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Abstract
We propose an architecture for virtual environments
that is aimed at the construction of a global,
continuous, shared, and persistent information space.
Such a system must support three-dimensional
interaction of a large number of users and allow
integration of user-developed applications. Our
system is based on a client-server architecture: The
server is responsible for management and
maintenance of the virtual environment. Users can be
present in the environment using software clients.
The environmental database is composed of object-
oriented units with multiple levels of autonomy.
Scalability is achieved by a network of servers that
cooperate by taking on responsibility for different
regions within the simulated environment. We also
report on the status of our ongoing prototype
implementation of this architecture.

CR Descriptors: C.2.4 [Computer Communication
Networks]: Distributed Systems - Distributed
Applications; I.3.2 [Computer Graphics]: Graphics
Systems - Distributed/Network Graphics; I.3.7
[Computer Graphics]: Three-dimensional Graphics
and Realism - Virtual Reality;

1 Introduction

In  this paper, we propose a virtual environment
architecture which aims at the construction of a
Cyberspace, a true virtual “world” in the sense that
like in the real world we inhabit, there exist no limits
on content or size other than our imagination and
skill. We show what software component are
necessary for such a task, and also report on the state
of our ongoing prototype implementation.

1.1 System requirements

We list a suite of requirements that we believe are
essential for a global virtual environment, and that go
beyond capabilities of scene viewers for simple
browsing of 3-D scenes (for a more complete
analysis, refer to [SG95]):

• The performance should be adequate for
interactive working. In particularly, if the
environment data is distributed, efficient
management of the network is necessary.

• The three-dimensional information space should
be continuous. While the connection of virtual
environments with portals (3-D hyperlinks) as a
metaphor works in principle, we believe that a
geometric arrangement of the information spaces
is more natural for 3-D interaction.

• The environment should not restrict the support
for multiple concurrent users. Sharing of the data
contained in the environment should be
supported, and multiple users should be able to
interact with each other. Such a requirement also
means that the system must scale to allow a large
number of concurrent users in the same
environment.

• Persistence of content should be possible. Not
only should the data and applications within the
environment continue to exists even if no human
participant is logged into the system, also the
environmental simulation and execution of
applications should continue.

• The system should provide interfaces that allow
arbitrary applications to be developed to work
within the environment. In particular, users should
be able to populate the environment with software
agents that provide services to others.

1.2 Related work

Several researchers have reported on software
architectures for shared virtual environments that
support a rich set of interaction and applications
[SW94] [CH93] [Sha93] [BC94] [Sin94] and rapid
development [WGS95] [PBC94]. However, these are
mostly limited to local networks and do not scale
beyond a handful of users. Some work has been
published on reducing communication cost between
large groups of participants to make larger scale
environments possible by use of clever algorithms
[Mac94] [Fun95] [BF93] [Sin95] or novel network
protocols [Mace95]. Recently there are development



for the integration of virtual environments and the
World Wide Web [HMR]. In that context, a spatial
subdivision of the universe has been proposed
[Bre95]. However, research work on a global virtual
environment is just in its beginning.

1.3 System overview

To address the needs of a global virtual environment,
we propose the following system design:

The virtual environment is represented as a
database in a virtual environment server. The server
executes a simulation process that keeps the virtual
environment alive. Users connect to the server via a
client software over the Internet using standard
protocols. They are then free to choose a so-called
Avatar that represents them in the virtual
environment and mediates interaction. While the
Avatar is controlled by the user over the network, the
server manages the Avatar and forwards
communication and interaction between the Avatar
and other user’s Avatars and software agents that
inhabit the environment. The software agents - that
we call actors - are the representation of applications
in the virtual world.

The actors’ object-oriented architecture allows
multiple levels of actors complexity. Actors can
either be “dumb” and respond to stimuli in a
predictable way, or they can carry their own behavior
inside. Behavior is either specified by a scripting
language, or it is controlled by external applications
over a standard interface. To the environment
manager, the user is another external program in
control of the Avatar actor. Our actor architecture
allows dynamic modifications to the system by
creating new actor types while the system is
executing. It also allows actors to migrate between
multiple virtual environments.

With the simulation being carried out within the
server, the task of the user client is to mediate the
interaction between the environment and the human
user. It supports the dynamic mapping of interaction
styles to the available interfaces and devices. It also
displays the three-dimensional scene to the user. A
sophisticated protocol provides high performance
remote rendering of the environment at the client
site.

Scalability is achieved by assigning parts of the
virtual universe to different servers based on regions.
Our initial proposal is a regular 3-D grid. The server
is responsible for the actors that live within its
region. We assume that the regions are large enough
so that the majority of interactions is local. Such
coherence allows most interactions to be efficiently
carried out within one server, and inter-server

communication happens only between adjacent
servers.

The rest of this paper discusses various aspects of
our design. We present the fundamentals of our
approach: the client-server network infrastructure
(section 2) and the software architecture of actors
(section 3). We then examine some interesting
aspects of our design in greater detail: constraint-
based behaviors (section 4), group and world
management (section 5) and efficient database
management by exploiting spatial coherence (section
6). We also report on our efforts for a prototype
implementation (section 7).

2 Network topology

2.1 Servers

We run the virtual environment on a distributed
network of servers. To achieve load balancing, the
simulated universe is divided into regions. Each
server manages the actors contained in its assigned
volume. The server provides the medium for the
actors to communicate among with other, thereby
keeping the simulation alive. The server also
communicates with its neighboring servers, and
routes messages to actors that live on remote servers.
Every actor has a name unique in the environment, so
it may be addressed transparently, without caring
about server connections. The only difference
between local and remote communication is that
routing the message through the server network will
take longer than local communication.
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Fig. 1: Client-server architecture. The world is
geometrically divided over a network of servers

To make this scheme efficient, geometric coherence
is exploited. Communication over the network is
costly, whereas communication within a server is not
so critical. Most applications take place in a bounded
region of space. As long as all actors involved with a
particular application are held on a single server, all
communication concerning the application will be
between actors within the server. Communication to
actors on servers far away is possible, but it will



relatively infrequently happen, so that the
performance penalty is minimal. The only remaining
network communication is to the user’s client (fig.1).

This architecture allows to hide the division of the
environment and the presence of multiple servers
from the user, so that the illusion of a continuous
three-dimensional space populated by actors is
preserved. When a user leaves the domain of one
server and enters another, a new connection is built
to the destination server, and the user’s Avatar is
“gracefully” handed on. Ideally, these changes
should be completely transparent to the user.

2.2 Clients

Formally, a client is a process independent of the
server, that has some interest in the virtual world.
The client may just observe the progress inside the
VE or take influence. Observation can be done by
sending a request for information to the server or to
an actor that is managed by the server. By placing a
camera in the VE, the client will receive a constant
stream of visual information that reflects the changes
in the scenery as seen by the camera. This
information stream is then visualized (i.e. rendered)
by the client.

Influence on the VE can be achieved by controlling
an actor by sending command messages. Special
commands involve the creation of new actors, the
creation of new actor types, and the deletion of
actors. We distinguish two types of clients:
• Avatar client: The client creates an Avatar for the

user in the VE. It is also responsible for reading
the user’s input and presenting the VE system’s
output. The client allows various forms of
interaction, determined by what physical devices
(3D-mouse, glove, HMD...) are available at the
user’s site. If a device for a particular form of
interaction is missing, the client provides a
software substitute (e.g. if an application requires
turn-knobs but they are not available, a dialog
window with a turn-knob widget is presented
instead).
The user’s commands are send from the client to
control the Avatar, who in turn interacts with the
environment on the server. Updates resulting from
the simulation going on at the server are sent back
to the client, which presents the modified
environment to the user. In particular, the client
creates visual output by generating images of the
VE.

• Animation client : An application may require the
computation of complex control for a potentially
large number of actors. Such a task cannot be
carried out in the server process to avoid
computational overload. Instead a client process
running on a separate, powerful machine, can

perform the calculations, then send the results in
the form of update commands to the server. For
example, a physically based simulation for
deformable objects may compute the deformation
of an actor’s geometry, then update the polygonal
representation according to the deformation.
Usually a client of this kind will be responsible
for animation, but arbitrary simulation can be
carried out.

3 Actors

3.1 Actor architecture

Our actors are object-oriented units composed of
properties and behavior. They can be categorized by
the way their behavior is implemented.
• Standard actor: uses standard (built-in) behavior

and does not define any form of additional
behavior. It is composed of passive data and does
only respond to the standard set of operations that
is defined for every actor, such as positioning and
picking. Inanimate objects such as furniture are
best modeled in that way. This type of actor
corresponds to the “artifacts” in Aviary [SW94].

• Standard actor with static animation: Like
above, but attributed with a static time-driven (i.e.
key-framed) animation. This allows to build more
interesting “decoration” actors, such as a wall-
clock with moving hands.

• Actors with scripted behavior: To describe
active behavior, static animation is not sufficient.
Instead, we use a scripting language to allow the
creator of an actor to specify the actors reaction to
messages. Two kinds of messages can be
distinguished: synchronous messages are sent in
regular time-intervals by the server to drive built-
in behavior that progresses over time.
Asynchronous messages are sent by other actors
to provoke a reaction to some event that is
happening in the simulation. Built-in animation is
mostly predetermined, but it can be influenced by
asynchronous messages. E.g., running water may
be switched on and off by an asynchronous
message, but the water drops are animated by
synchronous messages.

• Actor with external client-control: If it is known
that behavior computation is complex, it should
not be carried out on the server for two reasons:
(1) scripting is interpreted, so it is flexible but not
efficient, (2) an external client may run any kind
of software specifically designed to fulfill the
task. Both hardware and implementation may be
chosen for the particular task at hand. The
interface is well-defined by the message protocol
between actor and client. The client can for
example re-use existing code for FEM, and run on



a high-performance computing server. This sort of
diversity cannot be achieved on a single server
platform alone.

3.2 Geometry and Animation

Virtual reality applications require interactive
graphics display. Current software and hardware
rendering engines support polygonal data structures.
Animation, such as we desire for visualization of
dynamic changes in the virtual environment, requires
higher-level control [Zel85], provided by hierarchical
scene graphs.

Manipulation of transformations in such a
hierarchy allows high-level control of articulated
figures [MT85]. We generalize this approach to
parameterized models. Attributes are made
dependent on expressions of one or more parameters.
If the parameter is changed, the attributes’ values
change accordingly. Parameters can also be made
dependent on time, so a self-contained animation can
be created, capable of running without any external
control. The animation is implicitly created when the
time- or parameter-dependent attributes are evaluated
(e.g. for rendering).

The hierarchical data structure should also support
instancing, so that multiple identical geometry
representations do not have to be duplicated
needlessly. However, there must be a possibility to
distinguish multiple instances of one model. This can
be done by using a directed acyclic graph (DAG) as
the scene topology.

The parameters mechanism provides a convenient
programmer’s interface to the data structure: We
introduce a naming scheme for scene graph nodes
and parameters, and allow manipulation of the data
only by standard functions that access the data using
this naming scheme.

3.3 Object-oriented actor hierarchy

While 3-D graphics support is a fundamental for
interesting virtual environments, actor behavior must
be supported to be able to develop meaningful
content. Our communication system is message
based. If message passing is mapped onto procedure
calls (such as in C++), the set of messages
understood by each actor is fixed. In particular, an
actor will not understand messages that have been
created along with the coding of a more recent actor
type. A naive message-passing system is not flexible
enough to allow new actor types to be added to the
system at runtime.

Another problem is to determine what can be
understood by a particular actor. Something must be
known about the actor to find out whether sending a

particular message to that actor makes any sense or
not.

Our approach to solve this problem is to construct
an object-oriented hierarchy of actor types that can
be queried and extended at runtime. A class server
answers queries on the class hierarchy, so that the
question whether a particular actor understands a
particular message can be solved at runtime.

A suitable tool for the construction of the actor
class hierarchy is an embedded interpreter for an
object-oriented scripting language. The behavior of
an actor is encoded in its methods, and these methods
can be formulated using the scripting language. By
exchanging strings containing method invocation
written in the scripting language, the scripting
language can be reused as the message protocol. As a
side effect, the relative simplicity of such a scripting
language makes it a good authoring tool for user-
level programming.

Some of the methods will not contain any scripting
code, but directly map to the basic functions built
into the server. There are certain capabilities that
every actor must have and that are therefore
implemented in the basic actor class:
• receive message: if an actor receives a message, it

must be able to carry out the command sent. If it
does not understand the message, it may ignore it,
or if there is external control in the form of a
client connected to the actor, the message is
handed on to the client.

• send message: sending a message just means
passing an arbitrary string containing a statement
onto the communication layer, so no restriction
whatsoever needs to be imposed on sending
messages.

• tick message: in regular intervals, the
environment itself sends a “tick” message to each
actor to drive its internal animation. The actor
should then iterate its internal simulation process
and act accordingly.

• modify parameter message: While arbitrary
invocations of the actor’s methods can be made,
modification of parameters are particularly
important. They happen very frequently and are
therefore made a primitive message type.

4 Constraints

Communication in our system is asynchronous, i.e.
if a message is sent, the sender does not wait for an
answer. If an answer is required, for example as a
result to a request, the receiver may send the answer
back in a separate message. This communication
scheme is employed so that the sender is not idle
waiting for the answer while the message is on the



way. If synchronous communication is necessary, the
sender still has the option to explicitly wait for the
receiver. While this is efficient, it makes
communication choreography difficult to implement.
We therefore extend the communication system with
a constraints mechanism.

Constraints can be defined on any parameter of the
actor’s data structure. An actor X can instruct another
actor Y to watch a constraint on one or more of Y’s
parameters. If the parameter is modified, the
constraint may be violated. Therefore, Y evaluates
the constraint (a Boolean expression), and if it is
found to be true,  Y sends a callback message to X
informing it of the new parameter value. X may then
take appropriate actions.

With this constraint mechanism it is not only
possible to constrain geometric relationships (e.g.,
keep a minimum distance between two objects), but
also any other kind of condition (e.g., keep the bath-
tube from overflow). An actor stores a list of all
constraints it sets up, and every time it makes an
update to a parameter, it checks for constraints
defined on that parameter and evaluates those that
apply.

5 Groups and worlds

If the receiver of a particular message is known, it
may be addressed directly as the recipient of the
message. If the same message is to be sent to
multiple recipients, it may be more convenient for
the user and more efficient for the environment to
have a way of sending the message only once, but
with multiple receivers. A grouping mechanism is
needed because actors need not only to address a
single other actor, but groups of actors. For example,
if an actor is shouting, everybody in the vicinity can
hear it. If the message was sent to all actors in the
system (or more specific, all actors on the server), all
actors need to examine it to find out whether it is
relevant for them, and most of the messages will be
unnecessarily sent, consuming bandwidth.

We attack this problem with group actors. Groups
can be built on a spatial or functional criterion. If the
group is implemented as a special actor, it can run a
particular application. Behavior can be attached to
the group actor, and it can send the results of the
simulation to all group members. For example, if the
group runs a roulette game, it can take bets from
players, and inform them of the result. All roulette
players would then be member in that group.

Groups can be built implicitly, or by explicit
joining. For application groups, it may be necessary
that an actor has specific capabilities. Our group
server can determine if the actor is suitable for
joining by the querying the class of the actor. For

example, a dance class group may require the
member to have feet. Humans, animals and other
actors qualify for membership by being subclasses of
“mobile being”. Actors that do not fulfill this
requirement may not join. In that way inconsistent
situation are avoided.

Groups can be persistent, or be built on the fly.
Sometimes a group may be required just for a single
message, such as firing a shoot in a particular
direction. Other cases, such as the roulette game,
may require the group to exist for a longer time, or
without any expiration at all.

6 Actor database management

The database is management is based on the spatial
arrangement of the data. Server connections are
based on neighborhood relation (every server
occupies a box-shaped region in the simulated
environment). A server’s region is again divided into
a regular voxel array (fig. 2). For every voxel, the
server keeps track of all contained actors. This is
similar to raytracing acceleration schemes like
[FTI86].

Actor
group

Representative's
viewing frustum

Fig. 2: A grid allows visibility culling and group-
based communications

Unlike objects in raytracing, actors change their
position over time, so the voxel data structure must
be updated if an actor moves over a voxel boundary.
The classification is based on bounding boxes for the
actor’s geometry.

This spatial data structure is used for efficient
computation. The first goal is to increase the
efficiency of message passing. Messages may be sent
to a particular actor, but more often, they are sent to a
group. Often group membership is based on presence
within a particular region of space, which can be
represented as an enumeration of voxels. The
message is then delivered to all actors associated
with these voxels. The number of actors in this group
is much smaller than the total number of actors, so
communication bandwidth is preserved.



The second goal is to minimize communication
with the client, that expects updates on the visual
representation of the environment as it dynamically
changes. Based on the camera parameters provided
by the client, the server determines the portion of the
environment that is visible to the client. Updates
need only be transmitted to the client if they lie
within the visible range or viewing frustum (compare
[Fun95]). Via the voxel array, the server has direct
access to those actors that have to be examined for
updates.

7 Implementation

We have developed a prototype implementation of
the system architecture outlined here. The software is
written in C++ under UNIX on SGI workstations.
The rendering portion is done in OpenGL and uses
the object-oriented modeling toolkit OpenInventor.
[SC92]. With this toolkit, efficient modeling of the
geometric portion of the actor, including animation
and interaction description, is possible. Currently the
whole environment is running on one server allowing
multiple clients to interact with each other and with
autonomous actors.

Each client provides simple mechanisms to move
its Avatar through the environment by sending
messages to the server. The appropriate portion of
geometry lying within the viewing frustum of the
Avatar is transported from server to client to update
the clients local scene description which is the basis
for real-time rendering. Simple animations are
carried out by the client independently from the
server.

The object-oriented behavior specification of actors
is done in Python [Ros93]. Python interfaces to
C/C++, so that those portions of the actor’s
behavioral methods that need efficient processing
(like access to its geometric data structure) can be
written in C++. For the specification of actor
behavior, Python is more than powerful, which
makes the construction of applications fast and
simple.

Because the actors behavioral description is given
in interpreted form (Python source), it can easily be
stored on the server side, transported across the
network, and reused by other servers. Messages
between actors are Python statements. This has two
major advantages: Messages can directly be executed
as method invocations of the receiving actor, and
messages can also be handled as normal data
structures (strings), that are easy to manage (logging,
network transport etc.). Furthermore, we are able to
modify actors and actor classes at runtime. We are
also able to transport actors as a whole over a

network in their Python form, which is important for
actor migration between environments.

The system is still an incomplete prototype that
will need refinement. In particular, we will have to
experiment with larger numbers of actors and
participants to see how well our design scales given
more demanding situations.

8 Conclusion

While current software architectures for virtual
environments allow interactive immersive multi-user
application, they suffer from limitations with respect
to performance, persistence of simulation data, fault
tolerance and ease of development.

Our system is aimed at the construction of a large-
scale distributed simulated environment. Continuous
simulation and user-defined simulations will help to
move a step toward the vision of a global
Cyberspace. A network of servers stores the
simulation data base and performs the simulations
steps. The data base is distributed using a geometric
criterion, every server is responsible for a region of
the environment. The items in the data base are
autonomous actors that communicate with each other
by message passing. An object oriented approach is
used to define an actor hierarchy. Actors can be
addressed in groups, so that applications make
efficient use of the message system.

Users connect to the server network by invoking a
client that monitors user action and communicates
with the server. The client presents the environment
to the user in an appropriate way. It also creates an
Avatar for the user inside the virtual environment,
thereby allowing the user to interact with other actors
and Avatars inside the VE. Future work will involve
more efficient communication of graphical data from
the server to the client. We will also run tests with a
larger number of users, and obtain quantitative data
on the performance of the system.
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