
- 1 -

On System Architectures for
Virtual Environments

Dieter Schmalstieg, Michael Gervautz
Institute of Computer Graphics

University of Technology Vienna, Austria
email: dieter|gervautz@cg.tuwien.ac.at

Abstract. In the last years, the number of virtual reality applications has dramatically
increased. Despite the huge effort that went into development, little foundation has been laid
for system architectures that embody clear concepts and software engineering methodologies.
We analyse a number of existing systems that illustrate what we believe are core concepts. A
taxonomy is developed that allows to characterize a virtual environment system, and we
attempt to formulate the state of the art in the field, proposing a design that we think
incorporates the key issues that have been identified.

1. Introduction
It has been pointed out [Appi92][Snow94] that that traditional symbolic user interfaces devices
limit the amount of information exchange between user and machine. We interact with the real
world through highly developed skills such as our visual system. Providing an interface that
involves these skills rather than artificially created interaction techniques has the potential of
dramatically increasing the usability of the medium computer.

It appears that some key technologies have recently become cost-effective, and so virtual
reality is extremely popular inside and outside the scientific community. To avoid confusion
and expectations that come from market hype, researchers have introduced the term virtual
environments (VE). Virtual environments should be interactive, three-dimensional simulations.
They require a number of techniques to be incorporated into a single software system:

• Multi-sensory Interaction: The user must be able to interact with the environment in
real-time. Although graphics alone are a major factor in VEs, the desired high level of
immersion is boosted by integrating devices that interact with the other human senses,
both for input and output. Output includes visual stereoscopy, 3D spatial audio, and
haptic display. Input includes hand and body tracking.

• Real-time 3-D rendering: Sensual response from the system must be immediate. Even
small delay (in the order of 0.1sec) or inadequate smoothness of the system’s output
easily destroys the feeling of immersion and therefore the goal of the virtual environment.
This places very high demand on the rendering hardware that is by no means adequate
for high-quality real-time rendering yet.

• Simulation: To step beyond interactive graphics demos that show off the vendor’s
hardware capabilities, serious simulation engines are necessary that allow to fill the
virtual world with meaningful content and create productive applications. The selected
simulation model determines how the core architecture of the VE software is structured,
and should therefore be treated most carefully.

ON SYSTEM ARCHITECTURES FOR VIRTUAL ENVIRONMENTS

- 2 -

Virtual Environments
Animation Interaction

Rendering Simulation Multi-Sensory I/O
Fig. 1: Virtual environment building blocks

These concepts are the major building blocks of virtual environment software [Fig. 1]. Most
people associate the term “Virtual Reality” with exotic I/O devices such as head-mounted
displays and data gloves. As can be seen, this is just a very small part on the lowest level of the
architecture.

Terminology
Unfortunately, the terminology used to describe virtual environments is not well-established.
The same expression is used with different meaning, and equivalent concepts are obscured by
multiple terms. Not all ambiguities can be resolved.

One of the most abused term is object. Every unit of discussion may be called so. We
therefore use the term “object” only in the strict object-oriented sense, denoting an
encapsulated union of attributes and functionality. The units that “live” in a VE are sometimes
called objects, sometimes entities, artefacts or actors. For our discussion, we choose artefact to
describe passive compound data-structures, and entities to describe active objects, driven by
built-in behavior or by the user. Participant is also used to describe users and/or applications,
which may or may not correspond to an entity.

Virtual environment (VE) is another expression frequently used ambiguously. Often the
term is used in interchangeably with virtual world (VW). An application may be equivalent to
VE and/or VW, or a VE/VW may be composed of multiple applications.

Distributed virtual environments can mean that the computational load is split among
several processors. Multi-user systems are always distributed in the sense that every user must
have at least a processor that does the rendering. We use term distributed computation not to
describe support for multiple users but rather functional decomposition and concurrent
execution of application-specific code. With concurrent computation we mean the
simultaneous execution of one particular piece of code by different processors, so that
pretermined update information need not be sent over a band-limited network.

Client-server models are often choosen as a network topology for distributed models.
Unfortunately, depending on the author the meaning of “client” and “server” is exchangeable.
In database transaction systems, the “big” computer is the server that stores all the data, and
the “small” PC requests it. In the X-Windows system, the “small” X-Terminal is the server, and
the “big” host that runs the application is the client. The same confusion arises in virtual
environment network models.

Quality Requirements
The market interest in virtual reality techniques is high and technology is evolving and

maturing rapidly. Thus virtual environment research should rather focus on software design to
provide a clean separation of tasks and layers. Quality requirements for such a software are
similar to those for conventional operating systems, among them are:

• Simplicity of use for non-skilled users: It should not only be easy for a naive user to use
the virtual environment, creating new worlds or entities should be just as simple. In

ON SYSTEM ARCHITECTURES FOR VIRTUAL ENVIRONMENTS

- 3 -

particular, changing or extending the world should not require any programming effort
(or at most using a very simple scripting language).

• The skilled programmer, however, should have access to the system on various levels
(scripting for prototyping, system calls for efficient implementation). A well-structured
application programmer’s interface is necessary.

• A library of ready-made modules should be supplied. These modules are not part of
the system software, but rather building blocks that can be used to implement often-
needed functions that the programmer otherwise would have to create himself. For
example, not every virtual environment may need collision detection, but if a world
designer decides to use it, it should be at hand.

• Rapid prototyping to explore new concepts: Virtual environment applications are a
very new development, and little is known about the factors that determine the quality of
such software. Experimentation is necessary to explore new presentation metaphors,
interaction styles etc. A quick development cycle is crucial.

• Scalability: the system should become more powerful as faster hardware becomes
available. This is non-trivial because fixed data-flow path in the application easily create
bottle-necks. The same application should provide high quality on high-end systems but
should still be useful on low-cost platforms.

• Platform independence and portability: Creating virtual environments is a major design
effort. The content of the environment should not be bound to a specific hardware setup.
System upgrades should not destroy existing application code.

• Support for multiple users and multi-tasking (more than one application at a time).
• Performance: Most virtual environments suffer from bad performance that hinders or

destroys immersion. Unfortunately, clean, layered software components interfer with
high performance requirements, because of the overhead involved.

2. Related Work
In this section we attempt to give an overview of virtual environment systems. For the sake of
brevity, we limit ourselves to those systems that contribute important software architecture
concepts.

BOLIO
An early system with a focus on animation rather than interaction is BOLIO [Zelt89]. BOLIO
allows for the rapid construction of animated virtual worlds. In order not to compromise
flexibility, no a priory object structure is given. BOLIO supplies geometric primitives; these
can be arbitrarily composited using constraints. The system also supplies a set of procedural
tools such as inverse kinematics, six-pod locomotion, collision detection or a device driver for
a data glove. Using these building blocks, arbitrary environments may be constructed.

The application is single-threaded and monolithic, and so the communication among the
entities can be implemented using procedure calls. The animation is executed in a single loop
that calculates new position and orientation of every artifact, enforces constraints, and then
performs rendering. Dynamic simulation is executed on a per-entity base. The system is often
referred to as having initiated some major direction of research in virtual environments.

ON SYSTEM ARCHITECTURES FOR VIRTUAL ENVIRONMENTS

- 4 -

However, some recent technological advances such as object-oriented modeling were not
available at the time.

MR
Being one of the earlier systems, (MR) Minimal Reality is a toolkit for VEs. Shaw et. al.
[Shaw92] [Shaw93] first introduced the decoupled simulation model. This term describes the
functional decomposition of the system, allowing components to execute independent of one
another, interating at maximum speed. Thus components cannot slow down each other; for
example, the frame rate for rendering should be higher than the update rate of a physically
based simulation. MR uses four components: Presentation (rendering), interaction (handling of
I/O devices), a geometric model database (that converts data into a form amenable for output),
and a computation (simulation) task. These components can be distributed over multiple
processors on a network.

RB2
RB2 (Reality Built for Two) [Blan90] appears to be the first widely recognized multi-
participant VE. It is a commercial system combining a modelling tool on a Mac with a
rendering process on one or more SGI workstations. A server process on a Mac handles I/O
devices and broadcasts the scene updates to the rendering hardware. A visual programming
system allows convenient specification of behavior. The system is capable of handling changes
to behavior constraints and interaction mechanisms at runtime.

VUE
VUE (Veridical User Interface) [Appi92][Code92] is composed of a processes running a VE
application, devices and a central dialogue manager. Each device is controlled by a server
process. Style and content of the VE are clearly separated. The device servers and processes in
the VE application communicate with the dialogue manager, which coordinates concurrent
events.

Interaction techniques are represented as dialogues. A dialogue is hierarchically structured
into subdialogues. This technique allows dynamic remapping of I/O devices, and interaction
techniques by replacing subdialogues in the hierarchy. Further flexibility is achieved by
distributing application processes and device servers over multiple processors and dynamically
reconfiguring processes.

VB2
Virtuality Builder 2 (VB2) [Gobe93] models an application as a group of processes using
asynchronous messages to communicate. A central application process is responsible for the
VE and runs the simulation. It also deals with the messages sent by the processes that manage
input devices. Interaction paradigms include direct manipulation, gestures and simulated tools.

Dynamic system state is expressed in active variables that can monitor their value as it
changes over time. Demons are activated each time a variable changes its value and can be
used for procedural simulations such as inverse kinematics. Hierarchical constraints can be
defines on the variables, and for each simulation frame a constraint solver enforces the
constraints.

ON SYSTEM ARCHITECTURES FOR VIRTUAL ENVIRONMENTS

- 5 -

DVS
DVS [Ghee94] is a commercially available system. Entities in DVS are called actors and are
implemented as an independent processes. Special purpose processes are dedicated to deal
with user I/O, rendering, or collision detection. DVS maintains a shared database, and actors
keep a local copy of relevant data. A central director propagates updates that one actor makes
locally to all other actors that have expressed interested in the change.

SIMNET, NPSNET, and VERN
SIMNET (Simulator network) [Calv93], NPSNET (Naval Postgraduate School Network)
[Mace94][Zyda92], and VERN (Virtual Environment Realtime Network) [Blau92], are a
family of large-scale combat-training oriented simulations. The aim of these systems is to
support a large number of participants; successful demonstrations of around 300 simultaneous
players have been reported.

Each local host has a full copy of the database (combat terrain), and the entities
communicate over a wide-area network using the standardized protocol DIS (distributed
interactive simulation). Updates are sent over the network using IP-mulicast. The message
system is limited to information relevant to the training application (packets for position
change, granade launch etc.). Dead reckoning is used to locally simulate the remote
participants’ behavior, updates are sent only if a predefined error treshhold is exceeded.
However, participants may join the running simulation at any time, and in the absence of a
central server, everyone has to broadcast full state information in regular intervals to inform
the new participant. A single participants’ software is decomposed into functional units
executing in concurrent processes, such as separate rendering and networking processes.

SIMNET was developed to allow special simulator machines running on custom hardware
to interconnect. NPSNET is the “low-cost” version of SIMNET, running on standard SGI
workstations. VERN is a successor to SIMNET that realises a more rigorous object-oriented
design implemented in C++. Otherwise, the architectural concepts are largely the same.

ALICE & DIVER
ALICE [Paus93][Goss93] is a rapid-prototyping system for virtual reality. The system is

not intended at the creation of a large and consistent virtual world, but rather at the quick
implementation or modification of single simulations by both skilled and novice users. The goal
is to bring the VE technology to non-computer scientists that can do research in their domain
utilizing the potential of VEs.

ALICE allows the definition of entities and coding of simulation and interaction. Scripting
is done in the interpreted object-oriented language Python, that is very simple to learn.
Rendering is decoupled from simulation by using a separate rendering process, DIVER.
Beyond that, distribution or support for multiple users is not implemented.

DIVE
The DIVE (Distributed Interactive Virtual Environment) system is based on a distributed
database containing artifacts. ASrtifacts are passive, but a finite state machine may be attached
to an object to give it behavior. The database is partitioned into worlds.

Each participant has a replica of the database. A participant is either a human or an
application. Participants may enter or leave the world dynamically. Participants are modelled as
processes that communicate by making concurrent updates to the shared database and by
sending messages to each other. Internally, each process runs multiple lightweight threads to

ON SYSTEM ARCHITECTURES FOR VIRTUAL ENVIRONMENTS

- 6 -

achieve a functional decomposition. A participant may enter and leave DIVE dynamically.
Participants are present in exactly one world, but may switch worlds dynamically.

BRICKNET
BRICKNET [Sing94] allows the creation of virtual environments comprised of objects that
embody their graphical, behavioral and network properties. The worlds are defined in the
object-oriented interpretive language Starship. Objects can be added, deleted and modified at
runtime.

BRICKNET consists of a network of servers that allow clients to connect. Clients cannot
change their server, but they can share information across servers. In particular, they can lease
out objects to other clients. Clients communicate by messages routed by the servers. A world
object acts as a container for other objects (Solids), connected users, and laws for the world. A
clients runs one world, but more than one user can be it that world at a time. Because artifacts
can be shared, the content of multiple worlds need not be completely disjunct.

VEOS
VEOS (Virtual Environment Operating Shell) [Bric90][Bric94] has a very rigorous structure.
It is capable of supporting multiple processors and multiple users with a very large amount of
flexibility. A virtual environment is composed of entities. An entity is not only an object
participating in the environment, but can also be an I/O-device, or a composition of objects and
devices. Composition is hierarchical, so ultimately, an entity is equal to a world. A software
structure for the creation of entities is provided, enabling the entity to access a shared database
as well as sending and interpreting of messages. Every entity is mapped onto a process. The
only means of a process to communicate with another process is by asynchronous messages.
Thus it is relatively simple to distribute the communication among several processors for load
balancing.

XLISP is used both as a scripting language and as a message format. As an interpreted
language, XLISP is very suitable for dynamic configuration of the environment; it is even
possible to send program code from one entity to another and make the receiver “learn”.

AVIARY
AVIARY [Snow94] represents the environment as a collection of communicating autonomous
objects executing concurrently. Some objects represent artefacts in the virtual environment,
other object provide functional abstraction such as collision detection, I/O handling etc. A user
object will combine information from a number of input objects, and interpret them.

A world is a container object managing its contained objects. Attributes can also be
defined on a per-world base, for example mass for physically based simulation. Objects
communicate by asynchronous message passing. They can broadcast messages to other
messages in the world via the world object. Messages contain attribute type information, so the
content of the message can be interpreted by the receiver. A name server helps objects find one
another on the net, and also registers message types so two objects that understand the same
message can communicate, even if they were implemented completely independent. However,
it is unclear how objects negotiate the semantics of a particular message.

An object may either be implemented as a heavyweight process or as a lightweight object
managed by an object server. This saves resources and allows load balancing. Objects can enter
and exit the environment at any time, and new object types can be created dynamically. A
world manager acts as a broker of available services.

ON SYSTEM ARCHITECTURES FOR VIRTUAL ENVIRONMENTS

- 7 -

VRML
The Virtual Reality Modeling Language (VRML) [Ball95] is a very recent development still in
exploratory stage. It is inspired by the World Wide Web (WWW). WWW servers provide a
world-wide distributed information structure. Using the uniform resource locators (URL), a
user can access information without being concerned about the physical location.

VRML attempts to extend this idea to virtual reality, thus forming a three-dimensional
“cyberspace” [Gibs83]. Server register a part of the cyberspace, similar to a human buying real
estate. The cyberspace protocol maps 3-D locations to servers, and the world information is
transferred to the client (user) for browsing and exploring. Hyperlinks can be used to connect
to other servers and to access conventional (WWW) information such as 2-D images. Using
VRML, virtual environments become completely platform-independent.

The concept of a markup language that defines context rather than appearance is extented
to 3-D scene descriptions in VRML. “Real” 3-D models can be transmitted using a standard 3-
D file format such as SGI’s Inventor. Markup commands define very high level description
such as “a tree”, the actual appearance of these artefacts is determined by the local client who
consults its internal database. This is necessary because of the limited bandwidth available on
long-distance Internet connections. A scripting language is planned to be able to describe and
transmit objects with internal behavior.

3. Discussion

Level of distribution
Virtual environment software requires real-time simulation and rendering and is therefore
extremely demanding in the computational resources. It is therefore logical to employ some
kind of concurrent computation model to resolve the computational bottle-neck; however,
system complexity increases as well. Some models of distribution may be distinguished:

• Single-threaded: polling of user interface devices, simulation and rendering are all
performed in a single loop. Practically all systems have abandoned this model that is
simple to implement, but not powerful enough for advanced applications.

• Single-user, multi-threaded: This model has been called the decoupled simulation
model. The key idea here is to assign parts of the application to dedicated threads (e.g.
simulation, rendering) that execute concurrently and synchronize by interprocess
communication (shared memory, low-level network protocols). Each dedicated thread
maintains its own loop, so the update rates of the threads are independent. This allows
maximum performance for each subsystem, which is crucial for demanding applications.
For example, the rendering loop must always deliver a minimum of about 15 frames in
order not to destroy immersion, however, a physically based simulation may run at a
much slower update speed.

• Multi-user: Recent systems allow several human participants to be present
simultaneously and to interact with each other. The entertainment industry is very fond
of this concept, and it is also very promising for computer-supported cooperative work.
Since every user has to have a console of his own, a local area network is necessary. The
network load may quickly become a problem, because large amounts of data have to be

ON SYSTEM ARCHITECTURES FOR VIRTUAL ENVIRONMENTS

- 8 -

transmitted in real time. Other non-trivial issues are distribution protection and
consistency.

• Multi-user, geometrically disperse: In the large, multi-user environments have a
somewhat different quality. Large number of user (several hundred) imply a potential
low-bandwidth wide-area network that is quite different too handle than a simple close-
coupled LAN. Furthermore, a large number of user cannot easily be organized, so the
system must have some kind of self-administration mechanism that allows it to function
in the presence of all kind of errors. Users must be able to login and leave the running
simulation.

• Multi-world: In addition to support for multiple users, multi-world environments
implement of “parallel universes”, that is, more that one world is simulated at a time. The
multiple worlds may have completely different contents, rules, and interaction styles.
Usually concurrent worlds are each run on a separate processor or at least threads.
Migration of the user from one world to another is implemented in the form of portals,
the VR equivalent of links in hypertext systems. Migration of entities in general from one
world to another may or may not be possible; if entities may migrate they must be able to
adept to a possibly different set of rules in the new world, which is in general is a hard
problem.

Level of flexibility
A VE system architecture can be characterized by its level of flexibility. Existing systems

can be assigned to one of the following groups:
• Monolithic application: Early systems were mostly concerned with getting things to

work at all. Implementation was done in an ad-hoc way without spending too much time
on clean separation of layers or concepts. Run-time framework, application and
interaction paradigm were tightly integrated to achieve acceptable performance. Some
aspects such as the representation of the user are predetermined by the nature of the
application.

• Toolkits: A simple way to create a flexible software foundation is the toolkit approach.
A number of modules (often a class hierarchy) is provided that provides the programmer
with high-level tools (such as an efficient rendering engine, intelligent device-drivers for
3D-input or a network management module) from which to build an application. Still,
the structure of the application is up to the programmer, although somewhat biased by
what is (easily) possible given the set of tools at hand.

• Fixed-feature environment: Especially in the low-cost market, virtual environment
come in the form of ready-made applications. The feature set is fixed, although usually
there is some kind of scripting mechanism. It is more or less predetermined how the user
may manipulate the world. The programmer’s task is to create the world by specifying
appearance and properties of the entities. Usually there is little influence on the
interaction style or the mechanisms used to run the simulation. The entities’ behavior is
fixed, they are passive because the central simulation can calculate everything for them.
Entities are just passive data containers.

• Programmable environment: Somewhat more powerful is an architecture that allows
new entities to be programmed, specifying all their properties and their dynamic
behavior. The entities are active, that is, they contain code that allows them to
communicate with one another and to actively participate in the simulation. The entities
are active in the sense that they not only consist of data that is being manipulated by the

ON SYSTEM ARCHITECTURES FOR VIRTUAL ENVIRONMENTS

- 9 -

world simulation or the user, but have a set of user-specified behaviors defining the way
the object interacts with other entities in the simulation. It should also be relatively
simple to alter the default behavior of the world itself (e.g. introduce gravity).

• Dynamic simulation environment: Still more powerful is an environment that allows
the creation and manipulation of entities and the configuration of the world at runtime.
Ideally, the virtual environment is simulated at a server that features not only dynamic
creation of entities but also accepts the specification of new entity types . The concept of
a world in such a system is true because the content of the simulation evolves over time.
Users must be able to log into this environment and leave it after a time. The data in the
environment must be persistent. This is of course the most demanding form of virtual
environment, and all kinds of incompatibility problems may arise from the unspecified
and unbound nature of such a simulation.

Distribution and flexibility are neither completely orthogonal, nor are they an exhaustive
characterization, but they form a taxonomy that describes most aspects of the current systems
reasonably well.

State of the art
A virtual environment should support multiple users. Therefore it is inherently distributed.
Conceptually, a virtual environment can be viewed as a database shared over a network (LAN
or WAN). The actual implementation is very often done by full or partial local replication.

The communication system is message-based. An object broadcasts local updates via
messages, usually with some kind of IPC mechanism, because most systems are distributed and
heterogeneous. Additionally, messages that do not contain information but carry some
intention (e.g. requests) are sent from one entity to another.

Efficiency is increased by (1) allowing entities to register interest in a particular category
of message, so that the number of messages an entity receives is decreased; (2) performing
some sort of concurrent computation to predict the behavior of remote entities (e.g. dead
reckoning).

From the environment point of view, applications and users should be treated the same,
here they are called entities. Decoupled simulation can be used to achieve distribution within
entities (e.g., separate rendering and communication into lightweight threads).

The virtual environment is decomposed into worlds. A world is decomposed into
artifacts. Worlds need not be disjoint. Active entities, in particular users, can migrate from
one world to another, either via portals or by leaving the volume of one world and entering
another.

Applications can be different from artifacts, but then artifacts are passive. In this case,
artifacts can be equipped with some kind of behavioral mechanism, but this complicates the
implementation. Often object-oriented model is used, so passive artifacts and behavior can be
encapsulated, hiding an application inside an artifact.

Some applications are better implemented on a per-world base (such as gravity). In a
flexible system, artifacts and worlds are independent, and so their requirements can be
contradictory. A proposal is to have the world maintain some state information for contained
artifacts [Hubb93], but this is not a universal solution. An alternative solution [Bric94] is to
make artifacts programmable and hierarchical, so that artifacts, applications, and worlds are the
same.

A powerful system does not come in the form of a toolkit that can be used to implement a
particular application, but as a server that is permanently running, similar to a WWW or MUD
server. This server (or servers) can easily become performance bottlenecks. However, if the

ON SYSTEM ARCHITECTURES FOR VIRTUAL ENVIRONMENTS

- 10 -

network is peer-to-peer instead, state cannot be kept in a server. The environment is running as
long as there are any participants. In regular intervals, full state information has to be broadcast
by all entities to inform new participants, which can create a high network load.

In addition to allowing entities to enter and leave the environment at will and migrate
between worlds, a system is powerful if it allows creation and deletion of artifacts at
runtime, and the definition of new artifacts at runtime. A system that is built completely in
C cannot support this well enough. An interpreted scripting language is needed. The power
of the scripting language largely determines the power of the environments that can be built
with a particular system.

For efficiency reasons, it is convenient to have both light- and heavyweight objects at
hand. Lightweight objects can be scripted or otherwise attributed with some kind of simple
behavior, whereas heavyweight object run in separate processes, driving computationally
intensive parts of the system. Dedicated objects such as I/O device drivers are examples. These
objects are not artifacts, but it is convenient if they blend with the other simulation objects.

If the architecture is flexible enough, it may support load balancing. This is hard, because
it is hard to merge automatic load balancing (requiring a uniform communication mechanism)
and data path shortcuts implemented for performance reasons, e.g. a direct fed from a head
tracker to rendering.

4. Conclusion
We have presented the current state of the art in virtual environment system architectures.
Virtual environments are a relatively new field and pose high demands on current hardware and
software. Multi-sensory interaction, high-quality 3-D rendering, and flexible dynamic
simulation must be combined at real-time rates. Distributed heterogeneous networks are
needed to deal with the high computational load and support multiple simultaneous users.

Virtual environments combine techniques from computer graphics, networks, modeling,
distributed computation, user interfaces and human-computer interaction. Quality requirements
include simplicity both in use and development, rapid prototyping, scalability, platform
independence, support for multiple users and applications, and high performance. Early ad-hoc
designs are not sufficient for today’s virtual reality applications. These requirements can only
be met using a structured approach.

From a discussion of the most influential existing systems, we identity two taxonomies that
characterize virtual environments. These are the level of distribution and the level of flexibility.
State of the art systems are both highly concurrent and flexible. They support multiple users on
a wide-area networks and multiple worlds. Participants can dynamically enter and leave the
environment and migrate between worlds. New artifacts and artifact types can be defined at
runtime. Arbitrary behavior can be attributed to artifacts.

Performance scalability requires load balancing and local prediction. Decoupled simulation
allows concurrent execution of functionally independent modules. The underlying network
communication model determines the flow of information through the system and has a large
impact on the implementation.

As a conclusion, a system architecture that meets all or most of the issued that are
addressed in this paper should be well-equipped for tomorrow’s virtual reality application.

ON SYSTEM ARCHITECTURES FOR VIRTUAL ENVIRONMENTS

- 11 -

References
[Appi92] P. A. Appino, J. B. Lewis, L. Koved, D. T: Ling, D. A. Rabenhorst, C. F. Codella: An

Architecture for Virtual Worlds. Presence, Vol. 1, No. 1, pp. 1-17 (1992)
[Ball95] G. Ball, A. Parisi, M. Pesce: VRML Draft Specification 1.0. Technical Report,

http://www.eit.com/vrml/vrmlspec.html (1995)
[Blan90] C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko, M. Oberman, M. Teitel: Reality Built

for Two: A Virtual Reality Tool. SIGGRAPH Symposium on 3D Interactive Graphics, pp. 35-38
(1990)

[Blau92] Blau B., Hughes C. E., Moshell J. M., Lisle C.: Networked virtual environments. Computer
Graphics (1992 Symposium on Interactive 3D Graphics) , Vol. 25, No. 2, pp. 157-160 (1992)

[Bric90] W. Bricken: Virtual Environment Operating Shell: Preliminary Functional Architecture.
Technical Report TR-HITL-M-90-2 (1990)

[Bric94] W. Bricken, G. Coco: The VEOS Project. Presence, Vol. 3, No. 2, pp. 111-129 (1994)
[Calv93] J. Calvin, A. Dicken, B. Gaines, P. Metzger, D. Miller, D. Owen: The SIMNET virtual world

architecture. Proceedings of VRAIS, pp. 450-455 (1993)
[Carl93a] C. Carlsson, O. Hagsand: DIVE - A platform for multi-user virtual environments. Computers and

Graphics, Vol. 17, No. 6, pp. 663-669 (1993)
[Carl93b] C. Carlsson, O. Hagsand: DIVE - A multi-user virtual reality system. Proceedings of VRAIS, pp.

394-400 (1993)
[Code92] C. Codella et al.: Interactive Simulation in a Multi-Person Virtual World. Proceedings of

SIGCHI, pp. 329-334 (1992)
[Ghee94] S. Ghee, J. Naughton-Green: Programming Virtual Worlds. SIGGRAPH Course, No. 17 (1994)
[Gibs83] W. Gibson: Neuromancer. Novel (1983)
[Gobe93] E. Gobetti, J. Balaguer, D. Thalmann: VB2 - An Architecture For Interaction In Synthetic

Worlds. Proceedings UIST, pp. 167-178 (1993)
[Goss93] R. Gossweiler, C. Long, S. Koga, R. Pausch: DIVER: A Distributed Virtual Environment

Research Platform. Symposium on Reasearch Frontiers in Virtual Reality (1993)
[Hubb93] R. Hubbold, A. Murta, A. West, T. Howard: Design issues for virtual reality systems. 1st

Eurographics Workshop on Virtual Environments (1993)
[Mace94] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, S. Zeswitz: NPSNET: A Network

Software Architecture for Large-Scale Virtual Environment. Presence, Vol. 3, No. 4, pp. 265-287
(1994)

[Paus93] R. Pausch, M. Conway, R. DeLine, R. Gossweiler, S. Miale: Alice and DIVER: A software
architecture for building virtual environments. Proceedings of INTERCHI, pp. 13-14 (1993)

[Pesc95] M. Pesce, P. Kennard, A. Parisi: Cyberspace. Technical report,
http://vrml.wired.com/concepts/pesce-www.html (1995)

[Ragg95] D. Raggett: Extending WWW to support Platform Independent Virtual Reality. Technical Report,
http://vrml.wired.com/concepts/ragett.html (1995)

[Shaw92] C. Shaw, J. Liang, M. Green, Y. Sun: The Decoupled Simulation Model for VR Systems.
Proceedings of SIGCHI, pp. 321-328 (1992)

[Shaw93] C. Shaw, M. Green: The MR toolkit peers package and experiment. Proceedings of VRAIS, pp.
463-469 (1993)

[Sing94] G. Singh, L. Serra, W. Png, Hern Ng: BrickNet: A Software Toolkit for Network-Based Virtual
Worlds. Presence, Vol. 3, No. 1, pp. 19-34 (1994)

[Snow94] D. Snowdon, A. West: AVIARY: Design Issues for Future Large-Scale Virtual Environments.
Presence, Vol. 3, No. 4, pp. 288-308 (1994)

[Zelt89] D. Zeltzer, S. Pieper, D. J. Sturman: An Integrated Graphical Simulation Plattform. Proc.
Graphics Interface ‘89, pp. 266-274 (1989)

[Zyda92] M. Zyda, D. Pratt, J. Monahan, K. Wilson: NPSNET: Constructing a 3D Virtual World.
SIGGRAPH Symposium on 3D Interactive Graphics, pp. 147 (1992)

