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Abstract 
STORYBOARD is a scripting language for an interac- 

tive computer animation system. The language was 
designed to be simple in its use, to support various 
animation techniques provided by the animation environ- 
ment, and to support procedural abstraction of animation. 
It is easily expandable and lends itself to the integration 
of interactive features of the system. 

Some of the important aspects of design and imple- 
mentation are discussed, like the time-table like structure 
of programs, the embedding of a message mechanism into 
the language, animation data types and their application, 
concurrent execution and local time, and recompilation of 
an animation specified interactively into a script. 

Keywords: computer animation, scripting lan- 
guages, actors, controllers, local time, subscripts, linear 
transformations, time dependent data types 

1. Introduction 

When using a programming language for computer 
animation - a scripting language - the animator is re- 
quired to write a program to define a set of actions. Many 
animators are rather artists than programmers and there- 
fore prefer using an interactive system with a graphical 
user interface. However, there are significant advantages 
of scripting languages over interactive systems, especially 
flexibility and diversity of algorithmic notation (see 
also [28]). 

Because both interactive and scripted animation has 
its distinct areas of application, a system aimed at 
integration of animation techniques should not only pro- 
vide multiple techniques to work with, such as dynamic 
simulation [26] or behaviors [ 131, but also multiple means 
to specify the animation, either interactively or by a 
program. 

We present the scripting language STORYBOARD [211 
that is part of the animation system VAST (Vienna 
Animation System Technology) [lo]. This language was 
designed to fulfil a number of needs that could directly be 
derived from its area of application and its system 
environment: 

0 It should be easy to use. Animators are often 
unskilled in programming and are easily deterred by 
a complex scripting language that requires 
experience in program design rather than in 
animation design. The syntax of the language should 
be simple and natural, and the language elements 
such as built-in functions and data types should be 
pow erfu 1. 
It should support different animation techniques. 
All the animation techniques that are embedded in 
the system must be accessible via the language. A 
number of basic and auxiliary data types are 
necessary to allow for efficient communication with 
the animation modules. Furthermore, the language 
must lend itself easily to extensions as new animation 
techniques are added to its host system VAST. 
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It should be suitable for the integration of 
interaction. A paradigm of VAST is interactivity, and 
from this rises the problem of how changes made 
interactively can be reflected in the script that 
represents the animation. 
It should offer opportunities for procedural 
abstraction. Animations can quickly get complicated 
as the number of participants grows, and the only 
way for the animator to keep track is to introduce 
subdivisions and hierarchies. Besides, for the sake of 
productivity, reusability of animation parts is as cru- 
cial as reusability of software modules. The notion of 
time should be flexible so that parts of the animation 
can easily be altered in the time domain without 
affecting the rest of the animation [22]. 

2. Concepts of scripting languages 

First we will give an overview of the essential con- 
cepts that can be found in scripting languages. As stated 
in [Breen 19871, the "object-oriented paradigm is an ad- 
vantageous, useful and natural concept" for computer 
animation. Therefore most computer animation systems 
are more or less object-oriented. In such systems, objects 
communicate with each other via messages. This mes- 
sage mechanism is also used if entities execute 
concurrently and synchronisation is needed. Therefore 
animation systems and languages based on the 
actors/scripts paradigm must provide a message 
mechanism. Almost all known animation languages have 
such a mechanism, cf. [3], 1191, [231, [ill, [81, [41. 

Animations describe scenes composed of visible enti- 
ties, and their changes over time. Such entities in 
computer animation are generally called actors [24], a 
term that suggests coherence of computer animation and 
theater/movie and stresses the active role (lat. agere - to 
do) such objects play in computer animation. Besides, the 
notion of "actors" matches the animator's self image as a 
"director" [13]. The term actor is used in robotics and 
artificial intelligence in a similar way [ 13. 

[ 141 develops a theory about entities he called actors. 
He defined an actor as an object that can send or receive 
messages. All elements of a system are actors and the only 
activity possible in the system is the transmission of mes- 
sages between them. Actors form a natural level of 

abstraction that is suitable for the object-oriented 
approach. Besides, animation often involves behaviors or 
goal driven efforts. Some researchers try to apply methods 
of artificial intelligence to computer animation to supply 
actors with methods to solve the problems the actors are 
confronted with [20]. 

While actors can only execute simple tasks, a script 
controls the animation on a very high level. It fulfils a task 
similar to the process manager in a multitasking operating 
system. The script creates and deletes actors and triggers 
specific events. Such events are often called cues. The 
script and the actors execute concurrently. Script elements 
can be found in [191, [251, [41, [201. 

The code to evaluate time-dependent differential 
functions frame by frame can quickly become very un- 
pleasant to write and maintain. To overcome this 
restriction, new data types, that may best be described as 
time dependent functions, are introduced to help the 
animator. The value of a such a variable may change over 
time. Examples for this concept are newtons [19], 
animated basic types [23],' or articulated variables [ 181, 
~ 5 1 .  

3. The animation system: VAST 

VAST (Vienna Animation System Technology) [ 121 
[lo] is an interactive animation system that is able to 
integrate and combine various animation techniques like 
keyframe animation, scripting, physically based and be- 
havioral animation. The system is based on objects that 
communicate with each other through message passing. 
Basically there are two different types of objects in VAST. 

Actors appear in the animation. An actor is able to 
send and receive messages and to react on such mes- 
sages. Actors can be simple mass points as well as 
rigids, kinematic chains, deformable objects, etc. 
Controllers influence the animation. The main task 
of a controller is to send messages to actors to change 
their motion, shape, or non-geometric properties. 
Controllers are usually not visible. They contain dy- 
namic data, the description of the motion, or a behav- 
ior of one or more actors. Separating the controlling 
mechanism from the actors provides a flexible envi- 
ronment in which different controlling mechanisms 
can easily be implemented and integrated. 
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An example for a simple controller is a spring that 
controls the distance of two objects. Other examples 
for controllers are dampers, kinematic and dynamic 
constraints, or input devices, which also can be con- 
trolled by the animator. Scripts are also controllers. 
An animation in VAST is calculated incrementally: 

For every frame animated objects (actors and controllers) 
send messages to each other. Each object has its own mes- 
sage buffer to store the incoming request messages during 
one time step. When all messages are sent, the objects 
react to these messages. In case of multiple messages to 
one object, a priority mechanism decides which messages 
are considered. It has to order the messages, possibly dis- 
carding irrelevant ones, or combining others (e.g. sum- 
ming up forces). 

VAST is implemented in C++, defining a broad 
hierarchy of animation objects. The animated objects are 
the key to the integration of multiple animation techniques 
into VAST, [Fig. 11 gives an overview of the object hierar- 

tends PASCAL, ASAS [19] that extends LISP, or ML [18] 
that is close to C in its syntax. While these approaches are 
certainly powerful, they lack simplicity. LISP is definitely 
not the language of choice for artists who work as com- 
puter animators. 

The problem with these languages is that they are 
ment as a toolkit upon which the animation techniques 
can be built. The person who implements the module that 
processes the animation technique (e.g. inverse kinematics 
or particle systems) is the same person that uses this 
module to produce animation. The disadvantage of this 
approach is obvious: The animator has to be skilled in 
both implementation and artistic animation, which is 
usually not the case. 

For this reason we think that the concept available in 
most commercial software is superior: The functions of a 
system can be accessed by a simple language (often coined 
"macro" language) that can only deal with existing 
animation modules but neither create new modules nor 

Articu latedobject 
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Fig. 1 : Excerpt from the object hierarchy currently implemented in VAST 

chy in VAST. The hierarchy splits into two sub-trees. the 
actor sub-tree and the controller sub-tree. A member of the 
latter is a "script" (= script controller) that is discussed in  
the section 6.  

4. The STORYBOARD language 

Many of the animation languages that have been pro- 
posed so far are extensions to existing general purpose 
programming languages, such as M I R A - ~ D  [23] that ex- 

modify the internal behavior of existing modules. An 
option is to create "virtual" new modules by combining 
existing ones, but this can be achieved on a very high 
language level. In that way, we introduce a "two-class- 
society" among people working with the system: The 
technical animators (or programmers) develop new - 
technically complex - animation modules in the system's 
native language (C++), and the artistic animators use this 
modules in the high level animation language 
(STORYBOARD) to create animations without the need to 
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know about how a given animation module works 
(cf. [23]). 

Such a language has to be really natural in its use. 
The general idea of a STORYBOARD script was to resemble 
the structure of an exposure sheet in movie production or 
a time-table in everyday life. It is merely a list of points 
of time associated with one or more statements that are to 
be triggered at that moment. 

AT 1 : statementl; statement2; 
statement3; 

AT 3 : statement4; 
AT 3.5: statement5; statement6; 

Inside of such an AT-construction the statements are 
executed in the order given. This is important because the 
execution of one statements (e.g. an assignment) may 
affect the next one. 

The central type of statement in STORYBOARD is the 
message statement. The message defined by those state- 
ments are sent to other objects at the appropriate time. 
This is the way a script sets up and controls an animation. 

The message statements are implemented in the form 
of simple command sentences that are inspired by natural 
language. The subject of the sentence is addressed by a 
name, followed by the command verb and objects com- 
pleting the command sentence (these are objects in lin- 
guistic sense, not in OOP terminology!). Comments 
embraced in single quotes (e.g. comment ') may be used 
asfil l  words to bring a message statement even closer to 
natural language. 

In the example given next, the parameters of a mass 
p i n t  are set. set is the message name, position is the 
label for position and velocity is the label for velocity. 

VAR MASSPOINT masspointl; 

AT 12 :  masspointl set position 'to' 
'variable declaration' 

[O,O, 01 'and' velocity 'to' [O,O, 01 ; 
Special messages are reserved to tell objects to be- 

come visible or invisible: appears and disappears. 
AT 13: masspointl appears; 

The time-table like program structure consisting of 
message "sentences" is easily comprehensible by both the 
animator (who writes the script) and by the compiler (who 
must be capable of processing it). Let us examine a typical 
message statement like the one given in the example 
above: Objects participating in the animation are declared 
as variables in the script, so the subject of the message is 

addressed by a variable name. The verb (like "set") is a 
method in object-oriented terminology, and the sentence 
objects are the parameters for the method. Unlike most 
programming languages, the order of parameters is free. 
To avoid ambiguities, parameters are preceded by a pa- 
rameter label that is unique for that method and allows 
type checking to be performed upon the expression that 
follows the label. 

Data types 

The animation objects (actors and controllers) are 
implemented in STORYBOARD in the form of data types. 
Creating a new object is done by declaring it as a variable, 
and communication with these objects is established by 
sending messages. In addition to those object data types, a 
number of primitive data types has been added. With these 
data types basic programming tasks can be carried out, 
like calculations and assignments. The results can then be 
used as parameter values for messages. The basic data 
types are reals, booleans, 3D vectors, quaternions 
(useful for rotations), and strings. 

Some data types are specially designed for computer 
animation: linear transformations (for the definition of 
simple movements) and anireals (a time-dependent 
numerical type), see below. 

Programmed animation 

The field of program level animation as defined 
in [28] is easily covered by the scope of our script 
language. In addition to the language elements that have 
already been given, it is possible to use conditional 
statements of the form 

I F  condition THEN. .. ELSE. .. E N D I F ;  

L O O P . . .  E X I T  I F  condition; ... ENDIF; 
and loop statements of the form 

to enable efficient programming. 
Furthermore, some special data types for keyframe 

animation have been introduced: anireals and linear trans- 
formations. 

Anireals 

Time dependent data types have been adopted in the 
form of anireals [9] (short for animated reals). Anireals 
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are a superset of normal real numbers. They have the 
same syntax as reals and behave exactly like reals do, with 
the exception of the possible dependency on time. Time is 
denoted with the keyword TIME. 
ANIREAL a, b; 
a := SIN(5); 
b := 23 * COS(T1ME) + a; 

Anireals are compatible with reals. Reals and 
anireals can be used together in numerical expressions, 
but the result is always of type anireal. Therefore an ex- 
pression containing one or more anireals cannot be 
assigned to a real. 

To make use of an anireal, an anireal valuator is re- 
quired. An anireal valuator is a controller that evaluates 
an anireal and modifies a specific property of an animated 
object according to the result. The anireal valuator 
executes completely independent from the script that 
creates it. Once the anireal valuator is told to send mes- 
sages to a particular object, the controller does so continu- 
ously until it is told to stop. 

To create key-frame animation, a good way is to de- 
fine the position as a function dependent on time - an 
anireal. The anireal is created by the script, then passed to 
an anireal valuator together with the order to supply an 
internal state variable of the object to be guided continu- 
ously with the time-variant value. This step is called 
"coupling". From the moment of coupling, the animator 
does not have to care any more about that particular part 
of the animation. The system takes care of this part of the 
animation, that goes on concurrently with the other parts. 
Of course the object also can be decoupled from the 
valuator again. In the following example, a sphere's mass 
is continuously incremented according to the square of 
time. The important statement is the message couple 
that links the anireal valuator to the sphere (OBJECT 
indicates the target object and KEY "mass" indicates 
what property of the target to manipulate). 
SCRIPT Heavysphere; 
VAR a: ANIREAL; 

v: ANIREAL-VAL; 
s :  SPHERE; 

AT 0: a := TIME * TIME; 
v couple ANI a ' w i t h '  

OBJECT s ' b y '  KEY "mass"; 
Anireals are a very powerful tool that can not only be 

used to implement simple functions like polynomials, but 
also complex (for example composed) functions. 

Linear transformations 

Like anireals, linear transformations are another data 
type designed for describing animation. A LINTRAFO 
variable (from linear transformation) stores a simple 
movement description composed of elementary operations 
like translation, rotation or scaling. These movements can 
be linked to execute either sequentially or concurrently 
with the keywords SERIAL and PARALLEL, respectively. 
Every part of that movement may be given a duration 
(LAST s). 

Like the anireal valuator, the lintrafo valuator is also 
used for guiding level animation, but with a linear trans- 
formation as a control structure instead of an anireal. 
Linear transformations directly affect the position and 
orientation of a rigid. 
SCRIPT SquareMove; 
'move a sphere along a square, 
VAR 1: LINTRAFO; v: LINTRAFO-VAL; 

AT 0: 1 := 
s: SPHERE; 

TRANS [10,0,0] LASTS 5 SERIAL 'rite' 
TRANS [0,10,0] LASTS 5 SERIAL ' U p '  

TRANS [ - 1 O , O , O ]  LASTS 5 SERIAL left' 
TRANS [0,-10,0] LASTS 5; down I 

Compared with anireals, linear transformation are 
more limited in applicability, but more easy to use. The 
description used in linear transformations matches the 
way the human animator thinks about movement. The 
area of application is restricted to movement, but this is 
the majority of action going on in an animation. 

v couple LIN 1 'with' OBJ s;  

Spline-driven keyframe animation 

In addition to analytically defined keyframe anima- 
tion, it is also possible to define motion or change of other 
parameters over time by splines. A special controller is 
introduced for that purpose, a spline valuator. 

A spline is usually defined by a piecewise cubic poly- 
nomial. Animators usually wish not only to have control 
over the spatial properties of the curve, but also over the 
velocity and duration properties. All these properties are 
much easier set interactively than algorithmically (i.e. in a 
script). Therefore splines are set up in a separate interac- 
tive tool. The spline's properties are saved in a curve file 
and the script has only to refer to that file. 



The spline valuator works in the same way the 
anireal valuator does. It is told the name of the curve from 
which to obtain the spline data, the object that shall be 
supplied with values, and the key property of the target 
object to couple to. 

5. Extending the language 

Easy extendibility was a key feature in the design of 
STORYBOARD, because VAST is built to be a testbed for the 
integration of new techniques, The animation object's 
properties in STORYBOARD are table driven, so that ex- 
tending the language with a new animation objects simply 
means feeding the object's method declarations to a table. 

VAR SPLINE-VAL SV; SPHERE s; 
AT 1: sv couple SPLINE "up-and-down" 

' w i t h '  OBJECT s 'by1 KEY 'lpositionll; 

P I o\ ..> ............................. :. ..,........... lo/ .1.)1.1.1.1.1.1.1.11~.1.1.1:1.1.~.~.1.1.1.1.~.1 @1 
script I 

spline 
editor 

Fig. 2: Data flow for a spline valuator 

Physically based animation 

Physically based animation is achieved by animation 
objects with physical properties. Actors like rigids have a 
mass and a geometric representation, and they react to 
physical influences like spring forces, gravity, or force 
fields. The latter are implemented as controllers. 

To create a physical simulation with a script, the 
animator has just to set up the scene in its initial state. 
The animation itself is derived automatically by the 
object's skills, exercised by the system's message 
mechanism. 

The example given in the program on the next page 
shows how this princeple works: A tetrahedron is created 
by tieing together four mass points with six springs, thus 
forming a "jelly tetrahedron". Furthermore, a gravity 
object is introduced that influences the masses by applying 
a force. 

For example, behavioral animation models such as 
particle systems [ 171 or other models that are not based on 
a physical layer are as easily integrated into STORYBOARD 
as the techniques already mentioned. New animation 
modules are built in the systems native language of the 
system (C++), and then added as new object data types 
into the script language. Since this step means only 
adding a new data type defined by a set of messages (each 
of which comes with a set of parameters), the extension of 
the language is straightforward. Not the syntax is ex- 
tended. but rather the semantics. A sufficient set of basic 
data types that can be used as parameters guarantees that a 
new animation object fits into STORYBOARD'S framework. 

6. Procedural abstraction 

Procedural abstraction means the introduction of lan- 
guage concepts that enable the user to structure his scripts, 
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make repeated use of code once written (reusability), and 
be able to alter it, especially the script's timing properties. 

Subscripts 

an argument to a subscript. In the following, both super- 
script and subscript may address this object and manipu- 
late it simultaneously by sending messages. 

Subscripts principally execute concurrently and inde- 
In general purpose programming languages, an pendently. They form a tree-like hierarchy, in which the 

root script is referred to as the muster script. Multiple essential abstraction mechanism is provided by procedures 

SCRIPT Jell y ; 
VAR 
MASSPOINT ml, m2 ,m3, m4, m10 ; 
SPRING sl, s2, s3, s4, s5, s6; 
GRAVITY gr; 

ml set mass 10 position [loo, 100,1001 velocity [lo, 90,Ol; 
AT 0 :  'set up the masspoint properties' 

m2 set mass 10 position [120,120,120] velocity [lo, 90,Ol ; 
m3 set mass 10 position [100,120,140] velocity [ O ,  90,Ol; 
m4 set mass 10 position [110, 90,1403 velocity [0.1,90,01 ; 

sl set first-tie ml second-tie m2 length 60 strength 5; 
s2 set first-tie ml second-tie m3 length 60 strength 5; 
s3 set first-tie ml second-tie m4 length 60 strength 5; 
s4 set first-tie m2 second-tie m3 length 60 strength 5; 
s 5  set first-tie m2 second-tie m4 length 60 strength 5; 
s6 set first-tie m3 second-tie m4 length 60 strength 5; 

gr appears; ml appears; m2 appears; m3 appears; m4 appears; 

'tie them together' 

'and now let the simulation run . . . I  

sl appears; s2 appears; s3 appears; s4 appears; s5 appears; s6 appears; 
and functions. Support for modules in the form of multiple instances of a script program can co-exist, even wil 
source files for one program has also been proven to be 
advantageous. This concept is built into STORYBOARD in 
the form of subscripts. 

Subscripts are a way of decomposing a huge and 
complex animation into handy animation parts. These 
parts are stored in separate script program files. A natural 
way to decompose an animation is scene by scene. But 
also statements involving one particular actor can be put 
into a subscript. 

Arguments are a very powerful tool. A parameterized 
script can be used as a subscript in different animations 
with different parameters. Very often parts of an anima- 
tion are structurally identical but different in various 
values. If a parameterized script has been programmed, 
only the current values have to be supplied to the script 
and it can immediately be utilized. By use of program 
control elements such as if-statements variations not only 
in value space but also in behavior are possible. 

It is possible for (sub)scripts to share animated 
objects. A superscript may pass a reference to an object as 

overlapping execution time. A subscript can be compared 
with an asynchronous procedure call. A script can even 
recursively call itself (although the applicability of that 
feature may be limited in practice). Multiple instances of 
scripts are completely independent of each other, main- 
taining their own variables (except shared objects passed 
as arguments). 

Subscripts are invoked with a run statement, 
requiring the specification of the name of the file 
containing the script program, the start and end time of 
the subscript (in terms of local time of the calling script) 
and values for the arguments expected by the subscript. 
AT 90: RUN "planecrash" LASTS 5 ARG 
plane := boing-747, big-mess := TRUE; 

In this example, a run statement is executed that pro- 
duces an animation of a crashing aeroplane. 
"planecrash" is the name of the script file that con- 
tains the program, the value after LASTS gives the 
duration of the animation, and after ARG the arguments 
for the subscript are listed. Every entry consists of an 
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assignment to a local property of the subscript, with the 
syntax <variable> : = <expression>. 

Local time 

Time plays a crucial role in animation. A (sub)script 
describes a coherent part of an animation. Often it is 
necessary to scale the duration of such a script or move it 
along the time axis. If all objects refer to the same global 
time base, this is a difficult task. Therefore different lo- 
gical times were introduced: 

0 

0 

end 

Global time: This is the overall system time. A time 
unit in global time is the reference element all over 
the system. The global time is also identical with the 
master script's time. The global time begins with the 
start time of the master script and ends with the 
master script's end time. The framerate is specified 
relative to global time. 
Local time: Every script maintains its own local time 
that is independent from the global time. This local 
time is projected onto the lifetime of the script. The 
majority of scripts are subscripts (all except the 
master script), so that usually the local time is 
different from the global time. The lifetime of a script 
starts at the moment of the call (the value specified 
after the AT of the RUN statement that starts the 
subscript) and lasts for the amount of time specified 
after LASTS. Note that these times are also local 
times of the calling script and not necessarily 
identical with the global time. The script hierarchy 
may contain several layers of subscripts, therefore the 
local time has to be transformed multiple times to 
calculate the global time. 
If both local start and end time and global start and 
time are given for a script, the conversion from a 

given local time to the according global time and vice 
versa can be calculated as follows: 

with: 
g...global time l...local time 
g,...global start time 
g, ...g lobal end time 

Is ... local start time 
I ,  ... local end time 

The formulae above can also be applied for a pair 
superscript/subscript. If the calculation ought to be per- 
formed for a hierarchy of subscripts, the formulae have to 
be used recursively. 

Because all actions specified in scripts are associated 
with local time only, a script can be transposed and scaled 
by the user without creating the need for the system to 
recalculate the timing of the animation. Only the lifetime 
values for the manipulated script have to be altered. 

7. Integration of interaction 

To integrate a scripting language into an interactive 
system, interfaces in two directions have to be defined: 
from script to animation and vice versa. These two inter- 
faces are discussed in the following. 

Transforming a script into an animation: 
The STORYBOARD controller object 

The compiler/runtime system for a script in VAST is a 
controller object, the STORYBOARD controller. For every 
script program that is part of an animation project (a 
scene), a STORYBOARD controller is created that compiles 
the script program. Note the different terms script object 
(or rather STORYBOARD controller), script program (that 
refers to the program text the animator wrote), and script 
file (that refers to the file on disk containing the script 
program). 

A script program may contain calls to subscripts, 
comparable to procedures in other programming lan- 
guages. For every subscript, a separate STORYBOARD 
controller is generated, forming a tree-like hierarchy. 
Upon compilation, the script program is read from the file 
and parsed. The result of this procedure is a command 
queue, a data composed of commands, each of which 
holds the contents of a message associated with the time 
when the message should be sent. The control is then 
passed on to those subscripts to compile their own 
command queues. 

A subscript is treated in the same way as its 
superscript: The subscript controller exercises the same 
compilation mechanism as the calling script, but for its 
own script program. More than one subscript may execute 
one script program, because all variables are treated 
locally in the script object. 
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Fig. 3: Executing a command queue 

Every controller generates its own command queue 
that is private to the controller. When the animation is 
run, all STORYBOARD controllers participate in the 
communication phase. They consult their command 
queues to see if any of the commands are scheduled for 
execution. If this is the case, the command is told to 
execute, and in turn sends the stored message to an 
animated object to trigger the desired effect. A command 
holds all the information that is necessary to post a well- 
defined message. Because the script program is compiled 
into a command queue and not interpreted directly upon 
reading, the animation can be reproduced without having 
to read the script program again. Changes that are made 
by the animator via the interactive tools of the system are 
reflected in the command queue as new or altered 
commands. 

Transforming an animations into a script: 
Cyberscripts 

One of the objectives in designing both the 
STORYBOARD language and the command queue data 
structure was to allow script programs to be used as a way 
of storing animations. This solves the problem of how 
changes made interactively to an animation that was read 
from a script program can be reflected in that script pro- 
gram. Such programs, that are automatically produced 
from the animation worked upon in VAST, are called 
cyberscripts. 

The interchangeability of data between the pro- 
gramming module and the interactive module(s) allows 
the programmer to combine programming and interaction 
on the same objects. He might specify a sequence by pro- 
gramming then refine it by interaction (which is generally 
easier because of the visual feedback provided by the 
graphical user interface as opposed to the unappealing 

numbers in a program). The programmer might also 
rough out a design with the interactive module, then view 
it as a program in a text editor and adjust to an arbitrary 
precision by the power of control given by real numbers 
and mathematical expressions. This refinement process 
cycle can be iterated until the animation matches the 
animators expectations. 

A cyberscript is produced from the command queue. 
Once a script program is compiled into a linear command 
queue the program control information (loops, assign- 
ments, if-statements) contained in the original script pro- 
gram is discarded. The program control information is 
immediately interpreted when reading and processing the 
script file in a way [ 151 calls "unrolling the model". The 
"compiled" command queue contains only messages, no 
program control information. The discarded information 
cannot be reproduced in a cyberscript built from a 
command queue. Therefore the original script and the 
cyberscript are not identical but produce the same anima- 
tion. The script hierarchy is not lost, because the cyber- 
script mechanism can reconstruct it from the tree of 
STORYBOARD controllers. 

All information needed for the cyberscript is con- 
tained in the STORYBOARD controller and its command 
queue. The time for a message is stored in the command. 
The command also holds a pointer to the object it has to 
send a message to when triggered, and the values of 
param e ter s. 

The animation stored in a command queue can be 
manipulated via the user interface by inserting, deleting 
and altering command nodes. If the animation is stored, 
the (altered) command queue is processed command by 
command. Every command is translated into a message 
statement. If any changes have been made to the anima- 
tion interactively, these are reflected back in the 
c yberscript. 



Limitations References 

Further work will examine possibilities of 
introducing interaction while the animation is executed. 
Input in the scripting language is not yet available, and 
there is no way to send messages to a script controller. A 
possible solution is to extend he command queue by 
another data structure that can handle asynchronous 
events, like described by [8]. 

8. Conclusion 

We have presented a script language that fits into an 
interactive animation system aimed at the integration of 
animation techniques. The language is easy to learn, so 
that it can be used by unskilled programmers. This is 
achieved by leaving the implementation of animation 
modules at the system level, while utilization of animation 
modules is achieved by the scripting language on a very 
high level. Its syntax is simple and has a natural time- 
table like structure. The message mechanism of the 
animation system is supported by introducing animation 
objects as data types and applying message statements on 
them. 

Structured programming is supported and a 
mechanism for procedural abstraction is introduced in the 
form of subscripts that can be triggered from within a 
script and execute concurrently. The animation can be 
structured in a number of sub-animations that can be 
edited and manipulated separately, providing high-level 
control on the timing properties. 

Furthermore, special data types (anireals, linear 
transformations) and splines for simple animation tasks 
are included that can also execute concurrently with the 
script by the use of valuator objects. This concept relieves 
the animator from specifying all details of the animation 
for every single keyframe. 

Powerful animation techniques such as physical 
simulation are supported by the language’s message 
mechanism, and it is easily extended as new modules are 
developed. 

The animation system’s paradigm of interactivity is 
supported by the possibility to recreate a script from an 
animation represented in the interactive part of the 
system. All information that has been specified inter- 
actively can be reflected into a cyberscript. 
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