed computation. The prediction filter applied to the tracker data
consumes a substantial amount of CPU power. It is much cheaper to dedicate an inexpensive
Intel CPU to the task than buy a more powerful workstation. Additionally, most of the cheaper
VR peripherals are developed for the PC market, and it is therefore straightforward to connect
them to PCs, whereas connecting to workstations can be annoyingly complicated.

Our system is able to compensate for the delay introduced by head tracker measurement,
network transmission, and rendering using a Kalman filter based predictor as described in [17].
This method greatly reduces the effect of “swimming” of images that are not consistent with the
head movement, and is also capable of reducing the noise in the measurement.

Presentation of the VE to the user is done with an EyeGen3 HMD from Virtual Research.
This HMD accepts two NTSC composite signals and displays them at TV resolutions.
Conversion of the monitor signal is done with an external RGB-to-NTSC converter. We use the
same input for both eyes and neglect stereoscopy, predominantly for cost reasons. The HMD
provides immersion even though images are not stereoscopic. Future plans involve using two
Indys synchronized over a network to generate separate images for both eyes. For rendering,
we chose to use the Iris Performer toolkit, because it provides excellent performance on SGI
workstations.

4. 5 Object simulation
The simulation of objects determines the kind of experience the user has in the virtual
environment. Without simulation, the VE would only consist of “dead” geometry without
interesting situations. In our test implementation, the simulation is only concerned with two
types of objects: The user himself and the enemy drones.

User. Simulating the user more or less consists of appropriate responses to the user’s
input. The glider vehicle that is occupied by the user is rotated and moved back and forth
according to the commands given with the 3-D mouse’s buttons. No physical properties are
computed for the vehicle; it starts, moves and stops completely determined by the user’s
commands. This does not only simplify the simulation, it also is convenient for the user who is
kept busy fighting the drones. The application is responsible for displaying the part of the
user’s geometry that is visible (the shoulder, arm and hand, and the trunk of the vehicle) to aid
the user’s orientation.

Drones. The drones’ simulation focuses on moving them through the maze and attacking
the user on sight. This involves a strategy for direction selection: Drones always move along
corridors, until they reach a crossing. In “easy mode”, drones wander aimlessly, whereas in
“hard mode”, they move in the user’s general direction. Upon sight they directly approach the
user and fire in the user’s current direction.

4. 6 Collision detection
Because humans are used to the fact that solid objects cannot intersect, collision detection (and
response) is very important for realism in VEs, especially because force feedback is generally
unavailable. However, physical realism is not mandatory for convincing collision detection.

Our environment consists of moving entities (user, drones, projectiles), and static
decoration (walls of the maze). We do not intersect the actual geometry of the moving objects,
but rather approximate them with simple geometric bounding volumes. We use a sphere for the
user, cones for the drones, and small spheres for the projectiles. Using simple geometric
shapes, performing the intersection computations is much easier than with a potentially complex
polygonal datastructure (of course at the cost of exactness!). For our application this
simplification is sufficient. We can further exploit the fact that most of the potential collisions

(involving user, drones, walls) can be determined from the 2-D projection of the shapes onto
the ground floor. Only the projectile-object collisions need to be determined in 3-D since a shot
may miss the target because it is aimed to high or to low.

4. 7 Flow of action
The following fragment of pseudo code briefly outlines the steps that are executed in the main
loop of the program. The most important steps are tracker reading, user and drone simulation,
shot simulation, collision detection, and rendering:

while(user_stamina >= 0)
read_tracker_data
case user input of

left,right,forward,back: move_vehicle
trigger: fire_shot

for every drone
move_drone
if user_in_sight then fire_shot

compute_shots
for every pair of objects:

case collision_detection
vehicle_to_wall: stop_vehicle
vehicle_to_drone: lower_user_stamina
usershot_to_drone: destroy_drone
droneshot_to_user: lower_user_stamina

set camera according to head tracker
for each object: draw_object

Fig. 3 gives an impression of the implementation: On the right hand side the user’s arm can be
seen, just before and immediately after he fires a projectile at an enemy drone.

Fig. 3: Screen shots from the example implementation

5. Conclusion
We have presented a case study for the construction of a virtual environment to aid those
planning to implement a similar system. A simple checklist outlines fundamental steps to take in
the realization process: A characterization of problem domain and application leads to a design
metaphor; when a decision is made on hardware and implementation strategy, and the hardware
is proven to work, the actual implementation can be done, and the design evaluated. This
“cooking recipe” is supplemented by a treatment of necessary background knowledge on virtual
environments, including tracking technology, coordinate transformations for VEs, display
options, modeling and rendering. A simple demo implementation
 of an immersive 3-D maze game using an HMD with head and hand tracking is used to serve as
an example to illustrate the concepts that have been discussed.

Acknowledgements
This work was sponsored by the Austrian Science Foundation (FWF) under contract number
P11392-MAT.

References.
[1] M. Zyda, D. Pratt, J. Falby, C. Lombardo, K. Kelleher: The Software Required for the Computer

Generation of Virtual Requirements. Presence, Vol. 2, No. 2, pp. 131-140 (1993)
[2] C. Codella et al.: Interactive Simulation in a Multi-Person Virtual World. Proceedings of SIGCHI,

pp. 329-334 (1992)
[3] C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko, M. Oberman, M. Teitel: Reality Built for Two:

A Virtual Reality Tool. SIGGRAPH Symposium on Interactive 3D Graphics, pp. 35-38 (1990)
[4] R. Gossweiler, R. J. Laferriere, M. L. Keller, R. Pausch: An Introductory Tutorial for Developing

Multiuser Virtual Environments. Presence, Vol. 3, No. 4, pp. 255-264 (1994)
[5] R. Pausch, T. Burnette, M. Conway, R. DeLine, R. Gossweiler: Alice: A Rapid Prototyping System For

Virtual Reality. SIGGRAPH’94 Course, No. 2 (1994)
[6] K. Meyer, H. Applewhite, F. Biocca: A Survey of Position Trackers. Presence, Vol. 1, No. 2,

pp. 173-200 (1992)
[7] R. Holloway, A. Lastra: Virtual Environments: A Survey of the Technology. SIGGRAPH’95 Course, No.

8, pp. A.1-A.40 (1995)
[8] W. Robbinet, R. Holloway: The Visual Display Transformation for Virtual Reality. Presence, Vol. 4, No.

1, pp. 1-23 (1995)
[10] P. Strauss, R. Carey: An Object Oriented 3D Graphics Toolkit. Proceedings of SIGGRAPH’92, No. 2, pp.

341 (1992)
[11] J. Rohlf, J. Helman: IRIS Performer: A High Performance Multiprocessing Toolkit for Real-Time 3D

Graphics. Proceedings of SIGGRAPH’94, pp. 381 (1994)
[12] S. Ghee, J. Naughton-Green: Programming Virtual Worlds. SIGGRAPH’94 Course, No. 17 (1994)
[13] B. Naylor: Interactive playing with large synthetic environments. SIGGRAPH Symposium on Interactive

3D Graphics (1995)
[14] S. Teller, C.H.Séquin: Visibility Preprocessing For Interactive Walktroughs. Proceedings of

SIGGRAPH’91, Vol. 25, No. 4, pp. 61-69 (1991)
[15] M. Deering: Data Complexity for Virtual Reality: Where do all the Triangles Go?. Proceedings of

VRAIS’93, pp. 357-363 (1993)
[16] T. A. Funkhouser, C. H. Sequin: Adaptive Display Algorithm for Interactive Frame Rates During

Visualisation of Complex Virtual Environments. Proceedings of SIGGRAPH’93, pp. 247-254 (1993)
[17] T. Mazuryk, M. Gervautz: Two-Step Prediction and Image Deflection for Exact Head-Tracking in Virtual

Environments. Proceedings of EUROGRAPHICS’95, pp. 29-41 (1995)

