
Integrating a Script ng Language into an Interactive Animation System

Michael Gervautz, Dieter Schmalstieg
Institute of Computer Graphics

Technical University of Vienna, Austria
email: gervautz@eibyte.dnet.tuwien.ac.at, dieter@eigsgl .tuwien.ac.at

Abstract
STORYBOARD is a scripting language for an interac-

tive computer animation system. The language was
designed to be simple in its use, to support various
animation techniques provided by the animation environ-
ment, and to support procedural abstraction of animation.
It is easily expandable and lends itself to the integration
of interactive features of the system.

Some of the important aspects of design and imple-
mentation are discussed, like the time-table like structure
of programs, the embedding of a message mechanism into
the language, animation data types and their application,
concurrent execution and local time, and recompilation of
an animation specified interactively into a script.

Keywords: computer animation, scripting lan-
guages, actors, controllers, local time, subscripts, linear
transformations, time dependent data types

1. Introduction

When using a programming language for computer
animation - a scripting language - the animator is re-
quired to write a program to define a set of actions. Many
animators are rather artists than programmers and there-
fore prefer using an interactive system with a graphical
user interface. However, there are significant advantages
of scripting languages over interactive systems, especially
flexibility and diversity of algorithmic notation (see
also [28]).

Because both interactive and scripted animation has
its distinct areas of application, a system aimed at
integration of animation techniques should not only pro-
vide multiple techniques to work with, such as dynamic
simulation [26] or behaviors [131, but also multiple means
to specify the animation, either interactively or by a
program.

We present the scripting language STORYBOARD [211
that is part of the animation system VAST (Vienna
Animation System Technology) [lo]. This language was
designed to fulfil a number of needs that could directly be
derived from its area of application and its system
environment:

0 It should be easy to use. Animators are often
unskilled in programming and are easily deterred by
a complex scripting language that requires
experience in program design rather than in
animation design. The syntax of the language should
be simple and natural, and the language elements
such as built-in functions and data types should be
pow erfu 1.
It should support different animation techniques.
All the animation techniques that are embedded in
the system must be accessible via the language. A
number of basic and auxiliary data types are
necessary to allow for efficient communication with
the animation modules. Furthermore, the language
must lend itself easily to extensions as new animation
techniques are added to its host system VAST.

0-8186-6240-9/94 $3.00 0 1994 IEEE
156

It should be suitable for the integration of
interaction. A paradigm of VAST is interactivity, and
from this rises the problem of how changes made
interactively can be reflected in the script that
represents the animation.
It should offer opportunities for procedural
abstraction. Animations can quickly get complicated
as the number of participants grows, and the only
way for the animator to keep track is to introduce
subdivisions and hierarchies. Besides, for the sake of
productivity, reusability of animation parts is as cru-
cial as reusability of software modules. The notion of
time should be flexible so that parts of the animation
can easily be altered in the time domain without
affecting the rest of the animation [22].

2. Concepts of scripting languages

First we will give an overview of the essential con-
cepts that can be found in scripting languages. As stated
in [Breen 19871, the "object-oriented paradigm is an ad-
vantageous, useful and natural concept" for computer
animation. Therefore most computer animation systems
are more or less object-oriented. In such systems, objects
communicate with each other via messages. This mes-
sage mechanism is also used if entities execute
concurrently and synchronisation is needed. Therefore
animation systems and languages based on the
actors/scripts paradigm must provide a message
mechanism. Almost all known animation languages have
such a mechanism, cf. [3], 1191, [231, [ill, [81, [41.

Animations describe scenes composed of visible enti-
ties, and their changes over time. Such entities in
computer animation are generally called actors [24], a
term that suggests coherence of computer animation and
theater/movie and stresses the active role (lat. agere - to
do) such objects play in computer animation. Besides, the
notion of "actors" matches the animator's self image as a
"director" [13]. The term actor is used in robotics and
artificial intelligence in a similar way [13.

[141 develops a theory about entities he called actors.
He defined an actor as an object that can send or receive
messages. All elements of a system are actors and the only
activity possible in the system is the transmission of mes-
sages between them. Actors form a natural level of

abstraction that is suitable for the object-oriented
approach. Besides, animation often involves behaviors or
goal driven efforts. Some researchers try to apply methods
of artificial intelligence to computer animation to supply
actors with methods to solve the problems the actors are
confronted with [20].

While actors can only execute simple tasks, a script
controls the animation on a very high level. It fulfils a task
similar to the process manager in a multitasking operating
system. The script creates and deletes actors and triggers
specific events. Such events are often called cues. The
script and the actors execute concurrently. Script elements
can be found in [191, [251, [41, [201.

The code to evaluate time-dependent differential
functions frame by frame can quickly become very un-
pleasant to write and maintain. To overcome this
restriction, new data types, that may best be described as
time dependent functions, are introduced to help the
animator. The value of a such a variable may change over
time. Examples for this concept are newtons [19],
animated basic types [23],' or articulated variables [181,
~ 5 1 .

3. The animation system: VAST

VAST (Vienna Animation System Technology) [121
[lo] is an interactive animation system that is able to
integrate and combine various animation techniques like
keyframe animation, scripting, physically based and be-
havioral animation. The system is based on objects that
communicate with each other through message passing.
Basically there are two different types of objects in VAST.

Actors appear in the animation. An actor is able to
send and receive messages and to react on such mes-
sages. Actors can be simple mass points as well as
rigids, kinematic chains, deformable objects, etc.
Controllers influence the animation. The main task
of a controller is to send messages to actors to change
their motion, shape, or non-geometric properties.
Controllers are usually not visible. They contain dy-
namic data, the description of the motion, or a behav-
ior of one or more actors. Separating the controlling
mechanism from the actors provides a flexible envi-
ronment in which different controlling mechanisms
can easily be implemented and integrated.

157

An example for a simple controller is a spring that
controls the distance of two objects. Other examples
for controllers are dampers, kinematic and dynamic
constraints, or input devices, which also can be con-
trolled by the animator. Scripts are also controllers.
An animation in VAST is calculated incrementally:

For every frame animated objects (actors and controllers)
send messages to each other. Each object has its own mes-
sage buffer to store the incoming request messages during
one time step. When all messages are sent, the objects
react to these messages. In case of multiple messages to
one object, a priority mechanism decides which messages
are considered. It has to order the messages, possibly dis-
carding irrelevant ones, or combining others (e.g. sum-
ming up forces).

VAST is implemented in C++, defining a broad
hierarchy of animation objects. The animated objects are
the key to the integration of multiple animation techniques
into VAST, [Fig. 11 gives an overview of the object hierar-

tends PASCAL, ASAS [19] that extends LISP, or ML [18]
that is close to C in its syntax. While these approaches are
certainly powerful, they lack simplicity. LISP is definitely
not the language of choice for artists who work as com-
puter animators.

The problem with these languages is that they are
ment as a toolkit upon which the animation techniques
can be built. The person who implements the module that
processes the animation technique (e.g. inverse kinematics
or particle systems) is the same person that uses this
module to produce animation. The disadvantage of this
approach is obvious: The animator has to be skilled in
both implementation and artistic animation, which is
usually not the case.

For this reason we think that the concept available in
most commercial software is superior: The functions of a
system can be accessed by a simple language (often coined
"macro" language) that can only deal with existing
animation modules but neither create new modules nor

Articu latedobject

Homlnld
I

Fig. 1 : Excerpt from the object hierarchy currently implemented in VAST

chy in VAST. The hierarchy splits into two sub-trees. the
actor sub-tree and the controller sub-tree. A member of the
latter is a "script" (= script controller) that is discussed in
the section 6.

4. The STORYBOARD language

Many of the animation languages that have been pro-
posed so far are extensions to existing general purpose
programming languages, such as M I R A - ~ D [23] that ex-

modify the internal behavior of existing modules. An
option is to create "virtual" new modules by combining
existing ones, but this can be achieved on a very high
language level. In that way, we introduce a "two-class-
society" among people working with the system: The
technical animators (or programmers) develop new -
technically complex - animation modules in the system's
native language (C++), and the artistic animators use this
modules in the high level animation language
(STORYBOARD) to create animations without the need to

158

know about how a given animation module works
(cf. [23]).

Such a language has to be really natural in its use.
The general idea of a STORYBOARD script was to resemble
the structure of an exposure sheet in movie production or
a time-table in everyday life. It is merely a list of points
of time associated with one or more statements that are to
be triggered at that moment.

AT 1 : statementl; statement2;
statement3;

AT 3 : statement4;
AT 3.5: statement5; statement6;

Inside of such an AT-construction the statements are
executed in the order given. This is important because the
execution of one statements (e.g. an assignment) may
affect the next one.

The central type of statement in STORYBOARD is the
message statement. The message defined by those state-
ments are sent to other objects at the appropriate time.
This is the way a script sets up and controls an animation.

The message statements are implemented in the form
of simple command sentences that are inspired by natural
language. The subject of the sentence is addressed by a
name, followed by the command verb and objects com-
pleting the command sentence (these are objects in lin-
guistic sense, not in OOP terminology!). Comments
embraced in single quotes (e.g. comment ') may be used
asfil l words to bring a message statement even closer to
natural language.

In the example given next, the parameters of a mass
p i n t are set. set is the message name, position is the
label for position and velocity is the label for velocity.

VAR MASSPOINT masspointl;

AT 12 : masspointl set position 'to'
'variable declaration'

[O,O, 01 'and' velocity 'to' [O,O, 01 ;
Special messages are reserved to tell objects to be-

come visible or invisible: appears and disappears.
AT 13: masspointl appears;

The time-table like program structure consisting of
message "sentences" is easily comprehensible by both the
animator (who writes the script) and by the compiler (who
must be capable of processing it). Let us examine a typical
message statement like the one given in the example
above: Objects participating in the animation are declared
as variables in the script, so the subject of the message is

addressed by a variable name. The verb (like "set") is a
method in object-oriented terminology, and the sentence
objects are the parameters for the method. Unlike most
programming languages, the order of parameters is free.
To avoid ambiguities, parameters are preceded by a pa-
rameter label that is unique for that method and allows
type checking to be performed upon the expression that
follows the label.

Data types

The animation objects (actors and controllers) are
implemented in STORYBOARD in the form of data types.
Creating a new object is done by declaring it as a variable,
and communication with these objects is established by
sending messages. In addition to those object data types, a
number of primitive data types has been added. With these
data types basic programming tasks can be carried out,
like calculations and assignments. The results can then be
used as parameter values for messages. The basic data
types are reals, booleans, 3D vectors, quaternions
(useful for rotations), and strings.

Some data types are specially designed for computer
animation: linear transformations (for the definition of
simple movements) and anireals (a time-dependent
numerical type), see below.

Programmed animation

The field of program level animation as defined
in [28] is easily covered by the scope of our script
language. In addition to the language elements that have
already been given, it is possible to use conditional
statements of the form

I F condition THEN. .. ELSE. .. E N D I F ;

L O O P . . . E X I T I F condition; ... ENDIF;
and loop statements of the form

to enable efficient programming.
Furthermore, some special data types for keyframe

animation have been introduced: anireals and linear trans-
formations.

Anireals

Time dependent data types have been adopted in the
form of anireals [9] (short for animated reals). Anireals

159

are a superset of normal real numbers. They have the
same syntax as reals and behave exactly like reals do, with
the exception of the possible dependency on time. Time is
denoted with the keyword TIME.
ANIREAL a, b;
a := SIN(5);
b := 23 * COS(T1ME) + a;

Anireals are compatible with reals. Reals and
anireals can be used together in numerical expressions,
but the result is always of type anireal. Therefore an ex-
pression containing one or more anireals cannot be
assigned to a real.

To make use of an anireal, an anireal valuator is re-
quired. An anireal valuator is a controller that evaluates
an anireal and modifies a specific property of an animated
object according to the result. The anireal valuator
executes completely independent from the script that
creates it. Once the anireal valuator is told to send mes-
sages to a particular object, the controller does so continu-
ously until it is told to stop.

To create key-frame animation, a good way is to de-
fine the position as a function dependent on time - an
anireal. The anireal is created by the script, then passed to
an anireal valuator together with the order to supply an
internal state variable of the object to be guided continu-
ously with the time-variant value. This step is called
"coupling". From the moment of coupling, the animator
does not have to care any more about that particular part
of the animation. The system takes care of this part of the
animation, that goes on concurrently with the other parts.
Of course the object also can be decoupled from the
valuator again. In the following example, a sphere's mass
is continuously incremented according to the square of
time. The important statement is the message couple
that links the anireal valuator to the sphere (OBJECT
indicates the target object and KEY "mass" indicates
what property of the target to manipulate).
SCRIPT Heavysphere;
VAR a: ANIREAL;

v: ANIREAL-VAL;
s : SPHERE;

AT 0: a := TIME * TIME;
v couple ANI a ' w i t h '

OBJECT s ' b y ' KEY "mass";
Anireals are a very powerful tool that can not only be

used to implement simple functions like polynomials, but
also complex (for example composed) functions.

Linear transformations

Like anireals, linear transformations are another data
type designed for describing animation. A LINTRAFO
variable (from linear transformation) stores a simple
movement description composed of elementary operations
like translation, rotation or scaling. These movements can
be linked to execute either sequentially or concurrently
with the keywords SERIAL and PARALLEL, respectively.
Every part of that movement may be given a duration
(LAST s).

Like the anireal valuator, the lintrafo valuator is also
used for guiding level animation, but with a linear trans-
formation as a control structure instead of an anireal.
Linear transformations directly affect the position and
orientation of a rigid.
SCRIPT SquareMove;
'move a sphere along a square,
VAR 1: LINTRAFO; v: LINTRAFO-VAL;

AT 0: 1 :=
s: SPHERE;

TRANS [10,0,0] LASTS 5 SERIAL 'rite'
TRANS [0,10,0] LASTS 5 SERIAL ' U p '

TRANS [- 1 O , O , O] LASTS 5 SERIAL left'
TRANS [0,-10,0] LASTS 5; down I

Compared with anireals, linear transformation are
more limited in applicability, but more easy to use. The
description used in linear transformations matches the
way the human animator thinks about movement. The
area of application is restricted to movement, but this is
the majority of action going on in an animation.

v couple LIN 1 'with' OBJ s;

Spline-driven keyframe animation

In addition to analytically defined keyframe anima-
tion, it is also possible to define motion or change of other
parameters over time by splines. A special controller is
introduced for that purpose, a spline valuator.

A spline is usually defined by a piecewise cubic poly-
nomial. Animators usually wish not only to have control
over the spatial properties of the curve, but also over the
velocity and duration properties. All these properties are
much easier set interactively than algorithmically (i.e. in a
script). Therefore splines are set up in a separate interac-
tive tool. The spline's properties are saved in a curve file
and the script has only to refer to that file.

The spline valuator works in the same way the
anireal valuator does. It is told the name of the curve from
which to obtain the spline data, the object that shall be
supplied with values, and the key property of the target
object to couple to.

5. Extending the language

Easy extendibility was a key feature in the design of
STORYBOARD, because VAST is built to be a testbed for the
integration of new techniques, The animation object's
properties in STORYBOARD are table driven, so that ex-
tending the language with a new animation objects simply
means feeding the object's method declarations to a table.

VAR SPLINE-VAL SV; SPHERE s;
AT 1: sv couple SPLINE "up-and-down"

' w i t h ' OBJECT s 'by1 KEY 'lpositionll;

P I o\ ..> :. ..,........... lo/ .1.)1.1.1.1.1.1.1.11~.1.1.1:1.1.~.~.1.1.1.1.~.1 @1
script I

spline
editor

Fig. 2: Data flow for a spline valuator

Physically based animation

Physically based animation is achieved by animation
objects with physical properties. Actors like rigids have a
mass and a geometric representation, and they react to
physical influences like spring forces, gravity, or force
fields. The latter are implemented as controllers.

To create a physical simulation with a script, the
animator has just to set up the scene in its initial state.
The animation itself is derived automatically by the
object's skills, exercised by the system's message
mechanism.

The example given in the program on the next page
shows how this princeple works: A tetrahedron is created
by tieing together four mass points with six springs, thus
forming a "jelly tetrahedron". Furthermore, a gravity
object is introduced that influences the masses by applying
a force.

For example, behavioral animation models such as
particle systems [171 or other models that are not based on
a physical layer are as easily integrated into STORYBOARD
as the techniques already mentioned. New animation
modules are built in the systems native language of the
system (C++), and then added as new object data types
into the script language. Since this step means only
adding a new data type defined by a set of messages (each
of which comes with a set of parameters), the extension of
the language is straightforward. Not the syntax is ex-
tended. but rather the semantics. A sufficient set of basic
data types that can be used as parameters guarantees that a
new animation object fits into STORYBOARD'S framework.

6. Procedural abstraction

Procedural abstraction means the introduction of lan-
guage concepts that enable the user to structure his scripts,

161

make repeated use of code once written (reusability), and
be able to alter it, especially the script's timing properties.

Subscripts

an argument to a subscript. In the following, both super-
script and subscript may address this object and manipu-
late it simultaneously by sending messages.

Subscripts principally execute concurrently and inde-
In general purpose programming languages, an pendently. They form a tree-like hierarchy, in which the

root script is referred to as the muster script. Multiple essential abstraction mechanism is provided by procedures

SCRIPT Jell y ;
VAR
MASSPOINT ml, m2 ,m3, m4, m10 ;
SPRING sl, s2, s3, s4, s5, s6;
GRAVITY gr;

ml set mass 10 position [loo, 100,1001 velocity [lo, 90,Ol;
AT 0 : 'set up the masspoint properties'

m2 set mass 10 position [120,120,120] velocity [lo, 90,Ol ;
m3 set mass 10 position [100,120,140] velocity [O , 90,Ol;
m4 set mass 10 position [110, 90,1403 velocity [0.1,90,01 ;

sl set first-tie ml second-tie m2 length 60 strength 5;
s2 set first-tie ml second-tie m3 length 60 strength 5;
s3 set first-tie ml second-tie m4 length 60 strength 5;
s4 set first-tie m2 second-tie m3 length 60 strength 5;
s 5 set first-tie m2 second-tie m4 length 60 strength 5;
s6 set first-tie m3 second-tie m4 length 60 strength 5;

gr appears; ml appears; m2 appears; m3 appears; m4 appears;

'tie them together'

'and now let the simulation run . . . I

sl appears; s2 appears; s3 appears; s4 appears; s5 appears; s6 appears;
and functions. Support for modules in the form of multiple instances of a script program can co-exist, even wil
source files for one program has also been proven to be
advantageous. This concept is built into STORYBOARD in
the form of subscripts.

Subscripts are a way of decomposing a huge and
complex animation into handy animation parts. These
parts are stored in separate script program files. A natural
way to decompose an animation is scene by scene. But
also statements involving one particular actor can be put
into a subscript.

Arguments are a very powerful tool. A parameterized
script can be used as a subscript in different animations
with different parameters. Very often parts of an anima-
tion are structurally identical but different in various
values. If a parameterized script has been programmed,
only the current values have to be supplied to the script
and it can immediately be utilized. By use of program
control elements such as if-statements variations not only
in value space but also in behavior are possible.

It is possible for (sub)scripts to share animated
objects. A superscript may pass a reference to an object as

overlapping execution time. A subscript can be compared
with an asynchronous procedure call. A script can even
recursively call itself (although the applicability of that
feature may be limited in practice). Multiple instances of
scripts are completely independent of each other, main-
taining their own variables (except shared objects passed
as arguments).

Subscripts are invoked with a run statement,
requiring the specification of the name of the file
containing the script program, the start and end time of
the subscript (in terms of local time of the calling script)
and values for the arguments expected by the subscript.
AT 90: RUN "planecrash" LASTS 5 ARG
plane := boing-747, big-mess := TRUE;

In this example, a run statement is executed that pro-
duces an animation of a crashing aeroplane.
"planecrash" is the name of the script file that con-
tains the program, the value after LASTS gives the
duration of the animation, and after ARG the arguments
for the subscript are listed. Every entry consists of an

162

assignment to a local property of the subscript, with the
syntax <variable> : = <expression>.

Local time

Time plays a crucial role in animation. A (sub)script
describes a coherent part of an animation. Often it is
necessary to scale the duration of such a script or move it
along the time axis. If all objects refer to the same global
time base, this is a difficult task. Therefore different lo-
gical times were introduced:

0

0

end

Global time: This is the overall system time. A time
unit in global time is the reference element all over
the system. The global time is also identical with the
master script's time. The global time begins with the
start time of the master script and ends with the
master script's end time. The framerate is specified
relative to global time.
Local time: Every script maintains its own local time
that is independent from the global time. This local
time is projected onto the lifetime of the script. The
majority of scripts are subscripts (all except the
master script), so that usually the local time is
different from the global time. The lifetime of a script
starts at the moment of the call (the value specified
after the AT of the RUN statement that starts the
subscript) and lasts for the amount of time specified
after LASTS. Note that these times are also local
times of the calling script and not necessarily
identical with the global time. The script hierarchy
may contain several layers of subscripts, therefore the
local time has to be transformed multiple times to
calculate the global time.
If both local start and end time and global start and
time are given for a script, the conversion from a

given local time to the according global time and vice
versa can be calculated as follows:

with:
g...global time l...local time
g,...global start time
g, ...g lobal end time

Is ... local start time
I , ... local end time

The formulae above can also be applied for a pair
superscript/subscript. If the calculation ought to be per-
formed for a hierarchy of subscripts, the formulae have to
be used recursively.

Because all actions specified in scripts are associated
with local time only, a script can be transposed and scaled
by the user without creating the need for the system to
recalculate the timing of the animation. Only the lifetime
values for the manipulated script have to be altered.

7. Integration of interaction

To integrate a scripting language into an interactive
system, interfaces in two directions have to be defined:
from script to animation and vice versa. These two inter-
faces are discussed in the following.

Transforming a script into an animation:
The STORYBOARD controller object

The compiler/runtime system for a script in VAST is a
controller object, the STORYBOARD controller. For every
script program that is part of an animation project (a
scene), a STORYBOARD controller is created that compiles
the script program. Note the different terms script object
(or rather STORYBOARD controller), script program (that
refers to the program text the animator wrote), and script
file (that refers to the file on disk containing the script
program).

A script program may contain calls to subscripts,
comparable to procedures in other programming lan-
guages. For every subscript, a separate STORYBOARD
controller is generated, forming a tree-like hierarchy.
Upon compilation, the script program is read from the file
and parsed. The result of this procedure is a command
queue, a data composed of commands, each of which
holds the contents of a message associated with the time
when the message should be sent. The control is then
passed on to those subscripts to compile their own
command queues.

A subscript is treated in the same way as its
superscript: The subscript controller exercises the same
compilation mechanism as the calling script, but for its
own script program. More than one subscript may execute
one script program, because all variables are treated
locally in the script object.

163

System
Clock

"execute"
ed

0 bject

Fig. 3: Executing a command queue

Every controller generates its own command queue
that is private to the controller. When the animation is
run, all STORYBOARD controllers participate in the
communication phase. They consult their command
queues to see if any of the commands are scheduled for
execution. If this is the case, the command is told to
execute, and in turn sends the stored message to an
animated object to trigger the desired effect. A command
holds all the information that is necessary to post a well-
defined message. Because the script program is compiled
into a command queue and not interpreted directly upon
reading, the animation can be reproduced without having
to read the script program again. Changes that are made
by the animator via the interactive tools of the system are
reflected in the command queue as new or altered
commands.

Transforming an animations into a script:
Cyberscripts

One of the objectives in designing both the
STORYBOARD language and the command queue data
structure was to allow script programs to be used as a way
of storing animations. This solves the problem of how
changes made interactively to an animation that was read
from a script program can be reflected in that script pro-
gram. Such programs, that are automatically produced
from the animation worked upon in VAST, are called
cyberscripts.

The interchangeability of data between the pro-
gramming module and the interactive module(s) allows
the programmer to combine programming and interaction
on the same objects. He might specify a sequence by pro-
gramming then refine it by interaction (which is generally
easier because of the visual feedback provided by the
graphical user interface as opposed to the unappealing

numbers in a program). The programmer might also
rough out a design with the interactive module, then view
it as a program in a text editor and adjust to an arbitrary
precision by the power of control given by real numbers
and mathematical expressions. This refinement process
cycle can be iterated until the animation matches the
animators expectations.

A cyberscript is produced from the command queue.
Once a script program is compiled into a linear command
queue the program control information (loops, assign-
ments, if-statements) contained in the original script pro-
gram is discarded. The program control information is
immediately interpreted when reading and processing the
script file in a way [151 calls "unrolling the model". The
"compiled" command queue contains only messages, no
program control information. The discarded information
cannot be reproduced in a cyberscript built from a
command queue. Therefore the original script and the
cyberscript are not identical but produce the same anima-
tion. The script hierarchy is not lost, because the cyber-
script mechanism can reconstruct it from the tree of
STORYBOARD controllers.

All information needed for the cyberscript is con-
tained in the STORYBOARD controller and its command
queue. The time for a message is stored in the command.
The command also holds a pointer to the object it has to
send a message to when triggered, and the values of
param e ter s.

The animation stored in a command queue can be
manipulated via the user interface by inserting, deleting
and altering command nodes. If the animation is stored,
the (altered) command queue is processed command by
command. Every command is translated into a message
statement. If any changes have been made to the anima-
tion interactively, these are reflected back in the
c yberscript.

Limitations References

Further work will examine possibilities of
introducing interaction while the animation is executed.
Input in the scripting language is not yet available, and
there is no way to send messages to a script controller. A
possible solution is to extend he command queue by
another data structure that can handle asynchronous
events, like described by [8].

8. Conclusion

We have presented a script language that fits into an
interactive animation system aimed at the integration of
animation techniques. The language is easy to learn, so
that it can be used by unskilled programmers. This is
achieved by leaving the implementation of animation
modules at the system level, while utilization of animation
modules is achieved by the scripting language on a very
high level. Its syntax is simple and has a natural time-
table like structure. The message mechanism of the
animation system is supported by introducing animation
objects as data types and applying message statements on
them.

Structured programming is supported and a
mechanism for procedural abstraction is introduced in the
form of subscripts that can be triggered from within a
script and execute concurrently. The animation can be
structured in a number of sub-animations that can be
edited and manipulated separately, providing high-level
control on the timing properties.

Furthermore, special data types (anireals, linear
transformations) and splines for simple animation tasks
are included that can also execute concurrently with the
script by the use of valuator objects. This concept relieves
the animator from specifying all details of the animation
for every single keyframe.

Powerful animation techniques such as physical
simulation are supported by the language’s message
mechanism, and it is easily extended as new modules are
developed.

The animation system’s paradigm of interactivity is
supported by the possibility to recreate a script from an
animation represented in the interactive part of the
system. All information that has been specified inter-
actively can be reflected into a cyberscript.

Agha Gul. An Overview of Actor Languages. SIGPLAN
Notices, Vol. 21, No. 10, p. 58-67 (October 1986)

Barzel Ranen: A Modelling System Based on Dynamic
Constraints. Computer Graphics, Vol. 22, No. 4, p. 179-
188 (1988)

Bergman S., Kaufinan A.: BGRAF2 A Real-Time
Graphics Language with Modular Objects and Implicit
Dynamics. Computer Graphics, Vol. 10. No. 2. p. 133-138
(1976)

Breen David E., Getto Phillip H., Apocada Anthony A.,
Schmidt Daniel G., Sarachan Brion D.: The Clockworks:
An Object-Oriented Computer Animation System. Proc. of
Eurographics, p. 275-282 (1987)

Breen David E.: Message-Based Object-Oriented
Interaction Modelling. Proc. of Eurographics, p. 489-503
(1989)

Breen David E., Womy Michael 3.: Message Based
Choreography for Computer Animation. In. State-of-the-
art Computer Animation, p. 69-83 (1989)

Burtnik M., Wein M.: Computer-Generated Key-Frame
Animation. Journal of Society for Motion Picture and
Television Engeneers, No. 80, p. 149-153 (1971)

Chua T.-S., Wong W.-H., Chu K.-C.: Design and
Implementation of the Animation Language SOLAR. In:
New Trends in Computer Graphics (Proc. of CG
International), p. 15-26 (1988)

Devide, Robert: ANIREALS. Technical Report, Institute
of Computer Graphics, Technical University of Vienna

Devide, Robert: VAST. Diploma Thesis, Institute of
Computer Graphics, Technical University of
Vienna (1 992)

Fiume E., Tsichritzis D., Dami L.: A Temporal Scripting
Language for Object-Oriented Animation. Proc. of
Eurographics, p. 283-294 (1987)

Gervautz Michael, Devide Robert: VAST - An Integrated
Animation System Based on an Actor-Controller
Structure. Proc. of Eurographics Workshop on Animation

Haumann David R., Parent Richard E.: The Behavioral
Test-Bed Obtaining Complex Behavior from Simple
Rules. The Visual Computer, Vol. 4, p. 332-347 (1988)

Hewitt: Description and theoretical analysis (using
schemata) of PLANNER a language for proving theorems
and manipulating models for a robot. Ph.D. Dissertation,
MIT (1971)

Ostby Eben F.: Simplified Control of Complex Animation.
In: State of the Art in Computer Animation, p. 59-67
(1989)

(1990)

(1993)

165

[16] Plentinckx, D.: The Use of Quaternions for Animation,
Modelling and Rendering. Proceedings of CG
htemational '88, p. 4 4 6 3 (1988)

Reeves William T.: Particle Systems - A Technique for
Modelling a Class of Fuzzy Objects. Computer Graphics,

[17]

Vol. 17, NO. 3, p. 359-376 (1983)

[18] Reeves William T., Ostby Eben F., Leffler Samuel J.: The
Menv Modelling and Animation Environment. Journal of
Visualization and Computer Animation, Vol. 1, p. 33-40
(1990)

Reynolds Craig W.: Computer Animation with Scripts and
actors. Computer Graphics, Vol. 16, No. 3, p. 289-295
(July 1982)

Ridsdale Gary, Calvert Tom: Animating Microworlds from
Scripts and Relational Constraints. In: Computer
Animation '90, p. 107-1 17 (1990)

[19]

[20]

[21] Schmalstieg Dieter: STORYBOARD - A Programming
Language for Computer Animation. Diploma Thesis,
Institute of Computer Graphics, Technical University of
Vienna (1 993)

1221 Smith Jeff, Drewery Karin: Timewarps: A Temporal
Reparameterization Paradigm for Parametric Animation.
Proc. of Eurographics '91. Vienna, p. 413-424 (1991)

Magnenat-Thalmann Nadia, Thalmann Daniel: The Use of
High-Level 3-D Graphical Types in the Mira Animation
System. IEEE Computer Graphics and Applications,

[23]

p. 9-16 (1983)

[24] Magnenat-Thalmann Nadia, Thalmann Daniel:
CINEMIRA: A 3D Computer Animation Language Based
on Actor and Camera Data Types. Technical Report,
University of Montreal (1984).

Magnenat-Thalmann Nadia, Thalmann Daniel: Computer
Animation - Theory and Practice Springer (1985)

[25]

[26] Wilhelms Jane: Dynamics For Computer Graphics: A
Tutorial. Computing Systems,Vol. 1 ,No. 1 .p. 63-93 (1988)

[27] Witkin A., Kass M.: Spacetime Constraints. Computer
Graphics, Vol. 22, No. 4, p. 159-168 (August 1988)

[28] Zeltzer David: Towards an integrated view of 3-D
computer animation. The Visual Computer, Vol. 1, p. 249-
259 (1 985)

166

